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Abstract: Traditionally, paraplegic patients have relied on a wheelchair to travel. However, new
developments in walking assistance technology have led to promising exoskeleton-type wearable
robots that can help paraplegic patients walk. Operation of this new robotic device requires that
patients have appropriate training to ensure safe and optimal use. Here, we propose an algorithm that
can optimize rehabilitation outcomes by comparing posture data generated during the rehabilitation
of a paraplegic patient wearing a body-tracking sensor with reference posture data. The proposed
algorithm guarantees a certain level of accuracy when comparing rehabilitation and reference posture
data. It can also correct for timescale differences between reference and rehabilitation data to ensure a
high level of accuracy. Compared with other algorithms that perform similar functions, this algorithm
can accommodate different postures, including those associated with walking, and has the advantage
of being able to derive the desired results by setting usability features in an intuitive way.

Keywords: wearable robot; algorithm; rehabilitation; posture detection

1. Introduction

With new developments in science and technology, social participation rates among
disabled individuals have steadily increased. For example, paraplegic patients now have
access to enhanced mobility platforms with advances in exoskeleton robot technology [1–3].

Safe and optimal operation of exoskeleton-type wearable robots by paraplegic patients
requires that patients receive appropriate training. Here, we present the novel time-scalable
posture detection algorithm (TSPDA) that can be used in exoskeleton training for paraplegic
patients. TSPDA compares reference posture data (to be imitated by the patient) with
posture data (recorded during training by the actual paraplegic patient) and extracts the
evaluation target data required to measure the accuracy of the patient’s recorded posture.

Some paraplegic patients may find it difficult to follow the target posture at the
beginning of rehabilitation, while some may respond more quickly than expected. Thus,
when comparing reference posture data with a paraplegic patient’s posture data, the
posture data of a paraplegic patient undergoing rehabilitation training may differ greatly
from reference data in terms of movement speed. For example, reference posture data could
indicate that it takes 5 s (s) to walk five steps. However, a paraplegic patient following the
reference posture data may actually take 10 s to walk five steps. In this case, an accurate
comparison between paraplegic patients and reference posture data are only possible when
the time scale is doubled. It is necessary to find a way to determine whether the paraplegic
patient has performed the correct motion, even if the time scale is different.

A posture comparison algorithm for the rehabilitation of paraplegic patients should
flexibly adjust the time scale of reference data. The TSPDA introduced in this paper can
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overcome time-scale limitations; it can also allow comparison with other postures by
changing the reference data.

Here, we use full body motion capture equipment featuring an IMU sensor [4] for
postural analysis. In the past, IMU sensors were unreliable. However, the technology has
greatly improved—reliability is now assured [5–7].

TSPDA compares the start and end frames of reference posture data with the complete
data recorded from the paraplegic patient during training, and thereby avoid any time-scale
constraints. The algorithm also utilizes the slice count method to reduce computational
load: it limits the number of comparison samples between reference posture data and
paraplegic patient data.

Considering that the posture accuracy of a paraplegic patient undergoing rehabili-
tation activities may be relatively low initially, the TSPDA has a function that allows for
a minimum target accuracy to be set to accommodate the detection of posture data as it
changes with the patient’s range of motion.

The remainder of this paper is organized as follows. Section 2 describes related re-
search. Section 3 presents the definitions of terms used in the algorithm and the algorithm’s
structure through diagrams and detailed module descriptions. Section 4 discusses an eval-
uation of the implemented algorithm and a performance analysis. Section 5 summarizes
our findings and provides concluding remarks.

2. Related Work

A recent work [8] used a wearable robot with an exoskeleton to aid rehabilitation of
paraplegic patients. The technology is advancing rapidly, but the learning curve is steep.
Our TSPDA algorithm is aimed at flattening the curve and may have many applications in
rehabilitation.

Traditional gait recognition algorithms only detect walking postures. The TSPDA
directly compares complete raw data, which has been difficult for the algorithms proposed
in several previous studies.

Existing gait recognition algorithms use a single sensor or several sensing units to
extract the feature points of an actual physical posture as a sample, identifying the proper-
ties of each sample and applying them to actual data. These algorithms employ different
approaches, depending on the sensor position (trunk, shank, foot, etc.), the data used (e.g.,
acceleration and/or angular velocity), and the number of sensors.

In this study, we used the Perception Neuron Full-body Tracking Sensor Kit (Noitom
Ltd., Beijing, China) for posture detection; each sensor has a sampling rate of 120 Hz. Thus,
we extracted reference posture data using more sensors and raw data than previous studies.

The types of sensors used in this study and previous studies include inertial measure-
ment unit (IMU) and gyroscope sensors [9–13], in which the walking posture is ana-lysed
from estimates of the relative position of the sensor via three-axis acceleration data. Previ-
ous studies have demonstrated the ability to recognize gait postures only, such as “heel
strike” and “toe off” states, using a small number of sensor data [14].

Some researchers have achieved better accuracy using a footswitch with an IMU sen-
sor [15–19]. However, the footswitch may interfere with the subject’s walking process [19].
In contrast, our proposed algorithm uses several IMU sensors, without a footswitch.

One study found that gait speed can affect the operation of the algorithm when a
single or a small number of IMU and gyroscope sensors are used with conventional gait
detection algorithms [20]. In our case, however, because our TSPDA uses a full-body
tracking sensor kit with many sensors, the gait speed has little effect on the algorithm’s
operation via time-scale changes.

Notably, the ability to extract raw posture data is relatively new, given that full-body
tracking sensor kits have only recently become available. Thus, to date few studies have
addressed this functionality, in which the detection algorithm can accommodate various
postures and time scales.
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3. Timescale-Scalable Posture Detection Algorithm

The terms used in the TSPDA are listed in Table 1.

Table 1. The terms used in the TSPDA.

Terms Description

Reference graph A two-dimensional graph corresponding to motion capture
data for standard postures used in the algorithm

Target graph
A two-dimensional graph corresponding to motion capture

data generated from a patient with lower
extremity paralysis

Target minimum accuracy Targeted minimum accuracy value (between 0 and 100)

Slice count
The number of the sample when comparing candidate

graphs extracted from the reference graph and the
target graph

Reference start/end frames A set of Y values corresponding to the first and last X values
of the reference graph

Sum start/end frames
A set of values obtained by comparing the target graph and

reference start/end frames to determine the accuracy
(lower is better)

Start/end candidate frames
A set of values that meets a condition with an accuracy

equal to or greater than the target minimum accuracy when
comparing the target graph with reference start/end frames

Candidates

A set of values storing all frames composed by the
beginning and end of the graph that can be produced from
start candidate frames and end candidate frames, and its

accuracy when compared with the reference frame.

The operation sequence of the modules composing the TSPDA is shown in Figure 1
below.
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Each module is described in detail in the individual sub-sections that follow; the global
variables are italicized in the descriptions.

3.1. TSPDA—Initialiser

The Initializer module defines the global variables (reference graph, target graph, slice
count, target minimum accuracy, reference start frame, and reference end frame) required
in the algorithm.

The Initializer module also compares the reference start frame and reference end
frame with the target graph to calculate the relative accuracy (here, lower values are better).
Additionally, it defines the sum start frames and sum end frames, which are accumulated
values for each frame. The Initializer module is represented by the Algorithm 1 and
Equations (1) and (2).
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Algorithm 1: Pseudo code for the Initializer module of the TSPDA.

let (referenceGraph) be ([pre-recorded reference pose] composed with [X as time and Y as sensor
data])
let (targetGraph) be ([recorded graph by patient] composed with [X as time and Y as sensor data])
let (sliceCount) be ([Desired Slice Count] when comparing the similarity between [[targetGraph]
and the [candidates]])
let (targetMinumumAccuracy) be ([minimum target accuracy] between [targetGraph and
referenceGraph])
let (referenceStartFrames) be ([Y values of referenceGraph’s first X value])
let (referenceEndFrames) be ([Y values of referenceGraph’s last X value])
let (totalFrameCount) be (Total count of X value for targetGraph)
let (sumStartFrames) be (empty list)
let (sumEndFrames) be (empty list)
for x = 1 to totalFrameCount do
let sumStart be 0
let sumEnd be 0
let graph = targetGraph[x]
let targetMax = max(graph)
let targtMin = min(graph)
let targetDiff = targetMax-targetMin
let frameCount = (frame count of the graph)
(equation #1)
(equation #2)
sumStartFrames[x] = sumStart
sumEndFrames[x] = sumEnd
end

sumStart =
f rameCount

∑
y=1

[ ∣∣∣ re f erenceStartFrames[y] − graph[y]
targetDi f f

∣∣∣ ] (1)

sumEnd =
f rameCount

∑
y=1

[ ∣∣∣ re f erenceEndFrames[y] − graph[y]
targetDi f f

∣∣∣ ] (2)

Equation (1) is a formula for calculating sum start (in which a lower number corre-
sponds to higher accuracy), based on the reference start frames and the target graph.

Equation (2) is a formula for calculating the sum end by applying Equation (1) above
to the reference end frames.

3.2. TSPDA—Candidate Frame Factory

The Candidate Frame Factory module calculates similarity by comparing the relative
values of the sum start frames and the sum end frames calculated through the Initialiser
module with the target frames.

The Candidate Frame Factory module is a module that defines start candidate frames
and end candidate frames containing values having a similarity greater than or equal to
the target accuracy.

The Candidate Frame Factory module is represented by the Algorithm 2 below.
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Algorithm 2: Pseudo code for the Candidate Frame Factory module of the TSPDA.

let (diffSumStart) be max(sumStartFrames)-min(similarityStart)
let (diffSumEnd) be max(similarityStart)-min (similarityStart)
for x = 1 to totalFrameCount do
let (start) be [sumStartFrames[x]-min(sumStartFrames)]
let (similarityStart) be [100-{(start/diffSumStart) × 100}]
let (end) be [sumEndFrames[x]-min(simEndFrames)]
if (similarityStart >= targetAccuracy) then
add (x) to (candidateStartFrames)
end
if (similarityEnd >= targetAccuracy) then
add (x) to (candidateEndFrames)
end
end

3.3. TSPDA—Graph Comparer, Slice Ratio Generator

The Graph Comparer module calculates an arbitrary graph area using the start candi-
date frame and end candidate frame calculated through the Candidate Frame Factory mod-
ule.

After the comparison is performed through the slice ratio values, candidates are de-
fined as a set having similar values (where lower values are more accurate) with candidate
start and end frames.

The Graph Comparer module is represented by the Algorithm 3 below.

Algorithm 3: Pseudo code for the Graph Comparer module of the TSPDA.

let (candidates) be (new empty list)
for (startCandidateFrame) in (startCandidateFrames) do

for (endCandidateFrame) in (endCandidateFrames) do
if (endCandidateFrame) > (startCandidateFrame) then

let (sum) be (accumulated accuracy value between a new graph composed by
startCandidateFrame and endCandidateFrame and targetValue using
Slice Ratio Generator Module)
add (sum, startCandidateFrame, endCandidateFrame) to (candidates)

end
end

end

3.4. TSPDA—Graph Aligner

The Graph Aligner module aligns the candidates calculated through the Graph Com-
parer module in ascending order and iterates through such that the item is added to the
final result.

Additionally, when adding the item, the Graph Aligner module checks whether the
item frame area of the already recorded item overlaps the area of the frame area to be newly
registered. If the area overlaps, it is excluded from the results.

Candidates are sorted by ascending order by accuracy, which means an item recorded
earlier has a higher accuracy. Thus, checking a previous registered item’s area before
adding an item to the result enables extraction of the item with the highest accuracy among
the items that overlap the area.

The Graph Aligner module is represented by the Algorithm 4 below.
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Algorithm 4: Pseudo code for the Graph Aligner module of the TSPDA.

order (candidates) by (sum) in (ascending order)
let (results) be (new empty list)
for (startX, endX) in (candidates) do

let (isValid) be (true)
for (recordedStartX, recordedEndX) in (results) do

if (recordedStartX <= endX and startX <= recordedEndX) or (startX <= recordedEndX and
recordedStartX <= endX) then

set (isValid) to (false)
break the loop

end
end
if (isValid) is (true) then

add (start, end) to (results)
end

end

4. Experimental Results

The required personal computer specifications and environment used to drive the
TSPDA are given Table 2 below.

Table 2. The required personal computer specifications and environment used to drive the TSPDA.

CPU RAM OS Language Compiler

i7-1165G7@2.8GHz 16 Gb Windows11 C# (.NET 6.0) MS Build

Figures 2 and 3 present the TSPDA results.
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Figure 3. Target graph.

Figure 2 shows the posture of an ordinary person walking two steps, and Figure 3
presents data of a user imitating the posture of Figure 2 three times. Visually, it can be
seen that the detected graph and the reference graph are different in length; however, the
waveform itself is very similar.

Table 3 lists the data used to derive the results of the two pictures. All areas with the
same properties as the reference graph were derived from the recorded posture data using
the TSPDA.

Table 3. The data used to derive the results of the two pictures.

Data Value

Target accuracy 65
Slice Count 10

Reference frame size 140
Execution time 54.89 ms (milliseconds)

Figures 4–8 show the TSPDA results when the slice count was nil (the optimal case)
and 10, 25, 50, and 100. The results were similar.
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Figure 8. The result with a slice count of 100.

Figures 9 and 10 show that slice counting afforded accurate results (both visually and
numerically) compared to the use of reference posture data only. Specifically, at a slice
count of 10, execution was 7.67-fold faster than when slice counting was absent (the optimal
case), but the accuracy was 96.5%. When the slice count was 25, execution was 6.24-fold
faster and the accuracy 97.2%. When the slice count was 50, execution was 3.5-fold faster
and the accuracy 98.7%. When the slice count was 100, execution was 1.9-fold faster and
the accuracy 99.8%.

When slice counting is absent (the optimal case) the accuracy is 100% but execution is
slow. The TSPDA slice count method thus facilitates individualized balancing of execution
time and accuracy.
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5. Conclusions

This paper has introduced an algorithm that can efficiently compare how accurately a
patient wearing an exoskeleton-type device performs a set of reference postures during
rehabilitation training.

When the slice count method was applied, the accuracy did not differ significantly
from the optimal value. However, application of the slice count method greatly enhanced
the execution speed. Additionally, with the proposed TSPDA algorithm, the analysis target
is not limited to the walking posture in posture analyses; the algorithm can universally
accommodate various input postures using a full-body motion capture device.

Mobility solutions for people with physical disabilities continue to advance with new
developments in robot technology, and high-performance assistance algorithms are needed
to optimize patient rehabilitation and safety. The proposed TSPDA can be used to evaluate
the training scale in the rehabilitation process necessary for the social advancement of
paraplegic patients who cannot move their lower extremities. Given the broad scope of
full-body motion tracking and the price declines in sensor components, we expect more
availability and more demand for these devices as existing barriers are overcome. The
TSPDA presented in this paper is expected to benefit society.

The TSPDA directly compares the raw data of motion capture equipment, thereby
solving the problems associated with the limited postural analyses of the studies cited in
Section 2; the TSDPA quickly and accurately defines data-rich areas using the real-time
measures described in Section 4. TSPDA accuracy is assured by the fact that the initial
settings can be modified. It is possible to obtain the desired results (via adjustment) even if
the calculations are inaccurate.
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