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Abstract: In some real-world problems, machine learning is faced with little data due to limited
resources such as sensors, time, and budget. In this case, the conventional machine learning approach
may fail or perform badly. To develop a well-functioning model with a small training set the hybrid
machine learning approach, the combination of different methods can be applied. Especially in
the machine industry where Industry 4.0 is one of the most important topics—including condition
monitoring, predictive maintenance, and automated data analyses—data are limited and costly. In
this work, the conventional and hybrid approach are compared to the application of ball bearing fault
classification. The dataset contains 12 different classes (11 with faults and 1 undamaged). For each
approach, two different LSTM (Long Short-Term Memory) models are developed and trained on
various training sets (different sensors). The hybrid model is realised by adding physical knowledge
through applying fast Fourier transformation and frequency selection to the raw data. This study
shows that the additional physical knowledge in the hybrid model results in a better performance of
the hybrid machine learning than the conventional.

Keywords: intelligent sensing and perception; wear; machine learning; machine condition monitoring;
vibration and acoustics; bearings; deep learning; LSTM; fault classification

1. Introduction

In recent years, artificial intelligence has become part of our life. Big companies such
as Google, Apple, Amazon, and Netflix use machine learning for different tasks such as
image classification, speech recognition, and making suggestions for products or movies.
For a well-functioning algorithm, a huge amount of data is needed.

In some cases, the available data are limited or costly and therefore the conventional
machine learning approach may fail or perform badly. To ensure a well-functioning model
with little data, hybrid machine learning can be applied. Hybrid means the combination of
different methods, such as the combination of machine learning and physics—in form of a
formula—or machine learning and methods from optimization theory.

Park et al. [1] analysed the power consumption of a chiller whose physics are well-
known. In their work, a machine learning model developed with an artificial neural
network (ANN) and a hybrid machine learning model are compared. The hybrid model is a
combination of an artificial neural network and regression equations based on physics. Both
models perform well in predicting the power consumption. The main difference is that the
hybrid model requires fewer inputs (four inputs) than the conventional one (eight inputs).
In addition to that, it is shown that the hybrid model can be applied where the conventional
ANN is unable to provide accurate predictions, for example, even when the parameters are
outside of the valid input space of the ANN. A combination of a deep learning model and
a non-dominated sorting generic algorithm, used to solve multi objective optimization, is

Appl. Sci. 2022, 12, 2287. https://doi.org/10.3390/app12052287 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052287
https://doi.org/10.3390/app12052287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9839-2054
https://doi.org/10.3390/app12052287
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052287?type=check_update&version=2


Appl. Sci. 2022, 12, 2287 2 of 16

developed by Heo et al. [2] to find the optimal setpoints of proportional integral controllers.
This model is trained with five scenarios identified by using fuzzy c-means algorithms and
physical ratios. The hybrid approach enables a cost-effective and sustainable operation of a
full-scale wastewater treatment under varying inflow conditions. Liang et al. [3] combine
two machine learning algorithms, K-means clustering and KNN classification, to reduce
energy consumption by increasing the average utilization of physical machines in cloud
data centres. The hybrid model is significantly better than the conventional ones.

Many real-world machine learning tasks are faced with little data. Forman and
Cohen [4] compared different classifiers on small training sets. It is crucial to have meta-
knowledge about which to apply in different situations. With little data, the question
about the effect of the class distribution is important. Weiss and Provost [5] analyse the
relationship between the class distribution of the training set and the performance of
classification trees induced from these data.

In the machine industry, the monitoring of wear is a common research topic due to
its potential for cost and resource savings. The fact that wear is in general not directly
measurable requires the measure of a physical value that correlates with the state of wear
to determine and interpret the condition of parts. Alonso and Salgado [6] measure the
vibration of a tool longitudinally and transversely in the turning process with two ac-
celerometers. The structure of the vibration measures is analysed using singular spectral
analysis and clustering before presenting it to a neuronal network. Instead of using the
vibrations, the acoustic emissions, recorded by a microphone, can be used. Li [7] shows
methods based on acoustic emission sensing for tool wear monitoring in the turning pro-
cess. Jia et al. [8] use deep neuronal networks for fault characteristic mining and intelligent
diagnosis of rotating machinery. Methods based on artificial neuronal networks with a
shallow architecture may need manually extracted features, much prior knowledge, and di-
agnostic expertise. Using deeper architectures, deep neuronal networks, and massive data
enables fault characteristic mining and diagnosis direct from raw data without additional
knowledge. Kong, Chen and Li [9] combine three machine learning algorithms, wavelet
package decomposition, least square support vector machine, and the gravitational search
algorithm, to monitor the tool wear states in the turning process. This method performs
well even with small-sized training data sets and outperforms related methods for tool
wear estimation such as neuronal networks and trees.

In the specific case of bearings, Widodo et al. [10] use a multi-class relevance vector
machine and a support vector machine for fault classification. The data are acquired with a
low-speed bearing test using acoustic emission and acceleration sensors. Mao et al. [11]
compare different machine learning techniques such as support vector machines, artificial
neural networks, and auto-encoders to detect and classify faults on the balls and the outer
and inner rings. The vibration signals of ball bearings are highly complex, and for this case,
Feng, Ma and Zuo [12] use spectral negentropy-based infograms. The faults are discerned
according to the present peaks. Liu and Gryllas [13] built the feature space by using the
indicators of the cyclic spectral analysis. The detection decision of the proposed method for
rolling element bearings is made with a semi-supervised support vector machine. Saucedo-
Dorantes et al. [14] developed a condition monitoring method for the detection of fault
graduality in outer race bearings. The proposed method uses features of the current signals
in the time and frequency domains in combination with a neuronal network classifier.

In the present work, a hybrid machine learning model is developed and compared
to a conventional machine learning model. The idea is that the addition of, for example,
physical knowledge to a machine learning algorithm performs better than the conventional
machine learning approach. With the presented method, it is possible to have the same
performance with less data inputs.



Appl. Sci. 2022, 12, 2287 3 of 16

2. Background
2.1. Machine Industry

At present, Industry 4.0 is one of the most important topics in the Swiss machine
industry. Research and development is moving in this direction. The main points of interest
are connected and optimised systems, smart machines, and sensors. Regarding data
science, there are tasks in condition monitoring, predictive maintenance, and automated
data analyses to solve. Artificial intelligence is quite new to the machine industry and
based on the missing understanding, the scepticism is quite high. To counter this, it is
crucial to create confidence with understandable explanations, simple models, and a high
reliability of the system.

The biggest difficulty for data science in the machine industry are the limited resources.
The development time of a machine or a system can lie between months or a few years
depending on the size and the complexity. In addition to that, the lifetime of the machine
system can be up to 20 years or even more. During the whole lifetime, different compo-
nents wear out and must be replaced. Therefore, a specific maintenance interval for each
component is defined. The length of every interval is based on the experience and calcu-
lation of wear, including defined load spectra and operational conditions. Independent
from the type of component, it is common that the end of life is not reached at the time
of maintenance, and parts are replaced too early. An even worse scenario is when the
component fails before the defined end of live. This results in downtime of the machines
with a huge financial impact. In both cases, the scheduled maintenance costs money due
to unnecessary or late maintenance. To prevent this, knowledge about the state of wear is
essential. One possibility is to perform condition monitoring (estimating the state of wear)
and another is to do predictive maintenance—in addition to the condition monitoring—that
estimates the remaining lifetime and schedules the maintenance [15].

Apart from the whole topic of time and lifetime, there are other limiting factors that
are faced during development of the system such as costs, space, and feasibility. Most of
the sensors are not expensive, but each added sensor leads to a higher complexity of the
system and makes the development costlier. The most expensive part is the data collection,
where the system must be in operation and measurements over the whole lifetime are taken.
The machines are designed as small as possible as necessary. The location of the sensors
is given by the available space and the structure. A general advice is to use the sensors
that are essential for the basic functions of the machine or the whole systems. These points
are valid for existing machines as well as machines in the development phase. Apart from
the technical difficulties, there are other concerns such as those about security and data
protection. These are not relevant for this paper.

The main limitation that affects machine learning in the machine industry is the limited
data based on the long lifetime and limited number of sensors that are relevant for the
specific task. In most cases, artificial intelligence needs a huge amount of data to be trained
and perform well. The lack of the required amount of data can lead the algorithms to fail.
To obtain good results with little data, hybrid machine learning models can be used. These
combine a conventional part with calculation or transformation with machine learning.
With this method, additional knowledge is added and leads to more (specific) information
that the algorithm can use and perform better. Furthermore, if physical knowledge is
added, the algorithm may work for extrapolations as well, which is not the case for pure
deep learning approaches.

2.2. Ball Bearings

The presented work uses data from ball bearings with different damages, types, and
states of wear. All of them are created in the laboratory. To create different types and states
of wear that can occur in normal operation, material is removed manually with a grinder
to create pits. Bearings may corrode depending on the environment during operation. This
is reproduced by degreasing the bearings with subsequent repeated dipping in saltwater.
The result is shown in Figure 1. If a ball bearing is overloaded, this can lead to rolling body
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marks. This case is reproduced with a static overload of the bearing. The used bearing type
is 6203 from SKF. This is a single-row ball bearing without sealing that enables access to the
running surface and the balls. The whole list of the tested damages is shown in Table 1.

Figure 1. Ball bearing with heavy corrosion.

Table 1. Classes of damage.

Class Damage

0 Undamaged

1 Degreased

2 Light wear outer ring

3 Medium wear outer ring

4 Heavy wear outer ring

5 Heavy wear inner ring

6 Medium wear inner ring

7 Light wear inner ring

8 Light Corrosion

9 Medium corrosion

10 Heavy corrosion

11 Rolling body marks

The evaluation of bearings related to the VDI regulation 3832 [16] can be done by
considering the envelope curve spectrum. Each defect has characteristic frequencies visible
in the frequency spectrum. A ball bearing with an advanced damage on the outer ring
has characteristic lines at rollover frequency ( fA) for the outer ring and its multiples (see
Figure 2). The rollover frequency can be calculated with the formula below with the
rotational frequency of the rotor, fn; the number of rolling elements, Z; diameter of the
rolling element, DW ; contact angle, α; and pitch circle diameter, DPW [16]:

fA =
1
2

fn · Z
[

1 − DW · cosα

DPW

]
(1)
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Figure 2. Envelope curve spectrum of a ball bearing with advanced outer ring damage.

The characteristic line of a damaged inner ring is completely different. The Sidebands
are distributed around the rollover frequency ( f I) of the inner ring and its multiples with
the distance of fn (the rotor rotational frequency), see Figure 3. The rollover frequency can
be calculated with the formula below with the rotational frequency of the rotor, fn; the
number of rolling elements, Z; diameter of the rolling element, DW ; contact angle, α; and
pitch circle diameter, DPW [16]:

f I =
1
2

fn · Z
[

1 +
DW · cosα

DPW

]
(2)

Figure 3. Envelope curve spectrum of a ball bearing with advanced inner ring damage.
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Ball bearings with a rolling element damage have sidebands around the rollover
frequency of the rolling element ( fW) and its multiples with the distance of fK (the rotational
frequency of the cage), see Figure 4. The rollover frequency of the rolling element can be
calculated with the formula below with the rotational frequency of the rotor, fn; diameter
of the rolling element, DW ; contact angle, α; and pitch circle diameter, DPW [16]:

fW =
fn · DPW

DW

[
1 −

(
DW · cosα

DPW

)2
]

(3)

The rotational frequency of the cage can be calculated with the formula below with
the rotational frequency of the rotor, fn; diameter of the rolling element, DW ; contact angle,
α; and pitch circle diameter, DPW [16]:

fK =
1
2

fn

[
1 − DW · cosα

DPW

]
(4)

Figure 4. Envelope curve spectrum of a ball bearing with advanced rolling element damage.

By comparing Figures 2–4, it becomes obvious that the envelope curve is completely
different for each type of damage. Each type and state of wear and damage has different
characteristic frequencies and sidebands. This fact enables, in combination with experi-
ence and knowledge about the envelope curves, manual classification by considering the
frequency spectrum.

2.3. Experimental Setup

While the mounted bearing is in simulated operation, the sound and the acceleration
are recorded with an unidirectional microphone (Type 426A03 from PCB) and with a triaxial
acceleration sensor (Type 356A16 from PCB). The idea to use a microphone in addition to
the common acceleration sensor is to obtain additional information or to use it instead if
possible because it must not directly be placed on the bearing. To record the signals, the
sound and vibration modules NI 9232 (microphone) and NI9234 (acceleration sensor) from
National Instruments are used. The measuring concept is shown in Figure 5.
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Figure 5. Scheme of the measuring concept.

The coordinate system of the triaxial acceleration is shown in Figure 6 on the real
measuiring setup.

Figure 6. Coordinate system of the triaxial acceleration sensor.

Before measuring, the bearings are warmed up for 15 min at the evaluation speed of
500 rounds per minute given by the measuring setup. After this period, 10 measurements
with a duration of 5 seconds each using a sampling rate of 51.2 kHz are recorded with no
additional load applied to the bearing and directly stored in an HDF5 file. The collected
dataset contains 12 classes with 10 measurements each.

3. Methodology
3.1. In General
3.1.1. Conventional Machine Learning

The methodology to develop a conventional machine learning model is visualised in
Figure 7. The first step from the raw data to a dataset is called pre-processing. This can
include different modifications and varies from project to project. Depending on the quality
of the data and the measurements, a trend or outliers may exist and be removed. Additional
filtering can increase the performance of the algorithm. This can be implemented and tested
when the whole machine learning pipeline is set up. The data can be unbalanced due to
the measurement strategy or even by nature. For example, in a measuring campaign, the
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interesting sections can be rare. To avoid a biased model, the data must be balanced by
removing or adding generating data. After this step, the data are split in the three datasets:
training, test and validation.

Figure 7. Flowchart of conventional machine learning.

Before entering the dataset in the model, the features are extracted. For deep learning,
this step is obsolete because the algorithm includes this part. The other algorithms have the
need of feature engineering. In other words, the feature extraction must be programmed
and the features (pattern, statistical values, etc.) chosen. The extracted features are the
inputs of the model.

To complete the machine learning pipeline, the algorithm must be chosen. The ex-
perience of the engineer or a good literature research is crucial to find the most suitable
algorithm, create the model, and tune the hyperparameters. In general, it is required to
try different algorithms, compare the performance of them and choose the best for the
final model.

3.1.2. Hybrid Machine Learning

The methodology of hybrid machine learning, shown in Figure 8, is slightly different
compared to the conventional method. The additional step, in the presented case called
“apply physical knowledge”, can mean to apply a physical formula to the pre-processed
data, pattern search and selection or using an additional algorithm. The modification
of the data has the effect of additional knowledge and enables a better performance of
the algorithm.

Figure 8. Flowchart of hybrid machine learning.
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If a deep learning algorithm is used, it seems strange to calculate or transform the
data before entering the data in the model. However, the presented work is about machine
learning with little data, and therefore, every additional piece of information, calculation or
transformation is essential to increase the performance and the chance of success.

3.2. The Case of Bearing Fault Classification
3.2.1. Conventional Machine Learning Model

As shown in Table 1, there are 12 different classes of damage. The goal is to build
a model that can classify the measurements from the triaxial acceleration sensor and the
microphone. To classify timeseries, the Long Short-Term Memory is a suitable algorithm. It
is widely used for text and signal classification, as well as generation.

An LSTM network contains a number of LSTM cells. As the name says, these cells
have a long- and short-term memory. This means that each cell has knowledge about the
history and the present of the signal. For classification, prediction or generation of signals
and text, the history is crucial. For example, to understand a sentence, it is important to
have the knowledge about the previous words and not just look at the latest word. For text
and signals, the history is important to understand the present, and the LSTM is able to do
that. More information about machine learning in general and the LSTM network can be
found in Hands-On Machine Learning [17].

The machine learning pipeline is set up as shown in Figure 9 with an LSTM network
model. This method does not require a feature extraction step since this task is integrated
in the algorithm. The raw data show no trend, have no outliers and no filter is applied. The
dataset for the training is directly created from the raw data.

Figure 9. Flowchart of the LSTM model.

During the engineering phase, two different LSTM models are developed to classify
the timeseries. The first model, shown in Figure 10, contains a single hidden LSTM layer
for the feature extraction out of the data. To reduce the risk of overfitting the model to
the training data, a dropout layer is added after the LSTM. The extracted features are
interpreted by a fully connected dense layer. At the end, a fully connected dense layer is
used to make the decision and provide the output.

The second model is very similar to the first one. Regarding the very little data and
the variety of different classes, the extracted features are key for a good performance of the
model. For more complex features, a second hidden LSTM layer is added. This additional
layer makes the neural network deeper and can take the learnings form the previous layer
and combine it to obtain features at a higher level of abstraction. The two hidden layers
are followed by a dropout and two fully connected dense layers to interpret and make the
decision as in the first model. The second model is shown in Figure 11.

As input, there are the four following different measures available:

• Recorded sound from the unidirectional microphone;
• Three axes of the acceleration sensor.

The conventional machine learning model needs all four inputs to perform better than
chance. This subject is treated in more detail in the chapter results. To classify the different
cases, a class vector that represents all categories is needed. Every category is assigned to a
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number, see Table 1. A neuronal network needs multi-class classification, the classification
of more than two classes, a binary class matrix where each column represents a class and
each row represents a measurement and a sample. The category of each sample is assigned
to its category by a one in the class-related column. The rest of the row are zeros.

Figure 10. Model with one LSTM-layer.

Figure 11. Model with two LSTM-layer.
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3.2.2. Hybrid Machine Learning Model

The hybrid machine learning pipeline, see Figure 12, is set up like the conventional
model with an additional step of adding knowledge.

Figure 12. Flowchart of the hybrid LSTM model.

As already mentioned, ball bearings have characteristic frequencies such as the ro-
tational frequency, the doubled rotational frequency caused by asymmetries of the rotor
and the number of balls multiplied with the rotational frequency. The signal of a new
and unused bearing has a specific spectrum of frequencies. Each frequency has a related
importance (value of the amplitude). If the bearing becomes damaged or faces wear, the
spectrum and the importance change. This means that, for example, sidebands become
visible as an indication of a damaged inner ring. The strategy is to extract frequencies that
correspond with a common damage of this specific ball bearing in a separate loop and
sensitize the algorithm to these few frequencies to improve its performance and reliability.

For the presented work, the measurement data are transformed into the frequency
space with the fast Fourier transformation (FFT). The FFT of the signal itself is not enough
to obtain a better performance with the existing amount of data. As already mentioned,
the characteristic frequencies and sidebands are indicators for different types of wear and
damages. The positions of these peaks are known (visible in Figures 2–4), so it is easy to
detect and extract them. The finally used number of peaks is optimised in different runs.

The used LSTM model for the hybrid machine learning model is the same as in the
conventional machine learning pipeline, shown in Figures 10 and 11, to show the benefit
out of the additional knowledge.

4. Results

As the chapter methodology mentioned, two different LSTM models with one and
two LSTM layers are developed. The four following machine learning pipelines are built:

• Conventional one-layer LSTM;
• Conventional two-layer LSTM;
• Hybrid one-layer LSTM;
• Hybrid two-layer LSTM.

Each of the above-mentioned models is trained on four different training sets. These
sets contain the following sensor data:

• All sensor data (accX, accY, accZ, mic);
• Acceleration in direction of X (accX);
• Acceleration in direction of Z (accZ);
• Sound captured with the microphone (mic).

After the training and validation of the models on all sets, the accuracy of the training
and testing can be compared to find the best model.
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4.1. Conventional Machine Learning

A measurement (5 s) consists of 256,000 data points. This array is too big to be directly
inserted into the machine learning model and would lead to a long-lasting training as
well as a badly trained model. Thus, the dataset is split into smaller samples. This means
that out of each measurement, 1000 samples with 256 data points are created. As result of
this, the dataset contains 12 classes with 10,000 samples per sensor. The number of usable
samples increased by a factor of 1000.

The results of the conventional machine learning model with one LSTM layer are
shown in Table 2. Using all sensors for the training set the accuracy of the model is very
good. However, this work has the focus on limited resources, thus the results of a single
sensor in the set are of particular interest. The algorithm shows the best performance on
the acceleration in the Z (radial) direction. The rollover of fault results in a radial vibration
and acceleration, and this is the reason why the algorithm performs well with this sensor.
The acceleration in the X direction is the lateral acceleration of the bearing position and its
signal is similar to the radial acceleration but not equal. The change from directly radial
to lateral measured acceleration results in a minor loss of information in the signal and
performance of the algorithm. The training with the acoustic measurements from the
microphone has the worst performance. The acoustic signal is very complex and can even
contain ambient noise. In combination with little data, the algorithm is not able to extract
the features belonging to the different faults.

Table 2. Acuracy of the conventional LSTM model (one LSTM-layer).

Used accX, accY accX accZ mic
Sensor(s) accZ, mic

Train 96.34% 90.98% 94.38% 70.48%
accuracy

Test 94.77% 87.95% 90.61% 68.17%
accuracy

In general, adding a second LSTM layer has a positive effect on the performance of
the conventional machine learning pipeline (see Table 3) except the training with the lateral
acceleration (accX). In this case, the model fails completely and has a performance similar
to guessing because the features are too complex to interpret. For the microphone, the
radial acceleration and the combination of all sensors the more complex features extracted
by the second LSTM layer result in a small increase in accuracy.

Table 3. Accuracy of the conventional LSTM model (two LSTM-layer).

Used accX, accY accX accZ mic
Sensor(s) accZ, mic

Train 98.54% 8.78% 96.62% 77.98%
accuracy

Test 95.89% 10.11% 92.43% 72.75%
accuracy

Figure 13 shows the confusion matrix of the two-layer LSTM trained on the data from
the microphone. The most difficult category to predict is the number five (medium wear
inner ring). There some are classified as two (light wear outer ring), three (medium wear
outer ring) and six (medium wear inner ring). The classification as a six may be the result
of a small difference in wear. A difference in the rotational frequency results in a shift in
the characteristic frequencies. With this shift, it is possible that the wear of the inner ring
can be classified as outer ring wear. This explains even the rest of the confusion between
classes two to seven.
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Figure 13. Confusion matrix of the conventional two-layer LSTM trained on mic.

The best conventional model reaches a test accuracy of 95.9% (all sensors) and the
worst, 10.1% (mic).

4.2. Hybrid Machine Learning

The extracted number of peaks (sidebands and characteristic frequencies) varies
between the different faults, measures and sensors. After several tests, the number of used
peaks is set to the 100 with the highest importance. The dataset contains 12 classes with
10 samples per sensor. One sample corresponds the FFT of one measurement.

The results of the hybrid machine learning model with one LSTM layer are shown
in Table 4. The algorithm performs very good on all sets. It is conspicuous that the set
using all sensors is not the best. The reason for this is the very limited amount of data. The
algorithm struggles to fit a function to that number of features with the existing data.

Adding a second LSTM layer has different effects on the performance of the hybrid
machine learning pipeline (see Table 5). To extract features with a higher complexity results
in a better performance for the model trained on all sensors. The test accuracies of the
two models trained on acceleration signals, radial and lateral, become slightly worse. This
indicates that there is no advantage in extracting more complex features. The additional
layer does not affect the algorithm trained on the microphone data.

Table 4. Accuracy of the hybrid LSTM model (one LSTM layer).

Used accX, accY accX accZ mic
Sensor(s) accZ, mic

Train 96.30% 99.07% 99.07% 98.15%
accuracy

Test 91.67% 100.00% 100.00% 91.67%
accuracy
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Table 5. Accuracy of the hybrid LSTM model (two LSTM layers).

Used accX, accY accX accZ mic
Sensor(s) accZ, mic

Train 100.00% 97.22% 100.00% 98.15%
accuracy

Test 100.00% 91.67% 91.67% 91.67%
accuracy

Using one single sensor signal, the model with one LSTM layer performs better and
only using all sensors at the same time the additional layer has a positive influence on
the accuracy.

Figure 14 shows the confusion matrix of the two-layer LSTM trained on the data from
the microphone. The wrong classifications of classes two and three can be explained with a
small difference in the state of wear. All false classifications that include corrosion or rolling
body marks are based on the fact that there is a damaged part on the inner and outer ring.

Figure 14. Confusion matrix of the hybrid two-layer LSTM trained on mic.

The best model achieves an accuracy of 100% (all sensors) and the worst, 91.7%.
Compared to the conventional models the best hybrid is 4.1% better. The difference
between the worst models is 81.6%.

5. Discussion

The presented work is based on a very simple case where a single bearing is observed
and the environmental conditions are optimal. In general, the conventional machine
learning approach is easier and more straightforward to implement. There is no need of
deep knowledge and research about the system and its behaviour. However, as the results



Appl. Sci. 2022, 12, 2287 15 of 16

show in some cases, this approach can reach its limits very fast. If, for example, a signal
with a complex content of information, in this case, the recorded signal of the microphone,
is used, the algorithm has difficulties performing well.

The results show better statistical values for the hybrid machine learning approach
in all cases. Especially for more complex signals, such as the sound, the difference is
significant. This fact is easily explainable. The existing amount of data is too small for
the algorithm to extract the needed information and classify it correctly. However, if the
understanding of the system and the physical knowledge is used to prepare the data so
that the algorithm can work with it, then the performance is going to be good. In the
presented work, it is the extraction of the characteristic frequencies and sidebands. With
this information, the classification could even be executed manually. Furthermore, this
strategy has a huge advantage for selling and defending the model because the decision is
based on known physical facts and behaviours that can be visualised and explained.

The small difference between the results of the hybrid models shows that this method
is quite robust. However, for a deeper analysis, the amount of available data is too small.

6. Conclusions

This study shows that hybrid machine learning performs better than conventional
machine learning if only limited data are available. Comparing the two approaches for each
sensor and sensor combination, a hybrid pipeline is always best. In addition, by considering
the different number of samples per sensor in the data set, 10’000 for the conventional using
timeseries and 10 for the hybrid using frequencies, the advantage of the hybrid approach
is very clear. This specific case shows that additional physical knowledge can improve
the performance of machine learning models. The idea of the presented hybrid method
is not new. In this work, a ready-to-use model is developed, and its simplicity is shown
compared to the conventional one. The basis of this method is the knowledge about the
physical behaviour. The limitation is the level of complexity that the engineer can handle
and the know-how about the physics.

In general, it is requested to take account of hybrid machine learning especially when
data and resources are limited. The knowledge about the system and its behaviour are
crucial to succeed with little data and apply, for example, physical knowledge to the data,
as is done in the presented work. In a future project, the hybrid machine learning approach
is applied on a more complex task to proof the reliability and its robustness.
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