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Abstract: Phosphorus (P) pollution and phosphorus recovery are important issues in the field of
environmental science. In this work, a novel Al-Ti bimetal composite sorbent was developed via
a cost-effective co-precipitation approach for P removal from water. The adsorptive performance
and characteristics of P onto Al-Ti sorbent were evaluated by batch adsorption experiments. The
effects of Al:Ti molar ratio, initial P concentration and reaction temperature were investigated. The
microstructural characteristics of the Al-Ti sorbent were confirmed by scanning electron microscopy
(SEM), X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, and nitrogen
adsorption-desorption measurements. Kinetic studies showed that the adsorption of P on Al-Ti oxide
proceeds according to pseudo-second-order kinetics. The maximum adsorption capacity of phosphate
on the Al-Ti oxide calculated from linear Langmuir models was 68.2 mg-P/g at pH 6.8. The Al-Ti
oxide composite sorbent showed good potential for P recovery, owing to its large adsorption capacity
and ease of regeneration.

Keywords: Al-Ti bimetal oxide; phosphate; adsorption; isotherm models; water treatment

1. Introduction

Phosphorus (P) is a vital macronutrient that promotes the growth and development of
living organisms. The rapidly burgeoning human population has led to a rising demand for
high agricultural and industrial productivity, which, inevitably, has led to an exponential
increase in the consumption of fertilizer and detergent. Since P is present in several minerals
and rocks, it is a fundamentally non-renewable resource. Unfortunately, the most accessible
high-grade P in rocks and minerals is being exhausted. Over the next 50–100 years, P in
rock reserves worldwide are expected to become depleted [1].

On the other hand, pernicious eutrophication and algae bloom of receiving waters,
such as rivers, reservoirs, lakes, and coastal waters have become worldwide environmental
problems, characterized by the rapid growth of cyanobacteria and algae that consume a
considerable amount of dissolved oxygen and cause the subsequent death of aquatic life [2].
The consequences of these processes are the disruption of the ecological balance in water
ecosystems and the deterioration of freshwater quality [3]. The excessive discharge of P
into aquatic ecosystems results in these problems. Eutrophication leads to fish death and
habitat degradation with the loss of plant and animal species [4]. Rapid decomposition of
dense algae scum can give rise to foul odors and promote the growth of blue-green algae,
which produce extensive toxic blooms [5,6]. Eutrophication can also promote parasitic
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infections and amphibian diseases [7]. Recent reports suggest that phosphorus reduction
effectively controls eutrophication [8,9]. Stringent legislation to curb P emissions has
been established in many countries. In China, the discharge limit of P recommended for
wastewater treatment plants is 0.5 mg/L for class 1 (as total P) [10]. Thus, there is an urgent
demand for ways to recover P, as well as to decrease P-rich effluent to below threshold
values to protect water bodies from eutrophication.

Diverse techniques have been applied to remove P from effluent, including physical,
chemical, and biological processes. Although chemical methods such as precipitation [11]
and coagulation [12] are relatively efficient for P removal, the disposal of accumulated
sludge and secondary pollution caused by high chemical consumption are the main
disadvantages of chemical methods [3]. As an alternative, biological treatment is
considered feasible for P removal [13]. As they rely on phosphorus-accumulating bacteria,
such systems are quite sensitive to water properties such as temperature and pH. Therefore,
these systems are less stable and reliable, complex, and occupy a large area, which restricts
the development of biological methods. Furthermore, electrodialysis does not satisfy the
discharge requirements for effluent quality and requires post-treatment [14]. Currently, the
sorption approach has shown great potential for P removal from contaminated water. Its
advantages include low power consumption, low operating cost, convenient operation [15].

Therefore, the key issue is to find efficient adsorbents. Numerous natural and synthetic
adsorbents, such as dolomite [16], clay minerals [17], orange waste [18], graphene [19],
metal oxides [20], and activated alumina [21] have been introduced as alternatives for lowering
P levels in aqueous solution. It has been reported that P has a relatively strong affinity for
mineral surfaces [21]. Among these adsorbents, metal oxides (including hydroxides and
oxyhydroxides), such as iron (hydr) oxides, are gaining popularity, owing to their high
selectivity toward P. P can strongly adsorb onto the surface of metal oxides, especially iron
and aluminum oxides rich in soils and sediments, including hematite (α-Fe2O3), magnetite
(Fe3O4), maghemite (γ-Fe2O3), goethite (α-FeOOH), gibbsite(α-Al(OH)3), boehmite
(γ-AlOOH), and feroxyhyte (δ-FeOOH) [22–24]. Anion complexing capacity is an important
factor responsible for the affinity of P for metal oxide surfaces, which allows binding to
surface groups by ligand exchange reactions [25]. The sorption of P on iron/aluminum
oxide-based composite sorbents containing two (or more) metal oxides has been reported in
the literature. Such adsorbents, e.g., Al-Fe oxide [26], Fe-Mn oxide [27], Fe-Cu oxides [20],
Mg-Al hydroxides, and Mg-Fe hydroxides [28], have been reported for P removal and
are mostly comprised of divalent and trivalent cations. It has also been reported that
composite metal oxides not only retain the advantages of single component oxides but can
also significantly improve their sorption capacity.

Titanium (Ti) is one of the primary elements in the environment, similar to iron and
aluminum. Recent reports demonstrate that titanium (IV) is a new alternative material
exhibiting an acceptable sorption capacity for P [29]. Therefore, it can be expected that if Ti
salts are incorporated into aluminum or iron oxides, the resulting product will not only
retain the favorable properties of their individual components but also display enhanced
capacity for P sorption owing to a synergistic effect. Mixed metal oxides, with Ti introduced,
designed with multivalent metal ions, particularly tetravalent cations (Ti4+), could form
more sorption sites (≡M–OH) and reactive surfaces if defects are created [30]. Fe-Ti oxides
have been synthesized and exhibit the potential to be sorbents for P removal [31]. However,
to the best of our knowledge, there has been no report on P adsorption by Al-Ti oxides.

In the present study, a series of Al-Ti bimetal oxides with different Al/Ti molar ratios was
synthesized via a co-precipitation method and tested for P sorption from aqueous solutions,
to determine the optimum Al/Ti molar ratio in bimetal oxides. The morphological structure
and adsorption properties of the Al-Ti bimetal oxides were examined by X-ray diffraction
(XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy,
and nitrogen adsorption desorption measurements. Measurements of adsorption isotherms
and thermodynamics were carried out to explore the adsorption process. In addition,
regeneration and recovery of used Al-Ti oxides were performed by their exposure to
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alkaline solution and subsequent filtration with water. The purpose of this study is as
follows: (i) to verify whether a new bimetallic Al-Ti oxides can adsorb phosphorus;
(ii) evaluate the effects Al/Ti molar ratios, initial P concentration on the adsorption;
(iii) determine the adsorption isotherm.

2. Materials and Methods
2.1. Synthesis of Al-Ti Oxide

Al-Ti oxide was prepared by a co-precipitation procedure. In brief, analytical-grade
Al2(SO4)3·8H2O (≥99.0%, Tianjin Chemical Reagent Co., Ltd., China) and Ti(SO4)2 (≥96.0%,
Beijing, Sinopharm Chemical Reagent Co., Ltd., China) with 1 mol/L total metal concentration
were dissolved in 200 mL of deionized water. The solutions had Al(III):Ti(IV) molar ratios
of 1:0, 4:1, 2;1, 1:1, 1:2, 1:4, and 0:1. In this case, ammonia water (12.5%) was slowly dripped
into 200 mL of metal solutions with a predetermined amount of aluminum (III) sulfate
and titanium (IV) sulfate until a pH of 7.5 was obtained. Then, the mixture was stirred
constantly for 1 h and aged statically for 4 h at room temperature. The mixture was filtered
and washed with anhydrous alcohol repeatedly. The materials were subsequently dried at
373 K, ground into fine powder, and then stored in a desiccator before use.

2.2. Characterization

The surface morphology and elemental composition of synthesized Al-Ti oxide were
obtained using an SEM (Hitachi Limited, SU8020, Tokyo, Japan) instrument at 3.0 kV.
Infrared absorption spectra analyses were performed with an FTIR (Shimadzu Trace 100)
spectrometer in the 500–4000 cm−1 range. Attenuated total reflection with germanium
crystals (ATR Top-Plate) was used. Absorbance measurements were performed using
software provided by Omnic 32. The XRD was performed using an X-ray diffractometer
(D8 ADVANCE, Bruker, Germany) with Cu-Kα radiation (λ = 1.5406 Å), tube current of
40 mA, and tube voltage of 40 kV. N2 adsorption-desorption isotherms were measured at
77 K with a surface area analyzer (Micromeritics ASAP 2460, Norcross, GA, USA). The
pretreatment was conducted at 473 K for 6 h. The Brunauer–Emmett–Teller equation
and Barrett–Joyner–Halenda method were used to calculate the surface area and pore
size of Al-Ti oxide. The ζ-potential was measured by Zetasizer Nano series (Nano ZS,
Malvern, England).

2.3. Batch Experiments

The adsorption tests were conducted at different initial P concentrations in NaH2PO4
solution with an Al-Ti oxide dosage of 0.2 g/L in 100 mL of solution. The initial pH
of the solutions was adjusted to 6.8 by adding H2SO4 or NaOH. After a few hours of
continuous stirring, the suspensions were separated by centrifugation (2500 rpm, 20 min).
P concentrations in the supernatant solutions were measured by the molybdenum blue
method [32] using an ultraviolet-visible spectrophotometer (721N, Shanghai Spectrum,
Shanghai, China) at a wavelength of 700 nm. To evaluate the temperature involved in
P removal, similar experiments, as described above, were performed by transferring the
sealed reaction vessel to a thermostatic shaker bath (293 K, 303 K, 313 K, and 323 K). The P
solutions with P concentration ranging from 2.5 to 50 mg/L were prepared from a stock
solution. The P removal efficiency (R) was calculated by Equation (1):

R =
(C0 − Ce)

C0
× 100 (1)

and the adsorption capacity of P at equilibrium (qe) and at time t (qt) were calculated by
Equations (2) and (3):

qe =
V(C0 − Ce)

W
(2)

qt =
V(C0 − Ct)

W
(3)



Appl. Sci. 2022, 12, 2309 4 of 19

where R denotes the removal efficiency (%), qe and qt denote the amount of phosphorus
adsorbed at equilibrium and time t, respectively ((mg-P)/g), and C0 and Ce are the initial
and equilibrium concentrations of P in aqueous solution (mg/L), respectively. Ct is the
P concentration at time t (mg/L). V denotes the volume of P solution (L), and W is the
adsorbent weight (g). Each experiment was conducted three times and the average values
were used for calculation.

After performing P adsorption, the used adsorbent was collected and washed thoroughly
with water. The spent Al-Ti oxide adsorbent was immersed in 0.1 M NaOH solution
for 4 h for regeneration. The material was filtered, repeatedly washed with water, and
subsequently dried at room temperature under vacuum. The reusability of the regenerated
sample was evaluated through adsorption of 15.0 mg/L P solution.

3. Results and Discussion
3.1. Optimization of Al-Ti Oxide for Adsorption of Phosphate

Al-Ti bimetal oxide with different Al:Ti molar ratios (1:0, 4:1, 2:1, 1:1, 1:2, 1:4, 0:1) were
synthesized and their P removal capacities are compared in Figure 1. The comparison
shows that sorption capacity was 50.7 mg/g on aluminum oxide (Al(III):Ti(IV) = 1:0) and
24.7 mg/g on titanium oxide (Al(III):Ti(IV) = 0:1). The adsorption capacities of Al-Ti
bimetal oxide first increased and then decreased with an increase in Al-Ti molar ratio. The
highest adsorption capacity was achieved at an Al-Ti molar ratio of 2:1, indicating that an
appropriate amount of Al- and Ti-doping of the oxide hybrid enhanced the P adsorption
capacity compared with individual oxides. The adsorption capacity of P on Al-Ti oxide was
higher than that of Fe-Ti bimetal oxide, 32.95 mg/g (pH 6.8) [31]. It was also slightly higher
than that of Fe-Al hydroxide, 51.8 mg/g (pH 4.5) [33], and that of Mg/Al layered double
hydroxides, 54.9 mg/g (pH 6.0) [34]. A small amount of Ti doping into bimetal oxide
obviously enhanced the P sorption capacity, while excessive Ti doping was detrimental to
its sorption capacity. The results are similar to those reported in the literature [31]. The
Ti4+ ions can make the surface charges more positive while attracting more phosphate
ions. However, when the Ti content continues to increase, the P adsorption capacity of the
adsorbent decreases. It is speculated that the effect of Ti content on P adsorption may be the
result of the interaction of surface charge and surface microstructure. Therefore, the sorbent
with an Al-Ti molar ratio of 2:1 was selected and applied in subsequent characterization
and adsorption experiments.
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3.2. Characterization of Al-Ti Oxide

SEM photographs of the sorbent with an Al-Ti molar ratio of 2:1, together with Al-
oxide (1:0) and Ti-oxide (0:1), are shown in Figure 2a–f. Two magnifications of 1000× and
5000× are given for each sample. The Al-oxide (a, b) has a rough surface and porous
structure. Ti-oxide (c, d) is more likely to agglomerate. The Al-Ti sorbents (e, f) were
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aggregates of many tiny nanoparticles and formed a rough surface. The dimensions of
these nanoparticles were in the range of several tens of nanometers. EDS analysis (Figure 2g)
revealed that the molar ratio of Al:Ti was approximately 13:10, which is slightly lower than
that in the preparation process (2:1). Furthermore, there were peaks for elemental S on
the surface of the sorbent, which is related to residual Al2(SO4)3 and Ti(SO4)2 used in the
preparation of Al-Ti oxide.
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(d) 50,000×; and Ti-oxide (e) 5000×, (f) 50,000×; (g) EDS of photograph of Al-Ti oxide.

The XRD pattern of the sorbent with an Al-Ti molar ratio of 2:1 is shown in Figure 3.
The presence of Al2O3 in the adsorbent corresponds to the diffraction peaks of 2θ = 25.6◦,
43.4◦, and 57.5◦ for the (012), (113), and (116) crystal planes, respectively (JCPDS card
no. 76-1782). The diffraction peaks at 20.6◦, 22.0◦, 22.7◦, 27.0◦, 39.5◦, 41.9◦, 47.6◦, and 76.2◦

can be assigned to the (200), (110), (111), (211), (312), (114), (313), and (135) crystal planes of
Al(OH)3, respectively (JCPDS card no. 75-1863). The peaks at approximately 31.6◦, 33.3◦,
and 36.0◦ were confirmed as the (026), (022), and (124) crystal planes of Ti6O11, respectively
(JCPDS card no. 18-1401). These data indicate that Al-Ti oxide was successfully combined
to form a hybrid material through the co-precipitation method.

The FT-IR spectra of the composite adsorbent in its original state, after P adsorption
and after subsequent regeneration using 0.1 M NaOH solution, are illustrated in Figure 4.
For the Al-Ti oxide hybrid material, the broad peak displayed at 3600–3200 cm−1 can be
assigned to the O-H stretching mode of the hydrogen-bond, which implies the presence
of water molecules [35]. The peak at approximately 1440 cm−1 corresponds to O-H
deformation vibration [36]. The band at 1073 cm−1 can be attributed to Al-OH bending
vibration [37]. The band from 500 to 700 cm−1 could be due to metal-oxygen-metal
vibrations [38]. The band at 1092 cm−1 and 696 cm−1 can be attributed to the asymmetric
stretch vibration and bending vibration of S-O in the residual sulfate radical.
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Figure 4. FT-IR spectra of sorbent (a) as-prepared (b) after adsorption of phosphate, and (c) spent
Al-Ti oxide.

After Al-Ti oxide was immersed with the P solution, some new bands are observed at
1216 cm−1 and 1150 cm−1. The band at 1216 cm−1 is assigned to the P stretching mode. The
weaker band at 1150 cm−1 is ascribed to the stretching vibration of PO2 [39]. The results
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confirm that a surface complex (M-O-P) between P and Al-Ti oxide may be formed and
that the P is adsorbed onto the surface of Al-Ti oxide successfully.

The Al-Ti oxide used after P adsorption was regenerated with 0.1 M NaOH solution.
For the regenerated sample, the characteristic bands for O-H groups and the Al-OH group
were recovered; the peaks for P groups at 1216 cm−1 and 1150 cm−1 were greatly weakened.
Little to no change in the many peaks of the regenerated sample was observed compared
with the as-prepared Al-Ti oxide. This indicates that the adsorption performance of P onto
Al-Ti oxide could be recovered by regeneration with the NaOH solution. The zeta potential
curve of Al-Ti oxide was presented in Figure 5, which indicates that the point of zero charge
(PZC) is about zero at pH 8, and that the charge is in the range from 24 to −28 mV at pH
3−11. Therefore, this should be a stable absorbent toward cationic adsorbate because of its
slight basic pHPZC and relatively large positive potential in neutral solution.
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The N2 adsorption-desorption isotherms of Al-Ti bimetal oxide are shown in Figure 6a.
According to IUPAC classification, the adsorption-desorption isotherms follow type IV
isotherms, indicating the existence of a mesoporous structure in Al-Ti bi-metal oxide [40].
This oxide also exhibits an H3-type hysteresis loop in the range of relatively high P/P0,
which can be attributed to slit-shaped pores [31]. The formation of this kind of pore structure
is attributed to the uneven aggregation of tiny nanoparticles. Surface area measurements
of Al-Ti oxides are summarized in Table 1. The Al-Ti oxide has a surface area of 3.94 m2/g
and an average pore size of 12.1 nm. The pore size distribution of the synthesized Al-Ti
oxide is shown in Figure 6b. The pores are mainly mesopores, ranging from 2 to 50 nm in size.
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Table 1. Surface area measurements of Al-Ti oxide, Al oxide, and Ti oxide.

BET Surface Area (m2/g) Micropore Area (m2/g) Average Pore Diameter (nm)

Al-Ti oxide 3.94 1.79 12.1
Al oxide 5.52 3.43 20.2
Ti oxide 2.36 1.26 10.6

3.3. Adsorption Kinetics

Figure 7a displays the effect of contact time on P adsorption onto Al-Ti oxide. The
adsorbed amount of P increased with an increase in contact time. The adsorption equilibrium
for P was achieved after about 12 h. The rapid adsorption observed during the initial stage
was probably due to the abundant availability of adsorption sites on the Al-Ti oxide surface;
then, the adsorption became less efficient with gradual occupancy of the adsorption sites.

To predict the adsorption kinetics of P onto Al-Ti oxide, two adsorption kinetic models,
including pseudo-first-order and pseudo-second-order models were applied to examine
the adsorption process [41–43]. The pseudo-first-order and pseudo-second-order models
can be represented by Equations (4) and (6), and their linear forms as Equations (5) and (7)
when integrating the two equations for the boundary conditions of qt = 0 at t = 0 and qt = qt
at t = t, respectively:

dqt

dt
= k1(qe − qt) (4)

dqt

dt
= k2(qe − qt)

2 (5)

qt = qe(1 − e−k1t) (6)

t
qt

=
1

k2qe2 +
1
qe

t (7)

where qe (mg/g) and qt (mg/g) are the amount of P adsorbed onto Al-Ti oxide at equilibrium
and at time t (min), respectively. k1 (1/min) and k2 (g/mg min) are the rate constants of the
pseudo-first-order and pseudo-second-order models, respectively.

The fitting of the two kinetic models for P adsorption with various initial concentrations
are shown in Figure 7b–c. Kinetic parameters fit by the pseudo-first-order and pseudo-
second-order models were calculated and are listed in Table 2. The coefficients of
determination (r2) of the pseudo-second-order model were higher than those of pseudo-
second-order mode, and the calculated qe values were in good agreement with experimental
results, verifying that the adsorption process could be better described by the pseudo-
second-order model.
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T = 298 K.
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Table 2. Adsorption kinetic parameters of P onto Al-Ti oxide adsorbent fit by pseudo-first-order and
pseudo-second-order models.

Initial P
Concentration, mg/L

Pseudo-First-Order Model Pesudo-Second-Order Model

k1
(1/h)

qe
(mg/g) R2 k2

g/(mg·h)
qe

(mg/g) R2

2.5 0.801 11.9 0.941 0.0971 13.0 0.990
5.0 0.488 24.6 0.977 0.0236 27.6 0.991
7.5 0.679 32.5 0.907 0.0294 35.5 0.968

10.0 0.701 43.7 0.949 0.0225 47.7 0.980
15.0 0.612 66.1 0.948 0.0123 72.8 0.991

3.4. Adsorption Isotherms

Adsorption isotherms are significant for describing the interaction between adsorbate
and adsorbent, and for optimizing the employment of adsorbents. Thus, the analysis
of equilibrium isotherms is fundamental for evaluating the adsorption mechanism. P
adsorption isotherms at 293 K, 303 K, 313 K, and 323 K obtained by varying equilibrium
concentration (Ce) are illustrated in Figure 8a. The initial P concentrations were 2.5, 5.0,
7.5, 10.0, 15.0, and 50.0 mg/L, and the P adsorption capacities increased with an increase in
initial concentration. Higher adsorption capacity was also achieved at higher temperatures,
which reveals the greater mobility of P in solution and higher probability of collision
between adsorption sites and PO4

3− ions [44]. The fitting of experimental data to six
different isotherm models is shown in Figure 8b–g; the estimated parameters for each
model are summarized in Table 3.

3.4.1. Langmuir Isotherm

The Langmuir isotherm [45,46] is based on the adsorption process, which is uniform
and monolayer on the surface of the adsorbent. It is calculated as Equation (8):

Ce
qe

=
1

bQm
+

Ce
Qm

(8)

where qe is the number of P ions adsorbed at equilibrium (mg/g), Qm is the maximum
monolayer adsorption capacity (mg/g), and b is the Langmuir isotherm constant related
to adsorption energy (L/mg) [47]. Figure 8b shows Langmuir plots for P removal at
different temperatures.

The feasibility of the adsorption process was determined on the basis of the equilibrium
parameter/dimensionless constant separation factor RL expressed by Equation (9):

RL =
1

1 + bC0
(9)

where C0 is the initial P concentration (mg/L). The values of RL indicate whether the type
of adsorption is unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1), or irreversible
(RL = 0) [48]. The constants and RL values are listed in Table 2.

The r2 values ranged from 0.897 to 0.998, which means that the adsorption data
had good fit with the Langmuir model. This result shows monolayer adsorption on a
homogenous surface in nature, and the maximum adsorption capacity of phosphorus ions
on the sorbent is 70.7 mg/L at 323 K. The RL values are between 0 and 1, demonstrating
the material’s high selectivity toward PO4

3−, and the adsorption is favorable.
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Figure 8. Adsorption isotherm of phosphorus on Al-Ti oxide composite sorbent: (a) adsorptive
experiments with various equilibrium concentrations of P, (b) Langmuir, (c) Freundlich, (d) D-R,
(e) Temkin, (f) Frumkin, and (g) Harkin–Jura model. The average value in (a) was used for calculations
in (b–g), adsorbent dosage = 0.2 g/L, equilibrium time = 8 h, pH = 6.8.
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Table 3. Adsorption isotherm data of various isotherm models.

Parameter 293 K 303 K 313 K 323 K

Langmuir
Qm (mg/g) 68.2 63.0 60.5 70.7
b (L/mg) 0.691 0.759 0.701 0.958

RL 0.028 0.026 0.028 0.020
r2 0.998 0.995 0.996 0.998

Freundlich
KF (L/g) 33.4 1.23 1.24 1.36

n 4.31 4.80 4.67 3.25
r2 0.768 0.810 0.942 0.795

D-R
QDR (mg/g) 51.3 56.2 68.2 61.9

β × 10−3

(mol2/kJ2)
12.7 19.2 25.7 26.3

E (kJ/mol) 6.28 5.10 4.41 4.36
r2 0.955 0.977 0.975 0.952

Temkin
KT (L/mg) 4.75 5.22 5.21 1.88
B (kJ/mol) 7.93 6.80 6.63 10.83

r2 0.919 0.931 0.993 0.944

Frumkin
a −4.72 −4.49 −5.10 −4.93

ln k 2.00 2.52 2.78 0.169
∆G (kJ/mol) 4.87 6.34 7.24 0.455

r2 0.834 0.869 0.988 0.836

Harkin–Jura
A × 103 1.97 2.38 2.41 1.59

B 1.50 1.87 1.98 1.47
r2 0.603 0.457 0.263 0.384

3.4.2. Freundlich Isotherm

The Freundlich isotherm [49], utilized for heterogeneous systems with non-equivalent
binding sites, is given by Equation (10):

ln qe = ln KF +
1
n

ln Ce (10)

where KF (L/g) and n are the Freundlich constants that indicate the capacity and intensity
of the adsorption process, respectively [47]. Figure 8c gives the fitting curves for the
Freundlich isotherm.

From Table 1, comparison of correlation coefficients of Langmuir and Freundlich
isotherms shows that the Freundlich model is not appropriate for describing the adsorption
process. The values of n ranged between 1 and 10, which indicates favorable sorption of P.

3.4.3. Dubinin–Radushkevick (D-R) Isotherm

The D-R isotherm [50,51] was employed to model was used to study the mean adsorption
energy, and is described by Equation (11):

ln qe = ln QDR − βDRε2 (11)

where QDR is the monolayer saturation capacity (mg/g), and βDR is the D-R adsorption
energy constant related to mean adsorption energy (mol2/J2). ε is the Polanyi potential
expressed as Equation (12):

ε = RT ln[
C0

Ce
] (12)
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where R is the gas constant (kJ/mol K), and T is the temperature (K). The mean adsorption
energy E (kJ/mol) can be calculated by Equation (13):

E =
1√
2β

(13)

A value of E under 8 kJ/mol is for physical absorption and ranges from 8.0 to 16.0 kJ/mol
for chemical processes [37]. Fitting of the experimental results to the D-R isotherm is shown
in Figure 8d.

The value of the mean free energy (E) of adsorption is 4.36–6.28 kJ/mol, which reveals
that the type of P adsorption onto Al-Ti oxide follows a physical adsorption mechanism.

3.4.4. Temkin Isotherm

The Temkin model [52] assumes that the free energy of adsorption is a function of the
surface coverage due to adsorbent-adsorbate interactions, and is expressed as Equation (14):

qe = B ln KTCe (14)

where B is involved with the heat of adsorption. KT is the Temkin isotherm equilibrium
binding constant (L/mg), calculated as Equation (15):

B =
RT
bT

(15)

where bT is the Temkin isotherm constant [53]. The plots of qe versus lnCe are given in
Figure 8e. The Temkin isotherm shows good agreement with r2 > 0.90. In Table 1, KT
increases with increasing temperature (293–313 K) and then decreases at 323 K, indicating
stronger interaction between P and sorbent with an increase in temperature (293–313 K),
followed by reduced interaction. It can be observed from B that the heat of adsorption is
maximum at 313 K and minimum at 323 K.

The B values obtained from the Temkin isotherm were: 7.93 kJ/mol, 6.80 kJ/mol and
6.63 kJ/mol at the temperature of 293 K, 303 K, 313 K, respectively, which indicates that
adsorption of P on Al-Ti oxide composite sorbent takes place by physisorption. The binding
energy value was < 8 kJ/mol, thus physical adsorption is the mechanism involved. In
the physical adsorption process, adsorbates adhere to the adsorbent through weak van
der Waals interactions, and, thus, this process is associated with relatively low adsorption
energies. The B value at 323 K was > 8 kJ/mol, suggesting that the chemisorption occurs at
relatively high temperatures [54].

3.4.5. Frumkin Isotherm

The Frumkin model [55] accounts for interaction between adsorbed species. It is
presented as Equation (16):

ln
[(

θ

1 − θ

)
1

Ce

]
= ln k + 2aθ (16)

where θ is the fractional occupation (θ = qe/qm); qm is the theoretical monolayer saturation
capacity (mg/g) determined by D-R isotherm; and a is the interaction coefficient, the value
of which is positive for attraction and negative for repulsion. When a is zero, there is no
interaction between the adsorbate species [53]. Fitting curves of θ versus ln

[(
θ

1−θ

)
1

Ce

]
are

shown in Figure 8. k is relevant to the adsorption equilibrium and written as Equation (17):

ln k =
−∆G

RT
(17)
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where ∆G is the Gibbs free energy (J/mol). The Frumkin isotherm constants are listed in
Table 2. Fitting of the experimental results with the Frumkin isotherm is shown in Figure 8f.

It can be noted from Table 1 that the negative a values suggest that repulsion exists
between the adsorbed species. The negative values of ∆G demonstrate that the adsorption
process is spontaneous in nature.

3.4.6. Harkin–Jura Isotherm

The Harkin–Jura isotherm [56] takes into account multilayer adsorption and can be
interpreted by the existence of a heterogeneous pore distribution. It can be represented as
Equation (18):

1
q2

e
= (

B
A
)− (

1
A
)lgCe (18)

where A and B are the Harkin–Jura isotherm parameters [53]. Fitting curves for the Harkin–
Jura isotherm are illustrated in Figure 8g.

It is observed that the Harkin–Jura isotherm has a relatively low r2 value. It follows
multilayer adsorption, in accordance with the conclusion made with the Langmuir isotherm
that the adsorption process is uniform and monolayer.

It is clear from Table 3 that Langmuir, D-R, and Temkin models represent the sorption
results well. The description of P adsorption onto Al-Ti oxide points to the following:
(i) P adsorption occurs on the homogeneous surface of Al-Ti oxide; the number of identical
adsorption sites is finite. RL values ranging from 0 to 1 indicate the favorable nature of
adsorption. (ii) The value of the mean free energy (E) of adsorption is 4.41–6.28 kJ/mol
from the D-R model, suggesting that the type of P adsorption on the sorbent can be defined
as physiochemical adsorption. (iii) The Temkin isotherm suggests that the maximum value
of KT and minimum value of B are 5.21 L/mg and 6.63 kJ/mol at 313 K, respectively, which
explains the equilibrium binding energy and maximum heat of adsorption at 313 K. The
higher temperature of 323 K shows irregular adsorption energy; it can be inferred that the
adsorption mechanism had changed at high temperature.

The monolayer adsorption capacity of P on the similar sorbents were listed in Table 4.
Compared with the reported sorbents, the Al-Ti bimetal oxide composite exhibited a
competitive capacity.

Table 4. Comparison of phosphate adsorption capacity among different adsorbents.

Adsorbent pH Temp (K) Dose (g/L) qm (mg/g) References

Fe-Ti bimetal oxide 4.5 293 0.2 32.95 [31]
Fe-Al hydroxide 6.0 298 1.0 51.80 [33]

Mg/Al LDHS 6.0 298 0.6 54.90 [34]
Amorphous ZrO2 6.2 298 0.1 99.00 [57]
Modified La2O3 5.6 298 0.5 58.70 [58]

Ai-Ti bimetal oxide 6.8 293 0.2 68.20 This study

3.5. Thermodynamic Studies

Different thermodynamic parameters Gibbs free energy change (∆G), enthalpy change
(∆H), and entropy change (∆S) for the adsorption of P onto Al-Ti bimetal oxide composite
were calculated using the following equations:

∆G = −RT ln Kc (19)

where R is the gas constant (8.314 J/mol K). KC is the equilibrium constant and defined in
Equation (20):

KC =
CA
CS

(20)
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where CA and CS are the equilibrium concentrations of P on Al-Ti oxide adsorbent (mg/L)
and in solution (mg/L), respectively [41]. Standard enthalpy (∆H) and entropy (∆S) of
adsorption can be estimated from van’t Hoff equation (Equation (21)):

ln KC =
−∆H

RT
+

∆S
R

(21)

The plot of lnKC versus 1
T is given in Figure 9.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20 
 

 

Figure 9. Plot of ln KC versus 1/T for phosphorus sorption onto Al-Ti bimetal oxide. 

Thermodynamic parameters estimated for P adsorption in the temperature range of 

293 K–313 K are shown in Table 5. 

Table 5. Thermodynamic parameters of P adsorption on Al-Ti oxide. 

Concentration 

(mg/L) 

−ΔG (kJ/mol)  ΔH 

(kJ/mol) 

ΔS 

(J/mol K) 293 K 303 K 313 K 

2.5 8.11 9.25 11.17 36.62 152.25 

15.0 6.01 7.67 9.03 38.36 151.58 

From Table 4, the positive value of ΔH confirms that P adsorption on Al-Ti oxide is 

an endothermic reaction due to increased adsorption from successive increases in temper-

ature [59]. The value of ΔG is more negative with increased temperature, showing that 

spontaneous reaction is enhanced by temperature. The ΔG values varied in range from 

6.01 to −11.17 kJ/mol, revealing that physisorption contributes to the adsorption mecha-

nism (physical range for ΔG0 is −20 ˂ ΔG0 ˂ 0 kJ/mol and chemical range is −80 ˂ ΔG0 ˂ 

−400 kJ/mol) [60,61]. The value of enthalpy (ΔH) shows physical adsorption (less than 40 

kJ/mol for physiosorption and 80–450 kJ/mol for chemisorption) [62,63]. The positive ΔS 

value elaborates increased randomness at the solid/solution interface during P adsorption 

on Al-Ti hydroxide. 

3.6. Regeneration of Spent Sorbent 

According to the literature, P sorption on bimetal oxide occurs via the replacement 

of surface hydroxyl groups (M-OH) by P to form inner-sphere complexes [31]. The metal 

oxide was effectively regenerated by NaOH solution. The P adsorption process can be 

described as: 

3M–OH + PO43− ⇌ (M)3PO43− + 3OH− (M = Al and Ti) (22) 

Figure 9. Plot of ln KC versus 1/T for phosphorus sorption onto Al-Ti bimetal oxide.

Thermodynamic parameters estimated for P adsorption in the temperature range of
293 K–313 K are shown in Table 5.

Table 5. Thermodynamic parameters of P adsorption on Al-Ti oxide.

Concentration
(mg/L)

−∆G (kJ/mol) ∆H
(kJ/mol)

∆S
(J/mol K)293 K 303 K 313 K

2.5 8.11 9.25 11.17 36.62 152.25

15.0 6.01 7.67 9.03 38.36 151.58

From Table 4, the positive value of ∆H confirms that P adsorption on Al-Ti oxide
is an endothermic reaction due to increased adsorption from successive increases in
temperature [59]. The value of ∆G is more negative with increased temperature, showing
that spontaneous reaction is enhanced by temperature. The ∆G values varied in range
from 6.01 to −11.17 kJ/mol, revealing that physisorption contributes to the adsorption
mechanism (physical range for ∆G0 is −20 < ∆G0 < 0 kJ/mol and chemical range is
−80 < ∆G0 < −400 kJ/mol) [60,61]. The value of enthalpy (∆H) shows physical adsorption
(less than 40 kJ/mol for physiosorption and 80–450 kJ/mol for chemisorption) [62,63]. The
positive ∆S value elaborates increased randomness at the solid/solution interface during P
adsorption on Al-Ti hydroxide.
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3.6. Regeneration of Spent Sorbent

According to the literature, P sorption on bimetal oxide occurs via the replacement
of surface hydroxyl groups (M-OH) by P to form inner-sphere complexes [31]. The metal
oxide was effectively regenerated by NaOH solution. The P adsorption process can be
described as:

3≡M−OH + PO4
3− 
 (≡M)3PO4

3− + 3OH− (M = Al and Ti) (22)

As P adsorption onto Al-Ti oxide proceeds over time, the adsorption active sites of
the sorbent gradually became saturated with P, causing a reduction in adsorption capacity.
It can be anticipated that improved adsorption occurs through sorbent regeneration. The
results of consecutive adsorption/regeneration cycles are illustrated in Figure 10. Compared
with the adsorption capacity of 68.9 mg P/g and removal rate of 93.6% in the first use of
Al-Ti oxide, the adsorption capacity and P removal rate reached 57.6 mg/g and 76.9%,
respectively, after five consecutive adsorption/regeneration cycles. Therefore, it can be
concluded that Al-Ti oxide exhibited good reusability for P removal.
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4. Conclusions

In this research, adsorption of phosphate from aqueous solution was investigated
using a novel Al-Ti oxide composite sorbent. The Al-Ti bimetal oxide prepared with an
Al/Ti molar ratio of 2:1 showed high P sorption capacity. Kinetic analysis showed that
the adsorption process of the P onto Al-Ti oxide composite was more consistent with the
second-order-kinetic models. Langmuir, D-R, and Temkin isotherms could better describe
the experimental data. Langmuir monolayer sorption capacity for P was 68.2 mg/g at
pH 6.8, which outperforms most reported bimetal oxide-based sorbents. The spent Al-Ti
oxide sorbent could be successfully regenerated by 0.1 M NaOH solution. Thermodynamic
experiments showed that P adsorption onto Al-Ti sorbent is a feasible, spontaneous, and
endothermic sorption process. Future work needs to supplement more advanced
characterization methods to explore the adsorption mechanism.
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