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Featured Application: Local path-planning simulation and experiment using potential field
considering calculation time.

Abstract: Recently, various studies related to the development of unmanned vehicles have been
conducted around the world. In particular, unmanned ground vehicles (UGVs) and unmanned aerial
vehicles (UAVs) have been developed and utilized for various purposes. In this study, we developed
a method for the path generation of UGVs in a system in which one operator controls many different
types of unmanned vehicles. In the driving control system (DCS), it is necessary to process sensor
data such as GPS/INS and LiDAR when generating a path by receiving the target waypoint from the
ground control station. In addition, the DCS must upload the current location, posture, state, etc., as
well as save driving log. Therefore, in order to recognize obstacles in real time and generate a path, a
safe path generation algorithm with a short computation time is required. Among the various path
generation methods, the potential field algorithm was selected, and the algorithm was modified to
reduce the computation time. The computation time before and after modification of the algorithm
was obtained and compared through simulation, and the algorithm was verified through application
to an actual system by performing an obstacle avoidance experiment and a simultaneous control
experiment for two UGVs.

Keywords: unmanned ground vehicle; path planning; potential field; driving test

1. Introduction

The interest in and demand for unmanned vehicles that perform unmanned mis-
sions have continuously increased; in particular, UAV (unmanned aerial vehicle)-related
technologies are being developed rapidly. However, UAVs have limitations such as short
operating time and small payload, making it difficult to mount various equipment and
to acquire data near the ground. If UGVs (unmanned ground vehicles) perform missions
together, more diverse missions can be performed more efficiently. Such research is actively
underway worldwide. Cantelli [1] tried to create a UGV route more precisely using UAV
images, while Grocholsky [2] developed a system for local search simultaneously using
both UAVs and UGVs. In addition, in order to overcome the short operation time of UAVs,
Mathew [3] studied an operation method considering charging, while Ropero [4] studied
how to optimize the UAV’s path for charging.

Since this study is one in which one operator simultaneously operates multiple UAVs
and UGVs, the operator cannot be in the field where the UGVs and UAVs operate. There-
fore, the UGVs are controlled remotely, and an autonomous driving function must be
implemented because one person cannot directly control multiple unmanned vehicles at
the same time.
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Autonomous driving is being actively researched by numerous companies, universi-
ties, and research institutes around the world. Overcoming the uncertainty encountered
while driving is the key, and, for this purpose, autonomous driving consists of environ-
mental awareness, path planning, and driving control [5]. Environment recognition is a
technology that recognizes the surrounding environment for autonomous driving, and
cameras and LiDAR are often used as sensors. Path-planning methods are classified
into graph-search-based, sampling-based, interpolation-based, and optimization-based
methods [5], whereby a path that can be safely driven is created using environmental
awareness information.

Graph-search-based methods find a path by creating a number of nodes within the
domain and composing it as a graph [6], including methods such as the Dijkstra [7] algo-
rithm that finds the shortest path and the A-Star [8] algorithm that finds the optimal path
using a heuristic method. Sampling-based methods randomly sample and connect to the
surrounding space [9], including methods such as the probabilistic roadmap method [10]
and rapidly explored random tree [11]. Interpolation-based methods define a function with
multiple coefficients and find the coefficients [12]. Optimization-based methods formu-
late an optimization problem consisting of constraints and cost functions, thereby finding
a path that minimizes the cost function, including methods such as the potential field
algorithm [7,8] and model predictive control (e.g., [13]).

The potential field method is broadly applied for real-time collision-free path plan-
ning [14]. In this method, an attractive force is generated in the goal direction, and a
repulsive force is generated from an obstacle. Although the potential field algorithm is
often used because it is mathematically simple, problems such as a local minimum and
vibration around obstacles occur [14]. Sfeir [15] proposed new formulas for reducing
oscillations and avoiding conflicts when obstacles are located near a target. Kim [16,17]
proposed a new framework to escape from the local minimum of a robot path using the
potential field method.

Many studies have tried to apply path-planning algorithms in real time [18,19]; al-
though the potential field method is relatively efficient, it still requires substantial effort to
use it in real time. In this study, an environmental recognition and control system for au-
tonomous driving was configured in a UGV driven based on a GPS target point to perform
a ground–aerial cooperative mission, and local path planning was performed by applying
the potential field algorithm as an optimization-based method. In the developed UGV,
GPS/INS processing, LiDAR processing, path planning, and driving log storage had to all
be performed by one controller; therefore, a path-planning algorithm that could be operated
in real time had to be implemented. Although the potential field algorithm is efficient,
the calculation time is insufficient; hence, it was modified to enable faster operation. It
was confirmed through simulation that the generated path was not significantly different
from that obtained by the existing method. Furthermore, an obstacle avoidance experiment
and an experiment in which one operator simultaneously operates three UAVs and two
UGVs were conducted to confirm that the modified potential field algorithm can be used
in practice.

2. UGV System Configuration

As shown in Figure 1, the developed UGV was equipped with a landing pad (UAV
interface system) for takeoff and landing of UAVs, while a 2D LiDAR sensor was installed
in the front part for recognizing obstacles. The top of the UGV was equipped with GPS/INS
sensors and a mapping system [20] for cooperative missions with UAVs.

The configuration of the system is shown in Figure 2. The mission control system
(MCS) was developed using a TI micro controller (TMS320F28335) and equipped with a
modem to communicate with the control station, as well as transmit/receive data through
RS232. It receives the UGV operation mode and target points from the control station,
and it sends the vehicle’s location, direction, and battery status. In addition, it transmits
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commands and information through CAN communication with the internal driving control
system (DCS) and UAV landing pad controller.
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Figure 2. Block diagram of UGV system.

Adventech’s industrial PC UNO-3284G was used as the DCS; it receives and processes
data from the navigation sensors and LiDAR, and it generates a local path to avoid obsta-
cles by receiving target points from the MCS. The generated local path is transmitted to
the MCS capable of real-time control, and the steering angle and pedal control amount
are calculated.
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The actuator controller receives the steering angle and acceleration/brake pedal input
from the MCS to control the actuators mounted on the UGV. The steering angle is received
in the form of an angle, and the pedal input is received as a percentage; it is controlled to
generate a constant torque until it reaches the target value within a certain range.

Trimble’s Applanix AP-20E GPS/INS was used as a navigation sensor, and Sick’s
LMS511 was used for LiDAR. The LiDAR is connected with the DCS via Ethernet, while
the GPS/INS is connected with the DCS via RS232.

The UAV landing pad is equipped with an IMU, actuators, and controllers to keep the
UAV level when landing, as well as a mechanism for fixing the UAV so that it can travel in
the landed state.

3. Path Planning
3.1. Potential Field Algorithm

The autonomous driving algorithm is divided into upper control and lower control
elements. In the upper control element, a path is generated by processing GPS/INS
and LiDAR sensor signals, whereas, in the lower control element, steering control is
performed to follow the created path. The potential field [21,22] algorithm was used for
path generation, while the pure pursuit [23] algorithm was used for path tracking. A flow
chart of the system is shown in Figure 3.
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Figure 3. Flow chart of autonomous driving algorithm.

The location of obstacles is identified by fusion of distance information obtained from
LiDAR and INS information. After creating a global path in a straight line from the current
position to the waypoint with the waypoint received from the control system as the target
point, a local path that can avoid obstacles is generated using the potential field algorithm.

U(q) = Uatt(q) + Urep(q). (1)

Urep =

min
[

Urep,max , k
(

1
D −

1
Q

)2
]

i f D < Q

0 else
(2)

Uatt = C× l2. (3)

In Equation (1), q is a point in space, Uatt is the attractive potential, Urep is the repulsive
potential, and Urep,max is the maximum value of repulsive potential. D is the distance to
the nearest obstacle, and k is the gain for calculating the repulsive potential. In order to
consider only obstacles within the distance Q and to make the potential continuous, an
equation is defined in the form of Equation (2). In Equation (3), C is the gain for calculating
the attractive potential, and l is the perpendicular distance from q to the shortest path to
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the goal. When the global path is in the x-direction and there is an obstacle at (10, 0), the
shape of the potential field is as shown in Figure 4.
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Figure 4. Potential field algorithm [24].

A potential field is calculated at regular intervals in the direction perpendicular to the
global path at regular intervals created using waypoints. At this time, Uatt was defined to
have a high potential in proportion to the square of the distance away from the path, and it
moved along the point with the lowest potential.

The potential field algorithm generally calculates the path after calculating the poten-
tial for all points in the domain. However, when the potential was calculated for all points
in the domain in the DCS of the developed system, the operation time was intermittently
exceeded. Since the developed electric vehicle featured rear-wheel driving and front-wheel
steering, the area where the vehicle could reach the next time step was limited. Using this
fact, instead of calculating the potential for all grids around the vehicle, the calculation was
reduced by calculating only the potential in the reachable area, as shown in Figure 5 [25].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 15 
 

goal. When the global path is in the x-direction and there is an obstacle at (10, 0), the shape 

of the potential field is as shown in Figure 4. 

 

Figure 4. Potential field algorithm [24]. 

A potential field is calculated at regular intervals in the direction perpendicular to 

the global path at regular intervals created using waypoints. At this time, Uatt was defined 

to have a high potential in proportion to the square of the distance away from the path, 

and it moved along the point with the lowest potential. 

The potential field algorithm generally calculates the path after calculating the po-

tential for all points in the domain. However, when the potential was calculated for all 

points in the domain in the DCS of the developed system, the operation time was inter-

mittently exceeded. Since the developed electric vehicle featured rear-wheel driving and 

front-wheel steering, the area where the vehicle could reach the next time step was lim-

ited. Using this fact, instead of calculating the potential for all grids around the vehicle, 

the calculation was reduced by calculating only the potential in the reachable area, as 

shown in Figure 5 [25]. 

 

Figure 5. Efficient potential field calculation method [25]. 

In the existing potential field, the global path is given as 𝐺 = {𝑔1, 𝑔2, … 𝑔𝑛}, and, in 

each 𝑔𝑖 , there are 𝑄(𝑔𝑖) = {𝑞𝑖1, 𝑞𝑖2, … 𝑞𝑖𝑚}  to calculate the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑄(𝑔𝑖)).  Further-

more, argmin
𝑞

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑄(𝑔𝑖)) is selected as the i-th local path LP(i). At this time, instead 

of calculating all of the 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑄(𝑔𝑖)) for 𝑄(𝑔𝑖), the calculation time can be reduced 

by calculating the potential only for 𝑄(𝑔𝑖) within a certain range from LP(i − 1). It is de-

sirable to determine this range by considering the maximum steering angle of the vehicle 

and path_interval, which is the interval of the global path. In this paper, the ratio of the 

range and path_interval is expressed as potential_dist_ratio, and the simulations and ex-

periments were performed for a value of 2. 

Figure 5. Efficient potential field calculation method [25].

In the existing potential field, the global path is given as G = {g1, g2, . . . gn}, and, in
each gi, there are Q(gi) = {qi1, qi2, . . . qim} to calculate the Potential(Q(gi)). Furthermore,
arg qmin Potential(Q(gi)) is selected as the i-th local path LP(i). At this time, instead of
calculating all of the Potential(Q(gi)) for Q(gi), the calculation time can be reduced by
calculating the potential only for Q(gi) within a certain range from LP(i − 1). It is desirable
to determine this range by considering the maximum steering angle of the vehicle and
path_interval, which is the interval of the global path. In this paper, the ratio of the range
and path_interval is expressed as potential_dist_ratio, and the simulations and experiments
were performed for a value of 2.
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3.2. Potential Field Algorithm Simulation

In order to perform autonomous driving by implementing the potential field algorithm,
it is necessary to determine the importance of avoiding obstacles and maintaining the path
by adjusting tunable variables. As shown in Figure 6, when the target and obstacles are
positioned, the safe distance from the obstacle is determined by the variables k and C. And
Table 1 shows the description of each variable.
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Table 1. Simulation variables.

Variables

path_length Length of local path generated by potential field algorithm

path_interval Interval of global path (the shortest path)

K Potential gain for obstacle

C Potential gain for perpendicular distance from the global path

Q Distance from obstacle to minimize potential

D_min Distance from obstacle to maximize potential

Potential_Value_Max Maximum potential value

potential_number Number of potential calculation points

potential_dist Perpendicular distance from global path to calculation potential

potential_dist_ratio The ratio of distance in a normal direction to the driving
direction to calculate potential

From Equations (1)–(3), the potential at each point is calculated as follows:

U(q) = k
(

1
D
− 1

Q

)2
+ Cl2. (4)

If the constant C is defined as in Equation (5), a potential at a point L meters away from
the global path has the same potential as a point with an obstacle within Dmin. Therefore,
the potential_dist and L must be determined in consideration of the size of the obstacles in
the driving environment. If the created global path is blocked by an obstacle larger than L
vertically from the global path, it is impossible to create a path that avoids the obstacle. In
this study, L was set to about 5 m because there was no area blocked by a wall, and obstacles
in the form of square pillars were used. The pseudo code of the Modified Potential Field
algorithm is shown in Algorithm 1.

C = k
(

1
Dmin

− 1
Q

)2 1
L2 . (5)
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Algorithm 1: Pseudo code of modified potential field algorithm

1: Creates a global path at regular intervals(path_interval) as long as path_length
2: //initialize variables: local path, index_min
3: local path = current position
4: index_min = potential_number × 0.5//index of current position
5: for i = 1: number of global path points
6: //Select points to calculate potential in the direction perpendicular to the global path
7: for index = 0: potential_number
8: q(index) = global path(i) + perpendicular vector × (index − potential_number × 0.5)
9: end for
10: //N: number of points to calculate potential
11: N = potential_dist/potential_number × potential_dist_ratio
12: for j = index_min − N:index_min + N
13: //find the nearest obstacle point cloud from q(j)
14: D = min(point cloud− q(j))
15: l = perpendicular vector × (index − potential_number × 0.5)
16: //calculate potential of q(j)

17: potential =
(

1
D −

1
Q

)2
+ Cl2

18: //find q with minimum potential
19: if potential < potential_min
20: potential_min = potential
21: index_min = index
22: end if
23: end for
24: local path = local path + q(index_min)
25: end for

When L is 5 m, the starting point is (0, 0), the target position is (20, 0), and the obstacle
position is (10, 0), the potential field and path shown in the Figure 7 are created. The
vehicle changes direction about 4 m in front of the obstacle and drives 3.8 m away from the
obstacle. Figure 7a is the result of calculating the potential field for all points, while the
result of applying the modified method is shown in Figure 7b. In the modified method, the
potential is calculated only for some regions, and the generated path is the same as for the
existing method.

As shown in Figure 8a, in the situation of passing between two obstacles, when
the potentials are calculated for all points and the points having the minimum value are
selected, the path is cut off because the point that cannot be reached has the minimum
potential. On the other hand, in Figure 8b, a smooth path was created because the potential
was calculated only for a certain region in the next timestep on the basis of the point with
the minimum potential.

In the modified potential field algorithm, the amount of computation is reduced
because the potential is calculated only for some areas. Since both methods calculate the
potential using the distance to the nearest obstacle among the point clouds in the region
of interest, the calculation time varies according to the number of point clouds. In order
to compare the computation time of the potential field and the modified potential field
when the number of point clouds is one, three, or 100, the average computation time and
standard deviation were obtained by performing 1000 calculations under the conditions
shown in Table 2; the results are shown in Figure 9.

Since the LiDAR mounted on the UGV updates the new point cloud at a frequency
of 10 Hz, the path generation frequency was also set to 10 Hz. The existing method took
about 10% of the time to create a path at each step, whereas the modified method showed
an improvement to 2% of the time.
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Table 2. Simulation environment.

CPU Intel® Core™ i7-8559U 2.70 GHz
RAM 16 GB

OS Windows 10 64 bit
Path_length 15 m

Path_interval 0.5 m
k 10
L 10 m
Q 10 m

D_min 1.5 m
Potential_Value_Max 5

Potential_number 100
Potential_dist 5 m

potential_dist_ratio 2
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4. Driving Test
4.1. Multiple Obstacle Avoidance Experiment

Assuming that a single operator operates several unmanned vehicles, there are many
difficulties in providing the UGV with a route point to avoid obstacles. Therefore, when
one target point is given and obstacles exist between the target points, the aim was to show
whether the UGV could avoid the obstacle by itself.

In order to realize such a situation, the obstacles were arranged such that the four
obstacles had to be avoided alternately left and right. As shown in Figure 10, the distance
between obstacles was approximately 15 to 20 m in the driving direction, and about 3 to
5 m in the perpendicular direction.
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Figure 11 shows the UGV moving while avoiding obstacles, while Figure 12a shows
the UGV trajectory and surrounding obstacles as a graph. The speed and the steering
graph of the UGV are shown in Figure 12b. Steering was expressed as a percentage for a
maximum of 0.5 rad, while speed was expressed by multiplying by 10 for visualization
in m/s.
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Figure 13 shows the situation of the UGV and surrounding obstacles at a specific
timepoint during obstacle avoidance. The UGV moved toward the target point in the west
direction, before steering to the left to avoid the first obstacle, at which point the second
obstacle appeared. Since it is inefficient to store all potentials in real time, we saved the
position log of the UGV and obstacles and reconstructed the potentials after the experiment.
The values of the parameters applied to the experiment are shown in Table 3.
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Figure 13. UGV and obstacles: (a) obstacles and calculated local path; (b) potential field and calculated
local path.

Table 3. Driving test environment.

Path_length 15 m
Path_interval 0.5 m

k 10
L 10 m
Q 10 m

D_min 1.5 m
Potential_Value_Max 5

Potential_number 100
Potential_dist 5 m

4.2. Multiple UGV/UAV Operation Test

In order to operate two or more UGVs at the same time, autonomy must be secured.
Since the operator has to simultaneously control several unmanned vehicles, it is impossible
to always give a new waypoint to the UGV. Therefore, the operator gave the area to the
UGV and implemented the function to repeatedly search the given area for the UGV to
conduct the experiment [25].

According to a predefined air pollution mapping scenario [26], shown in Figure 14,
one person simultaneously controlled two UGVs and three UAVs, and several unmanned
vehicles searched a space at the same time. Figure 15 shows the two UGVs and three UAVs
operating at the same time, while Figure 16 shows the GPS log and obstacle point cloud
graphs of the two UGVs and the speed and steering graphs of each UGV. When a region
was given to the UGV, vertices were selected as waypoints and followed sequentially and
repeatedly in a clockwise direction. If there was an obstacle, it was avoided according to
the driving algorithm. In the simulation of Figure 7, it can be seen that a path avoiding
the obstacle was created about 5 m in front of the obstacle. In the GPS log of UGV #1 in
Figure 16a, it can be confirmed that the vehicle changed direction about 5 m in front of
the obstacle. Furthermore, since the UGV was traveling clockwise, it continued to steer
in one direction. As shown in the graph of Figure 16b, it steered in the negative direction
after steering in the positive direction to avoid an obstacle. Images of the UGV avoiding
obstacles are shown in Figure 17.
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Figure 14. Air pollution mapping scenario using multiple unmanned vehicles [26]: a mission to
quickly create an air pollution map with a number of unmanned vehicles in order to identify the
state of air pollution occurring in a specific area. UAVs #1, #2, and #3 make a map while flying in a
zigzag area divided into certain regions. UGVs #1 and #2 draw a map while circling the assigned
area divided into certain regions.
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5. Discussion

In this study, the system configuration of a UGV used for ground–aerial cooperation
was briefly introduced, and an efficient path-planning method for autonomous driving
of the UGV in real time was introduced. For real-time path planning, not only the stable
avoidance of obstacles but also the calculation speed is very important. Although a simple
and efficient potential field algorithm was selected, the computation time was insufficient.
To overcome this, a method to reduce the amount of computation by using the vehicle’s
steering characteristics was proposed.

Through the simulation, it was shown that the results of path generation and the
existing method were not significantly different, and the calculation time was reduced
compared to the existing method by measuring the calculation time. Then, a driving
experiment was performed by applying the algorithm to the UGV, and it was confirmed
that the UGV avoids obstacles in the driving path.
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Despite the existence of various path-planning algorithms, path-planning methods are
still needed to be used in a situation in which the controller needs to perform various tasks,
including path planning, or a controller is needed with low computational performance.
The method proposed in this paper is expected to be particularly suitable for controlling a
vehicle equipped with a low-spec controller.
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