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Abstract: Selective laser melting (SLM) is a metal-based additive manufacturing (AM) technique.
Many factors contribute to the output quality of SLM, particularly the machine and material parame-
ters. Analysis of the parameters’ effects is critical, but using traditional experimental and numerical
simulation can be expensive and time-consuming. This paper provides a framework to analyze
the sensitivity and uncertainty in SLM input and output parameters, which can then be used to
find the optimum parameters. The proposed data-driven approach combines machine learning
algorithms with high-fidelity numerical simulations to study the SLM process more efficiently. We
have considered laser speed, hatch spacing, layer thickness, Young modulus, and Poisson ratio as
input variables, while the output variables are numerical predicted normal strains in the building
part. A surrogate model was constructed with a deep neural network (DNN) or polynomial chaos
expansion (PCE) to generate a response surface between the SLM output and the input variables.
The surrogate model and the sensitivity analysis found that all five parameters were important
in the process. The surrogate model was combined with non-intrusive optimization algorithms
such as genetic algorithms (GA), differential evolution (DE), and particle swarm optimization (PSO)
to perform an inverse analysis and find the optimal parameters for the SLM process. Of the three
algorithms, the PSO performed well, and the DNN model was found to be the most efficient surrogate
model compared to the PCE.

Keywords: selective laser melting; additive manufacturing; optimization; surrogate model; polyno-
mial chaos expansion; deep learning networks

1. Introduction

Selective laser melting (SLM) is an additive manufacturing (AM) process in which
a 3D structure is constructed by successively melting material powder layers. The SLM
process uses a high-energy laser beam to melt the powder, making it accessible to different
materials, including metals. This technique can help to construct lighter, more complex
geometries that are more robust, without any significant material wastage. Due to such
advantages, SLM technology has increased in popularity and has made its way into large
manufacturing industries such as aerospace, medical implants, automobiles, etc. [1]. How-
ever, many challenges are associated with SLM products, including dimensional accuracy,
part distortion, premature process termination, and mechanical properties, thus requiring
further research and analysis [1,2].

Additive manufacturing (AM) efficiency and accuracy can be improved by using suit-
able material and process parameters. Broadly, the properties of a material, the process, and
the environment define a large number of the parameters which affect the final product [3],
including laser speed, layer thickness, chamber temperature, etc. Therefore, it is important
to understand each parameter’s impact on the AM process; there could also be possible
interactions between the parameters. To meet specific design requirements in the AM,
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these material parameters and the process parameters may need to be optimized. SLM is
a multiphysics process that occurs over different time and length scales [4]. Among the
major physical phenomena that occur during the process are radiation, convection phase
change, absorption and phase change, etc. [5]. Our understanding of the SLM process can
be improved by using the design of experimental methods [5]. However, experimenting
on a large scale is time-consuming and costly. Such challenges can be addressed using a
realistic numerical model of the process. A numerical model can help us generate a large
number of data sets at a significantly lower cost than traditional experimental methods.
However, SLM involves complex multiphysics and multiscale phenomena [4] with many
uncertainties, from the material powder bed to the melting and solidification processes.
These uncertainties come from an insufficient understanding of the process, measurement
error, scaling error, sampling error, and lack of information about the material proper-
ties [6]. All these elements contribute to the model’s confidence level, which may limit
SLM applications.

To increase the SLM product quality and production, we need to understand the
sources of uncertainties; how they grow, and how they affect the final product quality.
Two methods can be considered to tackle these issues and to increase trust in the SLM
numerical model [7] or the process: (1) uncertainty analysis (UA), and (2) sensitivity
analysis (SA). Uncertainty analysis aids in understanding the uncertainty in model outputs
due to the uncertainties in the model inputs; whereas, sensitivity analysis gives insight into
how uncertainties in the model inputs and outputs are related to each other. Most of the
reported UA and SA methods in AM are experiment-based, which leads to a high material
wastage and makes the process expensive [6]. In another approach, numerical models can
be used to quantify the uncertainties in the SLM process. However, a full-scale (such as
a finite elements-based) model could be computationally expensive and may take hours
or days to complete depending on the simulation type. In addition, numerical models are
deterministic, and usually do not consider the input variables’ uncertainties [8].

This paper provides a framework to optimize the SLM process and study uncertainty
and sensitivity analyses using a data-driven approach along with a 3D finite element model.
As the discretization of SLM problems requires fine spatial meshes and a high number of
time steps, the overwhelming demand for computational resources makes high-fidelity
simulations too expensive computationally in the contexts of uncertainty propagation or
inverse analysis studies. To alleviate this difficulty, we advocate the use of the data-driven
approach, which consists of two major stages: (1) A database of high-fidelity solutions
computed for a certain number of samples of the input data in the offline stage, which
allows a surrogate model to be obtained using a regression method on a reduced basis;
(2) Predictions on new data performed on the online stage using the surrogate model.

It is possible to a priori prescribe a reduced basis such as in the well-known polynomial
chaos expansion (PCE), or to use neural networks for which the reduced basis is obtained
adaptively. The data-driven approach does not require any modification of the high-fidelity
source codes; these are used as a black box. However, the solutions database should be
computed in a reasonable timeframe, for which parallel computing is deemed essential.
We used PCE and neural network methods to build an efficient machine learning model.
Genetic and evolutionary optimization algorithms were then used to find the optimal
parameters. These models were validated on a benchmark SLM test [9] for which the
high-fidelity solutions were obtained using Ansys additive software.

After this introduction, the second section contains a brief literature survey on the
problem. Section 3 gives an overview of the mathematical methods used for statistical
analysis, surrogate modeling, and optimization. The results of the benchmark test are
discussed in Section 4. Finally, concluding remarks are given in Section 5.

2. Literature Review

Uncertainty sources can be classified into two categories: epistemic and aleatory
uncertainty. Aleatory uncertainty in a system occurs due to natural causes such as fluc-
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tuation in the laser power, etc. The sources of epistemic uncertainty, meanwhile, are an
incomplete understanding or a lack of knowledge, which can be further divided into two
types, data uncertainty and model uncertainty. Data uncertainty arises because of improper
measurements and an insufficient amount of measured data. Model uncertainty is used
to quantify the difference between experimental data and numerical simulation models.
For example, model uncertainty may occur due to the assumptions made to simplify the
numerical model [6]. To understand the relationship between uncertainties in input and
output parameters, we proposed performing a sensitivity analysis (SA). These can be
divided into two types, local and global sensitivity analyses. Local sensitivity analysis is
derivative-based; this technique analyzes the effect of one parameter on the process by
keeping other parameters constant. In global sensitivity analysis, all the input parameters
are varied simultaneously, and the sensitivity is calculated over the whole sample space of
each input.

There are different approaches to performing sensitivity and uncertainty analysis in
SLM. The most popular method is trial and error experimentation. Delgado et al. [10] con-
ducted an experimental investigation to determine the influences of input parameters (laser
speed, build direction, and layer thickness) on SLM output. They used a full factorial exper-
imental design technique with three factors, and two levels for each factor. The dimensional
accuracy, roughness, and mechanical properties were considered to measure the effect of
input parameters. UA and SA of the AM process using experiments may give good results
to some extent, but these analyses have various disadvantages. For example, experiments
on a large scale lead to material wastage and a delay in final product delivery, subsequently
increasing the product and process cost. Additionally, one component’s results may not be
applicable for other SLM products, as results may vary with the problems [6]. However,
these issues can be addressed by using an efficient numerical simulation model.

Criales et al. [11] used finite element modeling to analyze 2D temperature profiles
and melt pool geometry. They performed a sensitivity analysis by changing one input
parameter at a time while keeping the other parameters constant, and found that the powder
reflectivity affects the melt pool geometry the most. However, changing parameters one at
a time does not always provide good results, as this process fails to consider the interaction
of parameters. Bruna-Rosso et al. [12] conducted a global sensitivity analysis for SLM using
a 2D numerical simulation model. They used 26 input parameters and calculated their
influence on melt pool width, length, and maximum temperature. The effect on the output
was calculated by simultaneously changing the input parameters instead of changing one
at a time. They used the elementary effect technique and found that 16 of the parameters
did not significantly affect the process output. Similarly, Lopez et al. [13] used a numerical
model for single-track simulation to identify uncertainties in the SLM process.

A 3D and more complex model for a single-track SLM was used by Ma et al. [14] to
identify the critical variable. They used a design of experiment (DOE) technique with a
two-level screening system to separate the vital parameters. As the numerical simulation
becomes more complex, the computation cost of the simulation will also increase. To
make the numerical simulation more efficient, Kamath et al. [15] proposed a framework
to combine the numerical and experimental approaches to find critical parameters. They
initially found the essential parameters and then used them to devolve a surrogate model
for the melt pool. The developed surrogate model was then used to find the uncertainties in
the system. A surrogate model provides an alternative and more efficient way to perform
uncertainty and optimization analysis.

Surrogate modeling of the AM process using machine learning (ML) methods is still
in its early stage. ML models can be classified into three types: (1) supervised learning,
(2) unsupervised learning, and (3) reinforcement learning. In supervised learning, each
input parameter space is labeled with an output, whereas in unsupervised learning, the
input parameters do not have an output [16]. On the other hand, reinforcement learning
maximizes the reward signals by continuously learning the relation between the situation
and the actions. The best example is self-driving cars. Different types of ML models have
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been used for AM analysis, as shown in Figure 1. For example, a regression approach
has been used to predict the AM part quality of parameter optimization, whereas the
classification approach can detect defects, quality assessment or prediction, etc. [16,17].
Ravichander et al. [18] presented a prediction model for SLM using an ANN method.
The ANN model was trained with experimental results and was used to predict the SLM
outputs on a set of different parameters. The primary input parameters were the laser
power, hatch spacing, and scanning speed. In similar studies [19,20], an ANN model
was used to construct a surrogate map between the laser parameters and outputs such as
temperature, strains, etc., for an AM build part.

| Machine learning
1 1
Unsupervised | Reinforcement
learning learning learning

[ ' 1

| Regression I | Classification |

! 1

| Clustering I | Principal Component Analysis |

Figure 1. Classification of machine learning models.

Recently, surrogate models have gained popularity for UA in the AM process. The
most commonly used surrogate models in AM are support vector machines (SVM), neural
networks (NNs), Gaussian process (GA) models, and polynomial chaos expansion [6]. Cai
and Mahadevan [21] developed a methodology to study the uncertainty in a final product’s
microstructure via the construction process parameters and environmental changes. They
replaced the finite element model with the Gaussian surrogate model and applied it to
study the relationship between the cooling rate and the final product’s microstructure. A
similar methodology was adopted by Sankararaman [22], who used a surrogate model
to quantify the uncertainties in fatigue crack growth in AM. Tapia et al. [23] proposed a
Gaussian process-based surrogate model to make a response surface between the SLM
process output and the input parameters. Their surrogate model was constructed using
96-single-track experimental data to predict the melt pool depth. The model was then used
to calculate the melt pool depth at unobserved input process parameters.

Highly efficient machine learning models have provided an alternative framework for
optimizing the AM process [17]. Rong-ji et al. [24] used an NN framework to optimize the
selective laser sintering process” parameters by minimizing the shrinkage. They trained
the NN with experimental data, and then combined it with the genetic algorithm (GA) to
find the input parameters’ optimal values. The proposed structure can be used to optimize
any nonlinear and multitudinous system. Tapia et al. [25] used this approach to predict the
porosity of an SLM-built part using a Gaussian process-based model. Additionally, they
provided a Bayesian framework to estimate the statistical model’s parameters, and then
used the Kriging method to predict the given parameter settings’ porosity. This study’s
primary disadvantage was that they only two parameters were used as input variables,
whereas the SLM can be affected by many factors, including the materials and environment.

NNs and GAs are the most widely used methods for the optimization, modeling,
and prediction of process parameters. Some of the popular GA methods used in AM are
multi-gene genetic programming (MGGP), the multi-objective particle swarm optimizer
(MOPSOQ), the non-dominated genetic algorithm, etc. [26]. Padhye et al. [27] used the
MOPSO and the non-dominated sorting genetic algorithm (NSGA-II) to minimize the
surface roughness and built time in the selective laser sintering (SLS) process.
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The surface roughness and the built time are functions of the “build direction”, and
so minimizing them aids in finding the optimal build orientation. A study by Padhye
et al. also found that the NSGA-II outperforms the MOPSO in finding optimal results. In a
similar study by Singhal et al. [28], a conventional optimization algorithm based on a trust
region method was used to optimize the stereolithography (SL) and the SLS process. The
objective of Singhal et al.’s study was to increase the quality of the built surface and the
support structure by determining the optimum deposition orientation for a building part.

3. Mathematical Model

A global sensitivity analysis considers the uncertainty in the input parameters and
their influence on the uncertainty of the process output to rank the importance of each
input parameter [12]. In this paper, we have used a variance-based global sensitivity
analysis (GSA), which is commonly used to quantify the sensitivity of output to input
parameters. The basic concept behind the variance-based method is to decompose the
output variance among each model input. To explain the variance-based GSA, let us
consider the following model:

Y = f(Xp,... . Xp) (1)

where Y is the system output and Xj, ... ..X, represents the independent input variables,
which can be defined by a known probability distribution. If we compare this equation with
our case, then Y can be seen as the strain value, and the inputs are the machine properties,
such as laser speed and layer thickness, etc. To calculate the effect of input parameters X,
on the variance of Y, we assume that the actual value of X}, is x;;. The following conditional
variance gives the change in the variance of Y:

Ox_, (Y‘Xn = x,) 2)

In the above Equation, Ox_, represents the conditional variance over the (p-1) input
parameter space, including all the input parameters except x;;. As the exact value of X}, is
unknown, we will take an average over all the potential values of X;;, which is given by:

EXn (OX—n (Y|X7’l)) (3)

The smaller value of Ex, (Ox_,(Y|Xy)) represents the greater importance of X,, in the
variance of Y. If we use the law of total variance, then we can write:

O(Y) = OXn (EX—H(Y‘X”>) + EXn (OX—M(Y‘X”)) (4)
After a normalization, Equation (4) can be written as:

L Ox (Ex, (Y|Xn) | Ex, (Ox_,(Y|Xn))
N o(Y) o(Y)

_ OXn (EX—VI (Y|X7’l))
oY)
Sy represents the first-order sensitivity index for the parameter X,. The remaining

terms in Equation (5) will help in calculating the total order index. Equation (1) is further
decomposed into increasing orders of dimension, as:

©)

Sy (6)

P
f(Xl,...,Xp) :f0+;fl-(X,»)+l Z fi]'(Xi,X]‘)+...+f1,._,p(X1,...,Xp) (7)
i= <i<j<p



Appl. Sci. 2022,12, 2324

6 of 27

In the above equation, if we assume that all the input factors are mutually independent,
then there exists a simple decomposition where all the terms will be mutually orthogonal,
and so the variance of the output (O(Y)) can be written as follows:

p
o)=Y 0i+ Y Oj+...401,., (8)
i—1

1<i<j<p

where O;, O;j, ..., Oy, ., represents the variance of f;, fi;, ..., f1, .. p , respectively. The
first-order sensitivity index shown in Equation (6) can be obtained by using the first p term
of the above decomposition.

O; _ O(E(Y|Xi))

5i= oY) ~— o) ©)

Using a similar approach, we can find the higher order of sensitivity indices, such as
the second-order indexes or the other higher indices.

3.1. Surrogate Modeling

A surrogate model is a mathematical representation of the relationship between the
input and output parameters; it provides approximate outputs for new input values without
explicitly solving the process. In the present study, we have used a deep neural network
and polynomial chaos expansion to build our surrogate models.

3.1.1. Deep Neural Networks

Deep neural networks (DNN5s) are a class of artificial neural networks (ANNSs), similar
to a human brain’s neuronal network. The basic unit of an ANN is called a node, which
collects information from one end and passes it to another node at the other end. A node
contains the values of inputs, sums their weighted values, and then uses an activation
function to produce an output [29]. A simple structure of a neural network is shown in
Figure 2a. The nodes are arranged in a number of layers. Each layer is fully connected with
its subsequent layer, but the nodes in a layer are not interconnected. The first and last layers
of an ANN structure are called the input and output layers. The number of nodes in the
input and output layers is equal to the number of input and output variables, respectively.
After the first layer, there are one or more layers called the hidden layers [30]. A neural
network model with more than two hidden layers and many nodes is referred to as a deep
neural network [31].

The values from each layer are mapped to the nodes in the successive hidden layers
by being multiplied by some weights. The new value in each node is given by the equation:

n
df = g ()" Whx; + bf) (10)
i=1

where k represents the number of layers and W]’j are the weight parameters associated
with each node i whose state is given by x;. The g is the activation function that helps to
introduce the non-linearity and b¥ are the biases parameters. The sigmoid and hyperbolic
tangents are the most widely used activation functions. Once the activation function is
selected, we need to determine the optimal weights and biases by minimizing the loss
function. The mean square error (MSE) is used as a loss function in the present study:

1 N fm . S92
P 1 1
MSE =+ 2 2 [yj - yP,j} (11)
i=1{j=1
where N represents the total number of input parameters: xllj, x%, e, xlly . The P represents

a dataset for a given input sample vector. The corresponding target outputs are represented
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by yb,y3,..., yY,and y%, j Tepresents the desired output. In the MSE equation, a regulariza-

tion term is added to prevent the neural network model from overfitting. Thus, a complete
MSE equation can be written as:

LI & 12 117

MSE= <Y 3 3 [vi=vhy] ¢+ A X [Wag) (12)
i=1\j=1 La,B

where A represents the regularization hyperparameter. In the current study, a total of six

hidden layers were considered as shown in Figure 2b, where the first and the last layer

had 800 neurons, and the middle four layers had 500 neurons each. To build our neural
network model, we used Matlab’s deep learning toolbox [32].

Xi

Yk

output layer

input layer
hidden layer
(a)
Hidden layers
Input layer Output layer

Laser speed

Hatch spacing

Layer thickness

Young’s
modulus

Poisson ratio

AN
w/Z.\

’/

w» “\. \‘OH

S
W " /'\\'\ \$

0
Qo/t \'A\

500 Neurons 500 Neurons 500 Neurons

i/ \\/}/

800 Neurons 800 Neurons

(b)

Figure 2. (a) Single layer neural network [33], and (b) six-layers deep neural network used in the
present study.

3.1.2. Polynomial Chaos Expansion

A polynomial chaos expansion (PCE) is a way of constructing an analytical model
that maps the outputs of interest to inputs using a predefined basis of polynomials. The
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function is represented in the form of a polynomial expansion [34]. In a PCE, we assume a
deterministic map, M, such that the response is Y = M(X) where x € #",Y € ", m, and n
represents the input and output varibles respectively For simplicity let us consider n to be
1. The probability distribution of X is given by the probability density function fx(x) [35].
Thus, the polynomial expansion of Y can be written as the following equation:

NP
Y(X) = Y aa2(X) (13)
a=1

where ay represents the expansion coefficients. The value of NP depends on the order
of polynomial p and the number of input variables m. Thus, the exact value of NP can

be calculated by NP = (’fnfpﬁ)!. The other term in Equation (13), @4, represents the
multivariant basis functions, which are orthogonal with respect to the probability density

function fx(x), that is:

o D (x)Dp(x)fx(x)dx = dup (14)

Here, 6,4 represents the Kronecker symbol. For independent input variables, the value

of @ can be obtained by the tensor product of the univariate orthogonal polynomials

Dpe(X), as in:

GalX) = [ 12y (X)) (15)
i=1

where, p?* represents the multi-index vector. The univariate polynomial basis function was
selected with respect to the type of probability density function. For example, if we have a
uniform distribution, the Legendre polynomial is considered the optimal basis function.
The PCE coefficient a« can be computed using a regression approach, by minimizing the

. . 2
mean square error Z]N: 1 (y]D - Y(x%)) + vaTa. Given a dataset D of N input variables
Xp = (xllj, x%,. .., xg ) and their corresponding output vector Yp = (y}),y%),. .., yg), the
expansion coefficients can be calculated by solving the following problem:

a= (070 +~0) '0TYp (16)

where 1 is the regularization factor, I is the identity matrix and 6 is the design matrix, whose
components are & (xiD) (i=1,.,N;j=1,.,NP). The total number of sample input points
are calculated using N = YNP, while Y > 1 represents the oversampling parameters that
control the accuracy of the PCE. To generate the dataset, we can use any sampling method,
including Latin hypercube or Sobol [36]. Once we obtain the expansion coefficients, we can
use the relationship (13) to approximate the outputs for any input variables.

3.2. Optimization

To find the optimum parameters for an SLM process, we considered three differ-
ent optimization algorithms: genetic algorithm, particle swarm optimization (PSO), and
differential evolution. These algorithms are briefly described in the following subsections.

3.2.1. Genetic Algorithm (GA)

The genetic algorithm is one of the most widely used optimization techniques. Unlike
the other gradient-based methods, a GA does not require an objective function to be
continuous and differentiable [37]. The gradient-based methods are not capable of handling
discrete variables, and they find it difficult to locate the global minima for a multimodel
objective function. The GA is an alternative way to find the optimum solution with
some supremacy, especially when dealing with the complex problem of fitting many
loops simultaneously.

A GA is based on random walk methods, which require a random search to find the
optimal solution. However, this method is not entirely random, as it uses information from
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the last iteration. The technique is categorized as a guided random search method. The GA
methods start with a set of initial points instead of one point in the search area, and so they
have a higher chance to find the universal minima for the problem. Genetic algorithms
are similar to the biological evolution theory [38], based on the principle of survival of the
fittest, where the universal population undergoes many transformations, at some point in
time when the population is not changing anymore, and the best individual among the
population is considered as the best solution.

A GA imitates the genetic process in which the characteristics of the parents are
transferred to the child. As shown in the flow chart of a GA presented in Figure 3, it can be
divided into four parts: initialization, fitness, selection, and combination. At the beginning
of the GA, a set of the initial population or a sample set is generated, and then for each
input variable, their fitness value (the value of the objective function) is calculated. The
lowest values are taken as the parents’ for the subsequent iterations, and they will produce
new offspring for the next iteration [38,39]. For example, human genes have chromosomes,
so when they make a new child, some chromosomes from the female mix with the male
chromosomes and give a new set of chromosomes to their offspring, which has some
properties of each parent. Similarly, in a GA, individuals with the least function value will
undergo crossovers and mutations to produce better offspring than the parents. By better,
we mean their function value is less than their parents’ function value(s). In our present
case, a single-point cross-over of 0.8 was established, and the mutation probability was
taken as 0.1 to obtain the best results.

Initialization

Yes

Cont.

No
Fitness

v
Reproduction
!
Crossover

'

Mutation

New generation

Figure 3. Genetic algorithm.

In addition to the GA, we considered two other optimization algorithms, particle
swarm optimization (PSO) and differential evolution (DE). Both algorithms are similar to
the GA, where we start with a population set and try to find the least objective function
value for each individual. Each algorithm is explained in the following subsections.

3.2.2. Particle Swarm Optimization (PSO)

The PSO technique uses a large number of samples to explore the optimal solution, as
with GA techniques. A GA is based on a biological evolution process, whereas PSO is based
on natural phenomena such as birds flocking or fish moving in a group together. PSO keeps
a record of the best position of the individual and of the population using the objective
function. In a PSO, ‘pbest’ and “gbest’ denote the best objective function for the population
and for the group, respectively [37]. The velocity for each individual in a population is
calculated using ‘pbest’, ‘gbest’, and its initial velocity. The new position for each individual
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is then calculated with the help of the initial positions and their velocity. Each step for the
PSO algorithm is described below.
If we assume the ‘nth’ individual in a set, then its position is given by:

Xin = Ximin + (xi,max - xi,min)”i (17)

where x; ;i and x; i, are the bounds for a variable x;, and u; represents a random number
between 0 and 1. The fitness value of the nth individual can be calculated by:

Ain = f(xin) (18)

In the beginning, the best fitness value (pbest; ,,) for each individual is 4; ,, and the
global best value can be calculated as:

gbest; = min(pbest,; ) (19)
The new velocity for the individual can then be calculated as:

Vipin = P10in + Pr(pbestyn — Xin)u; + Pa(gbesty; — X, ) u; (20)

where ¢1, 1, and ¢, are the tuning factors, which are 0.8, 2, and 2, respectively, in our
study. Now, the new position can be calculated as:

Xi+1,n = Ximin + (xi,max - xi,min)ui (21)

Based on the new position, we can evaluate the new fitness value, which is:

Aipin = f(Xig1n) (22)

If the new fitness value is less than that of pbest; ,, then it is replaced with the A; 1 .
The global fitness value is computed as:

gbestiﬂ = min( pbeSfi+1,n) (23)

3.2.3. Differential Evolution (DE)

Differential evolution (DE) is another optimization algorithm that, similar to GAs, is
based on an evolutionary process. DE has gained in popularity in recent years for its success
in optimization problems in different fields of science and engineering. The algorithm was
first introduced by Storn et al. [40] in 1995 to optimize the non-differentiable and non-linear
continuous function. DE algorithms are based on stochastic population-driven evolution
methods similar to the other evolution methods. This approach uses a population set and
searches the whole design space to find the optimal solution using crossover, mutation, and
selection operators. One of the differences between DE and the other evolution methods
is the mutation strategy used by DE, which applies to each point and explores the whole
design space based on other individuals” solutions. Georgioudakis et al. [41] presented
several DE algorithms based on different crossover and mutation strategies. There are three
controlling factors in a DE algorithm: the crossover rate, the population size, and scaling
factors, which all must be controlled to get the best performance [42]. Figure 4 outlines the
functioning of a DE algorithm. From mutation to the selection, all steps are repeated until
the termination criteria are reached. Our study considers the crossover and the scaling
factor to be 0.8 and 0.6, respectively.



Appl. Sci. 2022,12, 2324

11 of 27

| Initialization |
]

| Fitness values |

1

—-l Mutation

]
| Crossover

!

| Selection |

Convergence

Figure 4. Differential Evolution.

4. Application to an Additive Manufacturing Benchmark Test

To model the SLM process, we used Ansys additive software [43] that employs a
thermo-mechanical coupling method to simulate the SLM process, as shown in Figure 5.
The heat transfer analysis provides the transient temperature field that is transferred to the
mechanical analysis model [43]. The same workbench additive model has been used in
many similar studies [44—46] to validate the code and to optimize the SLM build part.

| Transient Thermal | | Static Structural
]
Build Step Build Step
Build Build
Cooldown Step Cooldown Step
Cooldown Cooldown
— l
Removal Step
Step

Figure 5. Flow chart of Ansys additive simulation.

To set up an AM simulation in Ansys, we can either create our geometry in the
software or we can import the stl. format of the geometry. In addition, the software gives
the freedom to create supports during the simulation, or it can generate them automatically
depending upon the given conditions. However, in this study we did not consider any
support structure. After the geometry setup, the whole domain was divided into several
layers depending on the layer thickness. To simulate each layer, we used the cartesian
coordinate mesh with an element birth method to activate the elements in each building
step. The numerical model sets the elements in the whole layer to the melting temperature
at once, assuming that the developed temperature is always at or above the melting
temperature but it does not significantly exceed it. During the melting of the powder,
the scan pattern is not considered as an input parameter. Additionally, the unmelted
surrounding powder is not explicitly modeled, instead the heat loss between the powder
and the solid material boundary is simplified using the convection boundary condition
at the interface. A convection boundary condition was used for each heating and cooling
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step, but the radiation boundary condition is not considered in the model. The powder and
the gas convection coefficients were 1.8 x 107> W/mm?-°C and 2.4 x 1078 W/mm?.°C
respectively. The pre-heat powder temperature was set at 80 °C whereas, the chamber and
the base plate temperature were maintained at 40 °C and 80 °C respectively. The other
process parameters related to the machine and the material are described in the following
subsections. Further details can be found in [47,48].

To validate the numerical results presented in this work, we compared the strains and
the part deflection results with the experimental data of a benchmark case, AMB2018-1,
provided by the National Institute of Standards and Technology (NIST) [48]. In 2018,
the NIST provided a set of experimental results for different additive manufacturing
processes, including SLM. All the details about the experimental setup and the operations
for AMB2018-1 are available on the NIST website [9]. This benchmark study aimed to
provide reliable stress, strain, and deflection benchmark data in a bridge-like structure.

A brief description of this benchmark case, shown in Figure 6a,b, is provided here. The
residual stress and strain data were measured using x-ray diffraction and neutron diffrac-
tion methods. For the part deflection measurement, the bridge was partially separated from
the base plate, and then a coordinate measurement machine was used to measure the deflec-
tion. The AM part was constructed using two different machines: the NIST in-house-built
machine AMMT (additive manufacturing metrology testbed) and the EOS M270. In the
present study, we considered only the EOS M270 machine, as the measurement results for
the part deflection were not available for the structure constructed with the AMMT. More
details on the process can be found in [48]. The test case comprised four bridge structures
on a build plate, as shown in Figure 6b. All four bridges and the substrate were constructed
using IN625 material with a powder bed fusion process. During the process, the bridges
were built with some spacing (Figure 6b). As the bridges” construction process does not
affect the other bridges’ properties, we considered only one bridge on the substrate for our
numerical simulations as shown in Figure 6¢. This simplification significantly reduced the
computation time. The bridge and the build plate’s final dimensions were 75 x 5 x 12.5
(mm X mm X mm) and 81 x 12.7 x 11 (mm X mm X mm), respectively. Our primary
objective was to investigate the strain within the build-part in the validation study. In
addition, we verified the geometry deflection in the z-direction after part of the bridge was
separated from the substrate.

-7 . Recoating direction
-t ie 9
>
> &
i
0.50 250 | |
250 ]
’
A * Build
l Direction
2—- —
Sl 14
75

o -

Linear dimension units are in millimeters
(a)

Figure 6. Cont.
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B) Parts 2 and 3 are
separated for residual
strain and distortion
measurements

A) Parts on the
build plate after
the build process

Ill mm+1mm

\f 12.7mm

81lmm+1mm

(c)

Figure 6. (a) Plan (top) and elevation (bottom) views of the AMB2018-01 bridge structure geom-
etry, (b) AMB2018-01 bridge [9], and (c¢) AMB2018-01 bridge geometry constructed with Ansys
additive software.

4.1. Baseline Machine Parameters

The AM part and the substrate were constructed using a Nickel alloy, IN625. In the
experiment, the part was built at the center of the substrate, with odd and even layers
that were melted using horizontal and vertical scan strategies. However, because of the
software constraint, we only considered the horizontal strategy for all the layers. Table 1
shows the machine parameters that were used during the SLM experiment.

Table 1. Machine parameters.

Machine Parameters Value
Laser Power 195 W
Laser speed 800 mm/s

Hatch spacing 0.1 mm

Layer thickness 0.02 mm
Base plate temperature 80 °C
Chamber temperature 40°C

4.2. Baseline Material Parameters

IN625 is a very common alloy used in manufacturing. Therefore, its properties are
easily available and well-known. In this work, we considered the temperature-dependent
material properties taken from [49] and presented in Figure 7.
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Figure 7. Material properties of IN625 (a Nickel alloy) [43,49].

4.3. Mesh Convergence Study

A mesh convergence study was first conducted to evaluate the effect of the mesh size
of the 3D finite element model on the simulation results. We selected three different mesh
sizes, compared their results with the experimental results, and concluded that a mesh
of size 0.3 mm was best suited for further studies. The comparison study was conducted
using the residual strain results at z = 9.536 mm. In Figure 8, the numerical results are
similar to the experimental results. Table 2 presents the decrease in error norm between the
experimental and numerical results with mesh size. For the error analysis, we used the L?
relative error norm which is defined as

2 | D (ue() —us(i)?
Tt ug (i)

(24)

in which ur and us are the experimental and simulation data, respectively, whereas the
total number of data is represented by n. Each simulation was performed on 32 CPUs that
each had an Intel E5-2683 v4 processor. From Table 2, it is clear that the error decreases with
the decrease in mesh size, but at the same time, the computation cost increases. Therefore,
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we chose a 0.3 mm mesh for our simulations, as it provides better results than the 0.4 mm
mesh size, while it is much less computationally expensive than the 0.2 mm mesh size.

3
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Figure 8. Mesh convergence study.

Table 2. Discrepancy in different mesh size results.

Computation Time

Mesh Size (mm) Relative L2 Error Norm .
(Minutes)
0.4 0.9924 45
0.3 0.9642 60
0.2 0.8588 155

4.4. Validation of the Finite Element Model

Using the baseline parameters, the simulation results were validated using two dif-
ferent analyses. In the first case study, the normal residual elastic strains were compared
with the experimental results at two specific locations (z = 9.536 and 2.216) in the bridge.
Figure 9a—c show a comparison of normal strains in the x, y, and z-directions, respectively,
at the line z = 9.536, whereas Figure 10a—c show that comparison at z = 2.216. The simu-
lation results at both values show a good correlation with the experimental results. It is
essential to mention here that the experimental strain results at z = 9.536 were extracted
only up to the 60 mm length of the bridge. The relative L2 norm error values for the x, y,
and z-direction strains at z = 9.536 were 0.4041, 0.6202, and 0.7820, respectively. The small
difference in the results may be due to the different scan strategies used in the experimental

and numerical simulations.
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Figure 9. The (a—c) represents the comparison of experimental and simulation residual strain at
z = 9.536 in the x, y, and z-directions respectively.
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Figure 10. The (a—c) represents the comparison of experimental and simulation residual strain at
z = 2.216 in the x, y and z-directions respectively.

For the second validation case study, we analyzed the deflection of a partially separated
bridge from the baseplate as shown in Figure 11, in which all 12 bridge legs were separated
from the substrate. The partially separated bridge was then allowed to move upwards
without any external force, except for the internal residual stresses. The deflection of the
bridge in the z-direction was measured at 11 ridges on the bridge’s top surface. In Figure 12,
we show the comparison of the deflection results from a simulation and an experimental
study. The relative L2 error norm between the simulation and experimental results is 0.0629,
proving a good correlation between the results.
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Figure 11. The NIST AMB2018-1 bridge geometry [9].
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Figure 12. Comparison of the part deflection results from experimental and simulation data.

4.5. Deep Neural Network (DNN) Surrogate Modeling

A surrogate model was constructed using DNN regression to build a surface map
between the input and the output data set. The DNN has six hidden layers, where the first
and the last layers have 800 neurons and the middle four layers have 500 neurons each. To
construct our DNN model, we used Matlab’s deep learning toolbox.

In the present study, we considered five uncertain parameters, where three are the
machine parameters and two relate to material properties. To change the values of Young’s
modulus and the Poisson ratio, we multiplied their baseline values by factors cY and cv,
respectively. The input variables were laser speed, layer thickness, hatch spacing, cY, and
cv. A dataset was generated with a sample of 360 input variables using a Sobol sampling
technique. Initially, the sample set responses were obtained using the finite element model,
and the normal strains were calculated at z = 9.536 (build direction). Later, the outputs
from the 360-sample set were used to construct a DNN model, where 70 percent of the
data was used to train the DNN, 15 percent was used to test it, and another 15 percent was
used to validate the DNN model. Figure 13 shows the loss drop during training, testing,
and validation of the DNN model, and Figure 14 shows the plot between the exact and
predicted values during training, testing, and validation of the model, using x-strains. The
DNN model was developed separately to train and predict the outputs of each normal
directional strain at z = 9.536. Figure 15 compares the DNN outputs and the simulation
outputs for each directional strain at z = 9.536.



Appl. Sci. 2022,12, 2324

18 of 27

Best Validation Performance is 9.2382x107'" at epoch 225

===Train
=V alidation
Test

@

; -6
g 10
T’

=

=

=

=

=

¥ ]
CR
S 10°F
=n

oo

=

o]

-

=

0 50 100

150 200

225 Epochs

Figure 13. Error graph during the training, testing, and validation of the DNN model.
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Figure 15. Test outputs for the y and z strains.

Once the neural network surrogate model is developed, it can be used to perform
statistical and calibration studies. For this purpose, a sample of sufficient size must be
generated. We used the Monte Carlo method to perform the convergence analysis using
standard deviation (Std) for different numbers of sample sets, including 12, 48, 84, 120, 192,
264, 336, 516, 732, 1020, 1524, 2028, 2532, 3000, 4008, 5016, 8004, and 9588, and the standard
deviation was calculated for each sample set. The convergence study was performed for
individual directional strains at two locations. Figure 16a,b shows the results for the x strain
at 15 and 45 mm, while Figure 16c—f present convergence plots for the y and z directional
strain at the 15 and 45 mm locations, respectively. From the figures, we concluded that a
set of 6000 samples was enough to perform the sensitivity and uncertainty analysis for an
SLM process, as described in the following sections.
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Figure 16. (ab) represent the convergence of standard deviation with the increase in sample
size at x = 15 mm and 45 mm for x strains, respectively, whereas (c,d) represent the y strains at
x = 15 mm and 45 mm. Similarly, (e,f) represent the convergence plots for z strains at x = 15 mm and
45 mm respectively.

4.6. Polynomial Chaos Expansion

Along with the DNN, we used a PCE model to construct a surrogate model for our
SLM process. We conducted this comparative study to determine the best surrogate model
for our problem, one that can simultaneously reduce the computation time and increase the
accuracy of the predictions. Thus, similar to the DNN, the PCE was trained and tested with
outputs of 360 samples calculated using the Ansys additive software. For the comparison,
we generated a data set of 6000 input samples with the Sobol sampling technique, and then
used our trained PCE and DNN surrogate models to predict normal strains as outputs
for the points at z = 9.536. Figure 17 shows a comparison between the DNN and PCE
models, and we can conclude that the results are very close to each other. The mean square
error between the PCE and the DNN is 7.17 x10~!!, proving that both models are equally
adequate for prediction. In Table 3, we present a comparison of the computational cost for
both models, and Table 4 presents the error between experimental and predicted values.
The results show that the PCE is faster than the DNN in training g, but almost three times
slower than the DNN in prediction. Considering the overall time, the DNN is faster than
the PCE. Therefore, in conclusion, we proceeded with our investigation using a DNN
instead of a PCE.
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Figure 17. The (a,b) represents the comparison of PCE and DNN models with x and y
strains respectively.
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Table 3. Training and prediction time for each model.

X-Strains Y-Strains Z-Strains
Training Prediction Training Prediction  Training Prediction
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
ANN 160.09 155.87 115.22 160.81 248.25 156.06
PCE 11.56 515.76 8.14 552.28 7.25 552.26

Table 4. L2-error norm between predicted and experimental values.

Mesh Size (mm) X-Strains Y-Strains Z-Strains
ANN 0.2714 0.6583 0.8730
PCE 0.2677 0.6466 0.8640

4.7. Uncertainty Quantification

For the uncertainty quantification, we used the normal strains in the X, y, and z
directions at z = 9.536. The analysis was conducted using Python libraries, which include
Numpy, statistics, and other libraries.

To begin, a set of 6000 input samples was generated using a Sobol sampling technique.
Next, the trained DNN model was used to calculate the x-directional strains along the line
z = 9.536 for these input variables. The samples were generated under £15% bound on
the baseline input values, which are shown in Table 5. As mentioned before, the values
of Young’s modulus and the Poisson ratio were modified by multiplying them with the
factors cY and cv, respectively. The values of these factors lie between 0.85 and 1.15,
representing + 15% variation. Figure 18a illustrates the uncertainties in the process outputs,
which shows that the mean of the data was very close to the actual results; the grey area
represents the confidence interval of 95%. The confidence interval was equal to the £2x
standard deviation. A similar study was performed with y- and z-directional strains at
the exact location and their analysis plots are shown in Figure 18b,c, respectively. The L2
error norm between the mean value and the experimental results for Y strains was 0.6662,
whereas, for the z strains, the value was 0.8764. The experimental results for Y strains lay
in the 95% confidence interval, but for the z strain, they did not. This may be explained
by the simplifications and modeling hypotheses used in the numerical software of the
model limitations; for example, the model does not consider the anisotropy in the material
properties or the laser power.
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Figure 18. Cont.
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Figure 18. Uncertainty quantification along the three sides of the AMB2018-01 bridge structure.
(a) represents the results along the length of the bridge, (b) indicates the results along the width of
the bridge, and (c) shows the results along the height of the bridge.

Table 5. Lower and upper bound for the input variables.

Input Variable Lower Bound Upper Bound
laser speed 680 mm/s 920
layer thickness 0.085 mm 0.115
hatch spacing 0.017 mm 0.023
cY 0.85 1.15
cv 0.85 1.15

4.8. Sensitivity Analysis

For sensitivity analysis, we considered five input parameters: three machine parame-
ters and two material parameters. The study considers the primary parameters of layer
thickness, laser speed, hatch spacing, Young’s modulus, and Poisson ratio. The input pa-
rameters’ effects were measured using the normal strains, and by calculating the first-order
Sobol indices for each node. Similar to the uncertainty analysis, the normal strains were
calculated at z = 9.536 along the bridge direction in each simulation.

Figure 19 presents the variation in the Sobol indices along the bridge length. A pie
chart is provided for each parameter, representing the importance of each parameter as a
percentage. From Figure 19, we can conclude that the Young modulus and the Poisson ratio
are the most critical parameters for the SLM and that hatch spacing is the least important
parameter among the five parameters considered. If we consider the x-directional strains,
then the Poisson ratio and the Young modulus are the most important parameters. While
both parameters’ influence changes along the bridge length, both contribute 30% to 65%
in the SLM output. The three machine parameters are less influential than the material
parameters, but they contribute significantly to the directional strains. Figure 19b shows the
effect of input variables on y-directional strains, indicating that the Poisson ratio is the most
dominating factor among the input variables. The Poisson ratio contributes between 86 and
90% in the y-directional strains. The other four parameters are equally essential and make
contributions of 2 to 5% to the normal strain in the y-direction. However, the situation is
the opposite in the case of z strains, where the most dominating factor is Young’s modulus
instead of the Poisson ratio. Young’s modulus is 65 to 68% more important than the other
parameters for z strains, while the Poisson ratio is the second most dominant factor.



Appl. Sci. 2022,12, 2324

23 of 27

== | ayer thickness

Hatch spacing Layer Thickness: 2.0%
= | aser speed

§ m— young modulus Hatch Spacing: 1.3%
§ = PoissoN ratio Laser Speed: 0.8% \
° Young's Modulus: 32.2%
8
wv
i Poisson Ration: 63.7%
30 40 50 60
Length of the bridge
(@) (b)
25 == | ayer thickness Layer Thickness: 30%
Hatch spacing Hatch Spacing: 3.2%
w 2.0 === | aser speed
o == young modulus Laser Speed: 2.0%
E 15 === Poisson ratio Young's Modulus: 2.5%
2 10 vy A g
&
0.5
0_0 J A . prosy "
10 30 40 50 60
Length of the bridge Poisson Ration: 89.3%
(© (d)
25 Layer Thickness: 9.0% Poisson Ration: 9.1%
== Layer thickness /
2.0 = Hatch spacing Hatch Spacing: 8.1%
" | aser speed
] 15 == young modulus
27 ~ Poisson ratio Laser Speed: 7.7%
E 1.0 NWWW
[}
)
0.5
0.0 :
10 30 40 50 60

Length of the bridge Young's Modulus: 66.2%

(e) ()

Figure 19. Variation in sensitivity indices along the length of the bridge (x-direction) at z = 9.536 are
presented in (a,c,e) for the X, y, and z-directional strains, respectively. Whereas the (b,d,f) represents
the importance of each parameter in a percentile form for x, y and z directional strains respectively.

If we look at all the results we find that the machine parameters are less influential
than the material parameters. However, the machine parameters’ effects are still significant
in the SLM process. Thus, we cannot ignore their importance in the SLM output, and
we need to consider these machine parameters to optimize the SLM output. In the next
section, we consider all five parameters and perform an optimization analysis to find the
best configuration of the input variables to obtain the optimal SLM to build-part.

4.9. Optimization

We performed an optimization analysis to find the optimized parameters for an SLM
process, using GA, PSO, and GE as our optimization algorithms, and the ANN model to
generate the required data set for the optimization process, as it is faster than the PCA
model. From our sensitivity analysis, we found that all five parameters are essential for
the process, and so we considered all five parameters as the input variables. We used 100
as the initial population for the GA algorithm, with 0.8 and 0.1 as the crossover and the
mutation probability, respectively. However, in the DE, we took 0.6 for the scaling factor
and 0.8 for the crossover. Table 6 presents the optimized parameters for the SLM process
with the different optimization algorithms. From this Table, we can conclude that all the
algorithms provide similar fitness values and that the optimized parameters are also very
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similar. However, the PSO produces results much faster than the other two algorithms.
Therefore, using a PSO optimization algorithm with the DNN model to obtain the optimal
parameters is highly efficient and less computationally expensive than the other options.

Table 6. Optimized parameters.

Parameters Ijayer Hat(.:h Laser Speed n m Fitness Time
Thickness Spacing Value Elapsed
GA 0.0170 0.1033 760.1680 1.15 1.15 22962 x 107> 14,019.562066
PSO 0.0170 0.0971 735.3738 1.15 1.1379 2.3043 x 1072 759.003790
DE 0.0170 0.1032 757.5025 1.15 1.15 2.2940 x 107°  13,108.426080
In Figure 20 we present the SLM outputs for the optimized parameters obtained
from all three optimization algorithms. We used Ansys additive simulation for each set of
optimized parameters obtained from all three algorithms and plotted the normal strains
along with the experimental results. From Figure 20, we can conclude that the results
are similar and very close to the experimental results. Figure 21 compares the optimized
output results obtained from the simulation and from the DNN model. The L2 error norm
between simulation and a surrogate model is 0.0965 and 0.2264 for x and y directional
strains, respectively. The figure proves the efficiency of the DNN model and the optimized
results, which lie in the 95% confidence interval.
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Figure 20. Comparison of simulation results from DNN model using the optimized parameters
obtained by GA, PSO, and DE.
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Figure 21. Confidence intervals of simulation results from DNN model and for the optimized
parameters obtained from PSO. (a,b) represent the x and y strains, respectively.

5. Conclusions

In this paper, we presented a framework to analyze and optimize the SLM process
other than the more widely-used experimental and numerical techniques. We used machine
learning (ML) methods with the SLM numerical model to study the sensitivity and uncer-
tainty during the additive process. Neural networks and polynomial chaos expansions
were the primary machine learning methods that we considered. The dataset of full-order
numerical solutions was performed using ANSYS additive software and the results were
validated using publicly available experimental results. The 3D thermo-mechanical finite
element model was used to solve a set of 360 samples created using the Sobol sampling
technique. The outputs from the 360 samples were then used to train and test the surrogate
models. We found that the deep neural network model was faster than the PCE model, so
we adopted the DNN model for the rest of the analyses. Once the DNN model was trained,
it was combined with the Monte Carlo technique to find the number of simulations needed
to perform the sensitivity and uncertainty analyses in the SLM process. The standard devi-
ation convergence plots for each sample set helped us to conclude that 6000 samples are
sufficient to perform the study. The sensitivity analysis revealed that the Young’s modulus
and Poisson coefficient are the most critical parameters during the process, while the layer
thickness, laser speed, and hatch spacing are less important. However, the machine param-
eters still hold significant importance (5% to 10%). As all the parameters hold significant
importance in the SLM process, we considered all five parameters for the optimization
analysis. The surrogate DNN model was utilized to optimize with three different algo-
rithms: GA, PSO, and DE. The results were compared, and all three algorithms were found
to be equally good at calculating the optimal solution; however, PSO took the least time.
The combination of DNN and PSO for optimization provided good results and incurred
significantly less computation cost. In the future, as an extension of this study, we will
work with the physically informed machine learning models to improve results.
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