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Abstract: Background—Aircraft inspection is crucial for safe flight operations and is predominantly
performed by human operators, who are unreliable, inconsistent, subjective, and prone to err. Thus,
advanced technologies offer the potential to overcome those limitations and improve inspection
quality. Method—This paper compares the performance of human operators with image processing,
artificial intelligence software and 3D scanning for different types of inspection. The results were
statistically analysed in terms of inspection accuracy, consistency and time. Additionally, other factors
relevant to operations were assessed using a SWOT and weighted factor analysis. Results—The results
show that operators’ performance in screen-based inspection tasks was superior to inspection software
due to their strong cognitive abilities, decision-making capabilities, versatility and adaptability to
changing conditions. In part-based inspection however, 3D scanning outperformed the operator
while being significantly slower. Overall, the strength of technological systems lies in their consistency,
availability and unbiasedness. Conclusions—The performance of inspection software should improve
to be reliably used in blade inspection. While 3D scanning showed the best results, it is not always
technically feasible (e.g., in a borescope inspection) nor economically viable. This work provides
a list of evaluation criteria beyond solely inspection performance that could be considered when
comparing different inspection systems.

Keywords: human technology comparison; human versus machine; visual inspection; automated
defect detection; aircraft engine maintenance; MRO; emerging technologies; Industry 4.0

1. Introduction

Regular inspection of aircraft engines is essential for safe flight operations. Yet main-
tenance is a major contributor to aircraft accidents and incidents [1-4]. According to the
Federal Aviation Authority (FAA) and the International Air Transport Association (IATA),
incorrect maintenance has started the event chain of every third accident and of every
fourth fatality [2,3]. Human factors are the dominant contributor to maintenance errors and
account for approximately 80% of them [2,3,5]. Within those, search and judgement errors
are the primary issue [6,7]. Furthermore, it is known that structural failures are the main
reason for maintenance-related incidents and that those are likely to occur on the engine,
e.g., facture of a blade [2]. Thus, engine inspection is arguable one of the most important
maintenance, repair and overhaul (MRO) activities and is responsible for ensuring that all
engine parts conform to the standard and meet all safety critical requirements. Any defect
must be detected at the earliest stage to avoid propagation and any negative outcome.

The visual inspection of engine blades, which is the area under examination here, is a
highly repetitive, tedious and time-consuming task [8], performed by human operators,
who are unreliable, inconsistent, subjective, prone to error and have different personal
judgements based on the individual’s risk appetite [9-11]. Furthermore, inspectors must
balance two conflicting aspects of visual inspection, namely safety and performance [12].
On one hand, no critical defect can be missed to ensure safe flight operation, while keeping
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the false-positive rate as low as possible. On the other hand, inspectors do not have a great
deal of time and must meet the takt time to avoid causing a bottle neck to the operation.
Beside the human element, there are other factors influencing the visual inspection of
engine blades, including operational, environmental, procedural and part and equipment
related factors [13,14].

Hence, there was an interest to assess whether there is a technical system equivalent
to the human that might overcome those limitations of human error and improve visual
inspection quality and reliability, thus contributing to flight safety. The purpose of this
research was to compare the human operators’ inspection abilities and performance in
engine blade inspection with those of advanced technologies including image processing
(IP), artificial intelligence (AI) and 3D scanning.

2. Literature Review
2.1. Inspection of Aero Engine Parts

In engine maintenance, there are two main types of engine blade inspection, namely:
(a) borescope and (b) piece-part. A borescope inspection is the first means of assessing the
engine’s health and is performed in situ, where the engine is still assembled (Figure 1a). If
during borescope inspection a critical defect is found, the engine is subsequently committed
to a tear-down. The disassembled engine blades are then inspected one by one during
piece-part inspection (Figure 1b). As Figure 1 shows, the inspection environments differ
significantly from each other. While piece-part inspection can be standardised and provides
somewhat ideal inspection conditions, a borescope inspection, in contrast, has a much
higher variability e.g., due to space and illumination constraints.

(b)

Figure 1. Two types of engine blade inspections: (a) in-situ borescope inspection, (b) on-bench

piece-part inspection.

2.2. Advanced Technologies

In aviation maintenance, several attempts have been made to either aid the operator
or fully automate the inspection and repair process by introducing new technologies such
as artificial intelligence in combination with robots [15-19] or drones [20,21] for defect
detection of aircraft wings and fuselage structures [22-28], wing fuel tanks [29], tires [30]
and composite parts [22,31-34]. The inspection and serviceability of engine parts such as
shafts [35,36], fan blades [26,37], compressor blades [38,39] and turbine blades [8,40-45] is
of particular interest as they are safety-critical, and thus unsurprisingly the most rejected
parts during engine maintenance [46]. From a hardware perspective, the automation of
inspection and repair processes is commonly done using robots. For in situ operations,
recent developments focused on continuum robots, i.e., snakelike robots that combine the
functionality of a borescope and a repair tool, comparable to endoscopic surgery in the
health sector. The use of these continuum robots has been successfully demonstrated on
coating repairs in the combustion chamber using thermal spraying [18,19] and blending,
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i.e., smoothing of edge defects on engine blades such as nicks and dents [16,17]. The fol-
lowing literature review focuses on studies that compared the performance of humans and
advanced technologies. Advanced technologies are often referred to as machines [47-49],
software [50], computers [51], artificial intelligence [52-54], neural networks [55,56], deep
learning [57-60], machine learning [61,62], image processing [63], technological support [64]
or automation [65], depending on the nature of the approach and underlying principles.
In this paper, we use the term “advanced technologies’ representatively for image pro-
cessing and artificial intelligence software and 3D scanning, being the main methods
under examination.

2.2.1. Software

The performance of humans and software (predominantly Al) has been compared in
various industries and different applications including speech and face recognition [54,65-67],
object recognition and classification [48,55,57], translation [54], gaming [54], music classi-
fication and prediction [49,68], teaching [69,70], learning ability [61], communication [52]
and autonomous driving [71,72].

The healthcare industry in particular has had an increasing interest in developing
advanced technologies in recent years [58,73-76]. The motivation lies in the necessity to
assist the clinician and avoid incorrect diagnosis that could have severe, or even fatal
consequences for the patient. Medical diagnosis is quite similar to quality inspections in the
sense that professionals (clinicians or inspectors) perform an assessment of the human body
or aircraft parts and search for any indications or alarming conditions that might hint at a
disease of defect, respectively [6,9,10]. The consequences of a missed adverse anomaly can
be critical in both cases. Moreover, no defect or condition is identical to another, although
the human body can be seen as being more complex than manufactured engine blades [9].
In both cases the assessor needs to be versatile to be able to detect these various anomalies.

The diagnostics performance of clinicians and Al software for medical imaging has
been analysed and compared for a variety of medical assessments, including detection and
characterisation of acute ischemic stroke [50], age-related macular degeneration [60], breast
cancer [76] and lesions [59]. Liu et al. provided a comprehensive literature review on deep
learning and performed a meta-analysis using contingency tables to derive and compare
the software performance with healthcare professionals [58]. Those authors showed that
the results of deep learning models are comparable to the human performance. They also
noted that the performance of Al is often poorly reported in the literature, which makes
human-software comparisons difficult. Only a few studies were found that used the same
sample to measure both the performance of Al and human [50,59,60,76]. This limits the
reliable interpretation of the reported performances in [58] and the results should be viewed
with caution.

For quality inspections, Kopardekar et al. [77] reviewed the literature on manual,
hybrid and automated inspection systems and provided a comprehensive summary of
those studies, including factors influencing human inspection performance and an overview
of advanced digital technologies used for automated visual inspection systems (AVIS). The
authors concluded that some inspection tasks cannot be fully automated due to the nature
and complexity of the inspection, thus a human is unlikely to be replaced by a machine.
Likewise, there are inspections that cannot be performed by human operator due to the
inspection environment, e.g., inspection of hot steel slabs [77].

Different image processing approaches for defect detection in textiles were compared
in the work of Conci and Proenca [63]. This study suggests that the performance highly
depends on the selected approach and defect type. Thus, in the present study we analysed
the inspection performance of a variety of defects.

Only one study by Drury and Sinclair [47] was found that compared human and
machine performances. The study analysed an inspection task of small steel cylinders for
any defects, including nicks and dents, scratches, pits and toolmarks. Neither the human
nor the automated inspection system showed an outstanding performance, specifically for
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nicks and dents. The inspection machine was able to detect most faults but was inconsistent
in the decision, i.e., whether the finding was acceptable or had to be rejected. Overall, the
inspectors outperformed the inspection machine due to their more sophisticated decision-
making capabilities. The field of automated inspection and artificial intelligence has since
evolved significantly [78,79]. Thus, it must be evaluated if the findings and such statements
are still valid.

2.2.1.1. 3D Scanning

3D scanners are commonly used to measure the shape of an object. The literature
review revealed that like Al, most research on this topic was conducted in the medical
sector. Previous performance comparisons of 3D scanners with humans were done for
measuring wounds [80], foot and ankle morphology [81], and other body parts [82]. An
interesting study by Reyes et al. used an intraoral scanner for colour scans of teeth and
compared the performance on dental shade matching with those of dentists [83]. In their
study a colour scale was used as opposed to a metric scale to measure the characteristic of
(body) parts. Kustrzycka et al. [84] compared the accuracy of different 3D scanners and
scanning techniques for interoral examination. The only work in an industrial context
was undertaken by Mital et al. [85], who analysed the measurement accuracy of a manual
and hybrid inspection system. The measurement results of the manual examination being
performed by human operators using a vinier calliper were compared to the outcomes
of a hybrid inspection system aiding the human operators with a coordinate measuring
machine (CMM). The findings show that the hybrid system led to shorter inspection times
and fewer errors than the manual measurement. Khasawneh et al. [86] addressed trust
issues in automated inspection and how the different inspection tasks can be allocated in
hybrid systems that combine the human operator and an automated inspection system.

No work was found that applied 3D scanning for inspections and compared the perfor-
mance to a human operator in an industrial environment such as manufacturing or maintenance.

3. Materials and Methods
3.1. Research Objective and Methodology

The purpose of this research was to compare a human operators” inspection abilities
and performance with those of advanced technologies including image processing (IP),
artificial intelligence (AI) and 3D scanning. The study comprised three human-technology
comparisons for three different inspection types, namely: piece-part inspection, borescope
inspection and visual-tactile inspection. We introduced the term ‘inspection agent’ when
referring to both the human operator and technology. The performance of the inspection
agent was measured in form of inspection accuracy, assessor agreement (consistency)
and inspection time. The results were statistically analysed and compared against each
other. The assessment of the inspection abilities was done using a weighted factor analysis
and included additional criteria such as technology readiness level, agility, flexibility,
interoperability, automation, standardisation, documentation and compliance.

3.2. Research Design

An overview of the research design, research sample, study population, demographics
and technological comparison partner is provided in Table 1 and will be further described
below. For a fair human-technology comparison, we followed the guidelines of [48] and
constrained the human with software-like limitations, and vice-versa. For example, in
comparisons 1 and 2 both inspecting agents had to inspect photographs as opposed to
physical parts. This was done to generate equal study conditions.
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Table 1. Overview of research design. Icons adapted from [87].

Inspection mode

Comparison 1: Comparison 2: Comparison 3:
Piece-Part Inspection Borescope Inspection Visual-Tactile Inspection
Screen-based Screen-based Part-based

/.

Research sample

118 blade images 26 physical blades

20 borescope images

Research 50 industry 50 industry 6 industry
population practitioners practitioners practitioners
47 male, 3 female 47 male, 3 female 5 male, 1 female
Mean age: 44.5 years Mean age: 44.5 years Mean age: 41.2 years
Demographics (SD =10.3 years) (SD =10.3 years) (SD =12.1 years)
Mean work experience: 17.7 years Mean work experience: 17.7 years Mean work experience: 15.5 years
(SD =9.4 years) (SD =9.4 years) (SD =9.9 years)
) GOM Atos Q [89]
Self-developed defect detection Commercially available AI
software [88] software
Technological
system

%&.

This research project received ethics approval from the University of Canterbury Ethics
Committee (HEC 2020/08/LR-PS, HEC 2020/08/LR-PS Amendment 1, and
HEC 2020/08/LR-PS Amendment 2).

3.3. Research Sample

The research motivation was to assess the performance of advanced technologies and
whether they can assist a human operator with difficult detectable defects that are often
missed. Thus, the research sample was intended to cover a variety of different defect types
and severities, with specific focus on the challenging threshold defects. High-pressure
compressor (HPC) blades of V2500 gas turbines with airfoil dents, bends, dents, nicks, tears,
tip curls and tip rubs were tested in the study. Non-defective blades were also included.
The sample size varied between the three comparisons and included 118 blade images,
20 borescope images and 26 physical parts for piece-part, borescope, and visual-tactile
inspection, respectively. For each comparison, the exact same set of blades was presented
to both the human operator and technological inspection agent. For more details about the
image acquisition process please see [88].
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3.4. Research Population and Technological Systems

For this research, we recruited 50 industry practitioners from our industry partner.
More specifically, there were 18 inspectors who performed visual inspections on a daily ba-
sis. Another 16 engineers occasionally inspected parts typically during failure analyses. The
job of the remaining 16 assembly operators involved checking the parts for inhouse damage.
Thus, all participants had some form of inspection experience. Overall, participants had
between 1.5 and 35 years of practical work experience in the field of engine maintenance,
repair and overhaul. More detailed information about the participants” demographics can
be found in [9,87].

For the comparison, three different technologies were tested, namely image processing
software, deep learning artificial intelligence (AI) software, and 3D scanning. Each of those
is introduced in the following.

3.4.1. Software for Piece-Part Inspection

Self-developed software using an image processing approach was used for the in-
spection of the piece-part images [88]. The software fundamentally applies a series of
algorithms to pre-process the image, create a model and compare it to a reference model.
After the image undergoes noise reduction and greyscale conversion, an edge detector is
used to extract the features, specifically the contour of the blade. This is then compared
to a reference model of an undamaged blade. Any deviation from the reference models is
highlighted by a rectangular bounding box. A detailed description of the image processing
approach is described in [88].

3.4.2. Software for Automated Borescope Inspection

Artificial intelligence (AI) approaches use deep learning algorithms that are trained
on labelled images. It is well understood that training Al requires several thousands of
images for each defect type (class) to create a reliable model [90-93], with a borescope
inspection necessitating even larger datasets due to its nature and inherent variability [94].
The current project used a commercial prototype Al, the development and training of
which was external to the present project. For all practical purposes it was a black box in
the present study, and merely represents a point of comparison as to what Al is currently
capable of achieving. The purpose of the present study was not to compare between
different Al systems.

3.4.2.1. 3D Scanning

There are several technologies available to scan an object, both with contact and
contactless. The most common 3D scanning systems are coordinate measuring machines
(CMM) that physically scan (‘touch’) the part via tactile probing; and contactless 3D
scanners that typically use a source of light, laser, ultrasound or x-ray and measure the
wave reflection or residual radiation when sensing the part [95]. The 3D scanner used in
this project was an Atos Q (manufactured by GOM, Braunschweig, Germany). This device
works with structured light, which means that different light patterns are projected onto
the object and the distortion is measured when the patterns are reflected on the object.
Stereoscopic cameras take images of those patterns which are triangulated to calculate
millions of data points forming a point cloud that resembles the scanned part. Thus, 3D
scanning allows the sensing of the blade’s contour and detects any irregularities, just like
the operator with their hands.

This technology has already been used in the quality assurance process of blade
manufacturing to ensure that blade dimensions are correct and within limits, e.g., to
confirm the minimum airfoil thickness of turbine blades is met [96]. However, it has not
yet been applied to MRO whereby operational damages such as FOD must be detected,
assessed and a serviceability decision made.
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3.5. Data Interpretation

Human operators assessed in previous studies [9-11,87] were asked to mark their
findings on the computer screen by drawing a circle around the defect. The only exception
was the visual-tactile study, whereby participants were asked to verbalise their findings as
opposed to mark them on the physical blade. Further details regarding this can be found
here [87].

Both of the software, image processing for piece-part inspection and Al software for
the borescope inspection, were presented with the same images as the human operator.
The software output was in both cases the input images with marked defects in the form of
a bounding box drawn around the identified area, if the software detected any anomaly. If
no defect was found, the software returned the input image without a bounding box.

In 3D scanning, any anomaly identified by the system was highlighted (colour coded
in red) in the output file.

All collected data were interpreted using the performance metrics of the confusion
matrix, as highlighted in Table 2. The same interpretation ‘rules’ apply to the output data of
all inspection agents, no matter if the finding was manually marked by a human operator,
highlighted by the software with the bounding box, or colour-coded in the 3D scanning files.

Table 2. Data interpretation using confusion matrix principles.

Performance Metric Data Interpretation

If a defective blade shows a marking around the defect, then the

True positive (TP) defect was correctly detected.

If a defective blade shows no marking box, then the defect was

False negative (FN) missed

If a non-defective blade shows no markings, then the blade was

True negative (TN) correctly accepted.

If a non-defective blade shows a marking, then an incorrect

False negative (FN) detection was made.

3.6. Data Analysis and Comparative Methodology

This study used a mix of quantitative, qualitative and semi-quantitative assessment
methods for the analysis and comparison of a human operator and advanced technologies.
First, the inspection performance of the different inspection agents was quantitatively anal-
ysed by determining the inspection accuracy, inspection time and inspection consistency.
Hypothesis testing was used to analyse whether the results of the operator statistically
differed from the technological counter partner, or if the difference was purely due to
chance (Table 3). As the data were not normally distributed, nonparametric testing was re-
quired. Mann-Whitney U Test and Wald-Wolfowitz Runs Test were chosen for comparing
two independent non-normally distributed samples. The statistical analysis was done in
Statistica, version 13.3.0 (developed by TIBCO, Palo Alto, CA, USA).

Table 3. Research hypothesis.

Hypothesis

Hypothesis H1. The inspection performance measured in (a) inspection accuracy, (b) inspection time and
(c) inspection consistency of advanced technologies differs to the human operator.

Next, the strengths, weaknesses, opportunities and threats of each inspection agent
were identified using a SWOT analysis.

Finally, an attempt of proof of concept was made to semi-quantitatively assess the dif-
ferent agents and rank them using a weighted factor analysis. The importance (weighting)
of each criterion was determined performing a pairwise comparison, also called paired
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comparison [97]. This was done in close collaboration with our industry partner to incorpo-
rate the industrial aspect.

4. Inspection Results

The inspection accuracy (reliability), inspection time, and inspection consistency
(repeatability) of each inspection agent are reported along with some general observations
made that will be important for the subsequent human—technology comparison. It should
be noted that the inspection time refers solely to the processing time of the inspection agent.

4.1. Human Operator

The performance of the human operator has been evaluated in depth in previous
work [9-11,87] and the results are summarised as follows. The combined inspection
accuracy for screen-based piece-part inspection of engine blades with a variety of defect
types, severity levels and part conditions is 76.2% [9-11,87]. When operators were given the
actual (physical) part and allowed to use their hands to feel the blade and apply their tactile
sense, an accuracy of 84.0% was achieved [87]. In borescope operations the inspection
is always made based on a digital presentation of the parts on a screen. The inspection
accuracy in such situation was determined to be 63.8% [10].

The inspection time differed between the different inspection types. Screen-based
piece-part inspection was the fastest with 14.972 s, followed by the borescope inspection
with 20.671 s on average. Allowing the operators to touch and feel the blade led to the
longest inspection times of 22.140 s [87].

The assessment of the inspection consistency and repeatability revealed that operators
agreed with themselves 82.5% of the time, and 15.4% of the time with each other [11].

For a detailed evaluation of the human inspection, please refer to [9,10]. The authors
applied eye tracking technology to assess the search strategies applied by different operators
and to determine the inspection errors.

4.2. Piece-Part Inspection Software

The software for piece-part inspection correctly detected 42.2% of defects, while
incorrectly identified 27.8% of non-defective blades as defective. This equals an inspection
accuracy of 48.8%. The processing time for each image ranged from 186 to 219 ms. An
average inspection time of 203 ms was achieved. When processing the same set of images
twice, the results remained unchanged. Thus, the repeatability of the inspection software
was 100%.

Several observations were made, when processing the images and analysing the
results. Since the software was developed for defects on the leading and trailing edges (e.g.,
nicks, dents, bends and tears), defects on the airfoil surface such as airfoil dents as well as
defects on the tip (e.g., tip rub) were often missed. An example of a missed airfoil dent is
shown in Figure 2d.

Furthermore, it was found that defects with a pronounced or ‘sharp/rough’ deforma-
tion of the edge led to higher detection rates. This was evident from the high inspection
accuracies of tip curls, tears and nicks (example in Figure 2a), while smoother deformations
like bends and dents showed lower performances (example in Figure 2c). Dirty blades with
built-up deposits on the edges were the main reasons for false positives (refer to Figure 2b).

Moreover, a white background led to the best detection rates, followed by a yellow
background colour. It should be noted that the images are transformed into greyscale as
part of the image processing. The difference in performance could be explained by lighter
colours, such as white and yellow, leading to lighter grey tones, thus showing a higher
contrast between the blade and background. This was also evident when processing images
of shiny, silvery blades that showed a poor contrast to the background, when transformed
into greyscale.
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Figure 2. Sample outputs of piece-part inspection software: (a) correctly detected nicks—true positive,
(b) marked deposit and root radius—false positives, (c¢) missed bend—false negative, (d) missed
airfoil dent—false negative. Software detections are indicated by red bounding boxes. Missed defects
are highlighted by blue circles.

4.3. Borescope Inspection Software

The Al software achieved an inspection accuracy of 47.4%, with a processing speed
of 30 to 60 images per second. This translates to 17-33 ms per image, which on average
results in a processing time of 25 ms. Repeating the assessment of the dataset led to the
same inspection results, thus the software was 100% consistent.

Al was able to successfully detect anomalies on the blade edges (Figure 3a) and airfoil
surfaces (Figure 3b). However, one of the challenges the software experienced was to
differentiate defects and deposits. In several cases acceptable deposits were marked as
defects (Figure 3c,d). Since the software was developed to assist the human operator, it was
trained to pick up any anomalies and present the results to the operator, who then makes
a serviceability decision. Thus, highlighting deposits is a safety cautious approach and
is desirable to assure no critical defects are missed. However, it is concerning that other
critical defects were missed (Figure 3f) although their appearance is somewhat similar to
the previously mentioned deposits (Figure 3d), i.e., salient due to the high contrast between
the defect and blade.

Performance was highly dependent on the borescope camera perspective and lighting.
Particularly difficult to detect were defects on blades that were poorly lit, as shown in
Figure 3e. Furthermore, the location of the defect in the image (centre vs. corner) might
have influenced the detectability (Figure 3d). Without a detailed understanding of how the
algorithm works, no further interpretations of the results can be made.

It shall be noted that for the purpose of this study, borescope stills were presented
to the AL This was done to allow for an ‘equal’ comparison of the human operator and
software performance. In practice however, the Al would be presented with a borescope
video (i.e., a series of images), thus having multiple opportunities to detect a defect when
the blade rotates past the borescope camera. This would further provide some slightly
different angles and lighting conditions depending on the relative position of the blade,
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camera and light source. Therefore, the inspection performance is likely to improve when
processing borescope videos and could be analysed in future work.

()

Figure 3. Sample output of borescope inspection software: (a) Correctly detected airfoil dents,
(b) correctly detected leading edge dent, (c) detected deposit, (d) detected deposit and missed dent
on leading edge, (e) missed nick on trailing edge, (f) missed dent in leading edge. Software detections
are indicated by red bounding boxes. Missed defects are highlighted by blue circles.

4.4. 3D Scanning Technology

The 3D scanner successfully detected any deviations from the gold standard, i.e.,
100% defect detection. The full blade scan and processing of the scan data took just under
a minute (approx. 55 s). Repeated scanning resulted in the same inspection outcome, i.e.,
blades rejected in the first round of inspection were also rejected in the second round. The
same applied for accepted blades. Thus, the scan repeatability was 100%. While it is known
that any measurement systems including 3D scanning have a measurement error, this did
not affect the inspection results of this study.

The results can be visualised in different ways using colour coding to highlight the
deviation based on (a) metric measurements, (b) severity levels and (c) as accept/reject
criteria. An example of each representation is given in Figure 4. For the purpose of this
study, the accept/reject representation was chosen, since it allows comparison of the results
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with the IP and Al software. In the scan output, any deviations between the scanned and
nominal blade are coloured in red. This corresponds to the bounding boxes in the borescope
and piece-part inspection software.

aso
0
0.1
o8
2

(a) (b) (c)

Figure 4. Different visualisations of the 3D scanning result: (a) heat map indicating different degrees
of deviation from reference model, (b) categorical visualisation of three severity levels, (c) categorical
visualisation for accept/reject decisions. For illustration purposes only, this figure presents severe defects.

g

8

g

5

H

The scanner was successful in detecting a variety of defects including tears (Figure 4a),
nicks and dents (Figures 4b and 5c), bends (Figure 4c), tip curls (Figure 5a), as well as
airfoil dents (Figure 5b). The effect of deposit build-up on the edges—a common cause
for false positives in human inspection—was not tested in the present study. Accepting
‘offsets’ to the ground truth model might lead to better inspection results since deposits
are being accepted (avoiding false positives), or contrarily, it could decrease the inspection
performance as other defects (e.g., corrosion) might be incorrectly accepted (increasing
false negatives). This would be an interesting assessment for future work.

(a) (b) (c)

Figure 5. Scan results for different defect types: (a) tip curl, (b) airfoil dents, (c) nicks and dents.

5. Human-Technology Comparison

The inspection agents were compared quantitatively, qualitatively and with a combina-
tion of both. First, a comparison of the inspection performance was made and statistically
analysed. Subsequently, the strengths, weaknesses, opportunities and threats were identi-
fied. A weighted factor analysis was applied to allow for the inclusion of other factors that
were more difficult to quantify than the inspection performance.
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5.1. Performance Comparison

Performance was compared based on the achieved inspection accuracy, inspection
time and consistency. Furthermore, the defect types that were difficult to detect by either or
both inspection agents were identified.

5.1.1. Piece-Part Inspection

The achieved inspection accuracy of the human operator in the piece-part inspection
was 76.2% and was significantly higher than the software with 48.8%, U = 179,252.0,
p < 0.001. The operators agreed, on average, 82.5% of the time with themselves when
inspecting the same blade twice. The technological systems in contrast made the same
serviceability determination each time, thus showing higher repeatability than the human
operator, Z = —2.347, p < 0.05. A similar observation was made for the inspection time that
differed significantly between the two inspection agents, Z = —4.950, p < 0.001. The software
took 203 ms which was only a fraction of the time of the human operator, who needed, on
average, 14.972 s. In other words, the software was able to process 74 blade images in the
same amount of time the operator needed for a single blade.

Figure 6 shows the mean plot of the inspection accuracies achieved by each in-
spection agent for each type of defect. The operator consistently outperformed the
software on all defects except tip curl and non-defective blades. The biggest differ-
ence in detection accuracy occurred for airfoil dents. This was because the software
was programmed to detect edge damage, not airfoil defects. Furthermore, it was no-
ticed that the software performance was proportional to the amount of deformation
of the blade, i.e., smaller defects such as nicks, dents and minor tip rub were more
difficult to detect than more advanced and salient detects including bends, tears and
tip curls (airfoil dents < dents < tip rub < nicks < bends < tears < tip curl). The human op-
erator had a similar but not identical order of successful defect detection (dents < airfoil
dents < bends < tip rub < tip curl < nicks < tears). This order represents the criticality of the
different defect types rather than solely their appearance, although the two were somewhat
correlated. There is a chance that the operators consciously or unconsciously applied their
underlying mental model [9], which might have influenced their decision making, i.e., they
know what defect types are more critical than others. The software does not have that
contextual knowledge and relies solely on the visual appearance of the defect.

Vertical bars denote 0.95 confidence intervals

100% |

80% |

60% |

40% |

Inspection Accuracy

20%

—4— Operator

0, L
0% —=— Software

Airfoil Dent Dent Tear Tip Rub
Bent Nick Tip Curl No damage

Figure 6. Mean plot of inspection accuracy in piece-part inspection by defect type and for different
inspection agents.
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All tip curls were successfully detected by the software, while the operator missed
11% on average. The second category for which the inspection accuracy was higher for the
software than the operator was non-defective blades. This indicates that the software is not
as sensitive to anomalies as the human operator is. While it is generally desirable to reduce
the false-positive rate, this should not be at the expenses of high false-negative rates, i.e.,
missing critical defects. A high detection rate (even if incorrect) might be acceptable if the
software is used as an inspector-assisting tool that highlights any anomalies but leaves the
judgement to the human operator.

5.1.2. Borescope Inspection

In the borescope inspection, the human operators detected 63.8% of defects and
inspected more accurately than the software (47.4%), U = 6963.5, p < 0.001. However, the
software was significantly faster at processing the image, Z = —4.950, p < 0.001. The average
inspection time per blade was 25 ms for the Al and 20.671 s for the human operator.

The false-positive rate of the software was twice as low as the human operators’
(Figure 7). As previously shown, a low false-positive rate is generally preferred as it means
that less serviceable (i.e., good) parts are scrapped or committed to unnecessary repair
work. However, this should not be at the expense of missing critical defects, as is the case
here. The software was not able to detect any bends and also struggled to detect some
nicks and dents on the edges, with both detection rates being 50% below the operators’
performance. Tears were the only defect type where the performance of Al was comparable
to the human operator.

Vertical bars denote 0.95 confidence intervals
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Figure 7. Mean plot of inspection accuracy in the borescope inspection by defect type and for different
inspection agents.

Surprisingly, the location of the defect in terms of leading or trailing edge did not
play a crucial role, but rather the absolute location in the image did (centre better than
corners). Another interesting finding was that the operator seemed to be more cautious
in the borescope inspection. This was evident in the higher false-positive rates, i.e., more
conditions were identified as defects than in the piece-part inspection.

5.1.3. Visual-Tactile Inspection

In the last comparison, the operators’ performance was compared to a 3D scanner.
While the human was able to detect 84.0% of defects, the scanner was able to perceive any
deviations in shape (even very small ones), thus outperforming the human, U = 1703.0,
p < 0.05. This outstanding performance was at the expense of inspection time. The 3D
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scanner took approximately 55 s for a full scan of the blade. In contrast, the human
operators, with 22.140 s, were twice as fast and thus more efficient, Z = —1.581, p < 0.05.

The mean plot of achieved detection rates in Figure 8 shows that the greatest potential
for 3D scanning lies in the inspection of bends, dents and nicks. Moreover, the incorrect
removal of serviceable blades from service could be eliminated by 3D scanning the parts.
The scanning and processing time of the data took approximately 55 s—twice as long as
the operator—and did not include the setup time. Thus, while scanning each blade might
lead to optimum inspection accuracy and quality, it is a time-consuming task that could
create a bottle neck in the operation. Thus, both measures should be taken into account
when considering 3D scanning for blade inspection.

Vertical bars denote 0.95 confidence intervals
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Figure 8. Mean plot of inspection accuracy in the visual-tactile inspection by defect type and for
different inspection agents.

5.2. SWOT Analysis

A SWOT analysis was performed to identify the strengths, weaknesses, opportunities
and threats. The results are summarised in Table 4. Following the definition of SWOT
analysis for project management, strengths and weaknesses have internal origins (attributes
of the organisation), while opportunities and threats are of an external nature (attributes of
the environment). In the context of this study, we defined the internal factors as attributes
related to the inspection agent and their performance, while external factors concerned
the inspection environment including operational processes and procedures, policies and
regulation compliance, interoperability, automation and connectivity.

5.3. Weighted Factor Analysis

First, criteria had to be established based on which the inspection agents would be
compared against each other. This was done in a brainstorming session with industry
practitioners to capture the operational relevance of each factor. The chosen factors and a
description thereof are listed in Table 5.
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Table 4. SWOT Analysis of human operator and advanced technologies in visual inspection.
Human Operator IP Software Al Software 3D Scanning

e  Strong cognitive ability Good performance on Ability to assist the High detection rate of
and flexibility small datasets (rare human inspector in the any type of irregularity

e  Sophisticated defects) most challenging and from the ideal shape
decision-making Ability to detect a big tedious types of Defect quantifiable and
capability variety of defect inspection, i.e., thus categorisable

e Ability to deal with manifestations (edge borescope (accept/reject)

Strengths high variation of parts defects) Continuous learning High reliability and
and different defect Not prone to human and improvement of repeatability
types factors algorithm with each Versatile—can scan any

e Qualified and certified High repeatability new dataset part (size constrained)
to perform inspection Fast processing times Not affected by human Functional from part

. Use of common sense factors quantities of one (CAD

High repeatability model required)
Fast processing times

. Prone to err Performance static, i.e., Currently low accuracy High investment cost

. Inspection around does not improve (significantly lower Slow scanning and
68-83% accurate in automatically (manual than human operator) labour intensive, unless
borescope and algorithm tuning Requires large datasets fully automated,
piece-part inspection, required) to train algorithm requiring even higher
respectively Currently low accuracy Additional work for investment

. Performance variances (significantly lower operator to label data Only suitable for
across the system (low than human operator) Only possible for Ppiece-part inspection
repeatability within and Does not currently defects with high Difficult to scan
between operators) detect surface defects occurrence, difficult to reflective parts, thus

. Performance affected by and edge defect with no detect rare defect types requires part
human factors, e.g., 3D deformation (lack of data) preparation
complacency, Slow and manual Long setup time to train Sensitive to ambient
distraction, lack of process (image algorithm—additional light and cannot be

Weaknesses awareness, lack of acquisition not time for operator to used outdoors or in

knowledge and fatigue automated) ‘teach” software and bright inspection
Human error and bias validate results environments
can be programmed Extensive development Sensitive to motion of
into algorithm process until the part or scanner
Requires other assisting performance is Might require 3D
technologies comparable to human scanning specialist to
(automated, operator setup and operate
standardised image Learns from human and Large footprint not only
acquisition), causing may learn errors too for scanner but also for
additional costs Problems with parts feed and storage
Problems with explainability
explainability

e Trusted by regulators Applicable to other Productivity Record of operational
and customers similarly shaped parts improvement and wear over part life;

e Ability to make (e.g., vanes) without shorter turnaround could be used for
decisions and sign off training (only times, thus competitive reverse engineering
tasks optimisation of the advantage Enabling smart

Opportunities Versatile—can perform parameters) Enabling smart factories and Industry

different tasks in
different processes

Enabling smart
factories and Industry
4.0

factories and Industry
4.0

High technology
awareness (trend)

4.0

Easy to integrate into
inspection operations
Opportunity to develop
3D scanning for
borescope inspection
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Table 4. Cont.

Human Operator IP Software Al Software 3D Scanning

e  Intentional or Seen as untrustworthy, Seen as untrustworthy, Might become
unintentional unreliable and unreliable and bottleneck of
disregarding of SW, unethical unethical operations
regulations and Requires regulatory Risk and responsibility Risk and responsibility

Threats procedures (norms) approval (legislation) of incorrect decision of incorrect decision

e  Organisational Risk and responsibility Primarily supplied by

pressure of incorrect decision one vendor

Discordance between
software and
inspection expert

Discordance between
Al and inspection
expert

Table 5. Description of criteria for weighted factor analysis.

Criteria Description
Accurac Inspection accuracy is the proportion of correct serviceability
y decisions and number of blades inspected.
. Repeated inspection outcome when presented with the same blade
Consistency

twice (assessor agreement with themselves).

Inspection time

Time required to inspect each part.

Investment cost

Initial procurement and setup cost.

Cost for operating the system including license cost, maintenance

Operating cost cost and supervision cost (as applicable).
How much time and effort for training and development is required
H/TRL ; . . .
to bring the inspection agent up to the required performance level?
. How easily can the inspection agent be transferred to the inspection
Agility .
of a new (different) part?
o How resistant is the inspection agent to changing inspection
Flexibility . . . .
environments (e.g., different perspective or part condition)?
How well can the system be integrated into the operational
Interoperability environment and interact with other processes (in light of smart
factories, interconnectivity and Industry 4.0)?
Automation Can the system be fully automated?
Standardisation Does the inspection agent support standardisation?
Documentation How accurate are the recordings of the inspection results?
Compliance Is the inspection system approved by aviation authorities and does it

comply with regulatory requirements?

Next, the weightings of the criteria had to be determined. Therefore, a pairwise
comparison was used (Figure 9). Each criterion was compared against the others. If criterion
A (first column) was less important than criterion B (first row), it received a score of 0.
In contrast, if criterion B was more relevant than criterion A, a score of 2 was given. If
the criteria were of equal importance a score of 1 was given. Subsequently, the points
were summed up for each criterion and the percentage calculated. The results showed
that inspection accuracy, inspection time and inspection consistency were most important,
followed by flexibility and compliance. The ranking can be explained by the necessity
to of achieve a performance similar to or better than the human operator in order to
consider an alternative inspection agent. Thus, the performance metrics can be seen as a
‘circuit breaker’.
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Figure 9. Pairwise comparison of criteria for weighted factor analysis.

The weightings were used for the subsequent weighted factor analysis (Figure 10).
Each inspection agent was rated based on the criteria on a scale from 1 to 5, with
5 representing the highest fulfilment of the criteria. The score was multiplied by the
weighting into a weighted score. The weighted scores were then summed for each inspec-
tion agent to form the total score. The ranking of the different agents was based on the
total score. In this study the inspection performance and capabilities of blade inspection
were assessed. The weighted factor analysis revealed that 3D scanning was the most
suitable option for this type of inspection (total score of 380.8). The Al software came
second with a score of 327.6, closely followed by the human operator, who achieved a
weighted score of 319.2. The image processing software received the lowest score of 241.0.

It should be noted that the pair-wise comparison and weighted factor analyses were
a proof-of-concept to demonstrate that these methods are useful for human-technology
comparisons in general. However, the ratings depend on the specific application, industry
needs and user case. Thus, the presented ranking of the criteria and the scoring of the
different inspection agents is case specific and should not be seen as representative.
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Human IP Software Al Software 3D Scanning
Weighted Weighted Weighted Weighted
Factor Weight | Score Score Score Score
Score Score Score Score
Inspection Accuracy 12.2 3 36.5 2 24.4 2 24.4 5 60.9
Inspection Consistency 10.9 4 43.6 5 54.5 5 54.5 5 54.5
Inspection Time 11.5 2 23.1 4 46.2 5 57.7 1 11.5
Investment Cost 7.1 2 14.1 4 28.2 2 14.1 1 7.1
Operating Cost 5.1 3 154 2 10.3 2 10.3 4 20.5
H/TRL 8.3 3 25.0 1 8.3 3 25.0 5 41.7
Agility 7.7 5 38.5 2 15.4 3 23.1 4 30.8
Flexibility 9.6 4 38.5 2 19.2 3 28.8 4 38.5
Automation 3.8 2 7.7 2 7.7 2 7.7 3 11.5
Standardisation 5.8 1 5.8 1 5.8 2 11.5 3 17.3
Interoperability 3.2 4 12.8 2 6.4 2 6.4 4 12.8
Documentation 5.1 2 10.3 1 51 5 25.6 5 25.6
Compliance 9.6 5 48.1 1 9.6 4 38.5 5 48.1
Sum 100 319.2 241.0 327.6 380.8

Figure 10. Weighted factor analysis for different inspection agents.

6. Discussion
6.1. Summary of Work

This study compared a human operator to advanced technologies including image
processing and Al software, and 3D scanning. The comparison comprised a quantita-
tive assessment and statistical analysis of the inspection performance. Subsequently, the
strengths, weaknesses, opportunities and threats of each inspection agent were identified,
and a weighted factor analysis was introduced as a method to semi-quantitatively compare
and rank the different options.

6.1.1. Inspection Performance

A summary of the achieved inspection performance, measured in inspection accuracy,
inspection time and inspection consistency of each inspection agent is presented in Table 6
and further discussed below.

Table 6. Summary of inspection performance by inspection method and inspection agent.

Piece-Part Inspection Borescope Inspection Visual-Tactile Inspection
(Image-Based) (Image-Based) (Part-Based)
Human IP Software Human Al Software Human 3D Scanner
Inspection Accuracy 76.2% 48.8% 63.8% 47.4% 84.0% 100.0%
Inspection Time 14.972 s 0.203 s 20.671s 0.025s 22.140 s 55.000 s

Each technological system was limited to the type of inspection it was developed
for, while the human operator was able to accomplish all the different inspections. The
human operator was more tolerant of different inspection conditions such as dirty blades,
different types of defects and different inspection environments (in situ vs. on bench)
along with their viewing and lighting restrictions, e.g., in the borescope inspection. This is
consistent with [86] who found that the human’s cognitive abilities of irregularity recogni-
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tion, decision-making and adaptability to new inspection environments was superior to
advanced technologies.

There was only one study in the field of visual inspection that allowed for a direct
comparison to the present work, which was Drury and Sinclair [47]. Those authors found
that human operators outperformed the automated inspection system. This aligns with our
findings, which compared a human to inspection software (image processing or Al based).
In the visual-tactile inspection however, the opposite was the case. The 3D scanner did
not miss a single defect, whereas the human operator was, on average, only 84% accurate
with their inspection. Drury and Sinclair further stated that humans showed a lower
false-positive rate than the automated system [47]. This finding was not supported by the
present study, as the software seemed to be less sensitive to anomalies and accepted more
non-defective blades than the human operator. While a low false-positive rate is generally
desirable, this should not be at the expense of missing critical defects (false-negatives).
Another interesting finding of the previous study [47] was that only 56.8% of inspectors
detected low-contrast defects such as nicks and dents. Of those, another 24.8% of operators
incorrectly classified the defect as acceptable, making it a total of 42.7% of the research
population who missed or incorrectly accepted those two defect types. This was somewhat
similar to the 38% reported in [10]. The present study confirmed this difficulty that human
operators demonstrate when inspecting low-contrast defects in all three inspection types.
Particularly in a challenging environment such as in borescope inspections, the detection
rate for nicks and dents was poor [10]. Nonetheless, the detection rate was 83% and 87%
for nicks and dents, respectively, which is still higher than in [47]. This might be explained
by the negative impact a missed defect has in this industry. Those were the same types
of defects the IP and Al software struggled with. Thus, there was a similar performance
curve for the software across the different types of defects, but overall, it was lower than
the human operator. As previously mentioned, this was different for the 3D scanner that
detected all defects.

Furthermore, [47] concluded that the inspection device had a worse false-alarm rate
than the operator. Based on our findings, we would tentatively suggest that a higher
false-positive rate would have been acceptable if the majority of defects had been found.
However, since this was not the case, the sensitivity of both software must be improved to
be comparable to the human operator.

The strength of the inspection software lies in the computational power and fast
processing speed [98,99]. Results showed that both algorithms (IP and Al) required a
fraction of the time of the human, excluding the setup time. However, as mentioned above,
the defect detection rates were not comparable. Conversely, the inspection time of the 3D
scanner for a full scan and analysis of the scan data was twice as long as the human operator.

Kopardekar et al. [77] stated that the image processing speed should not limit the
throughput. However, there is also the time required for part preparation and image
acquisition in software inspection. For 3D scanning, there is also a setup time, which can
take up to four times the processing time. If not fully automated, the setup time can account
for the greatest proportion of the overall time. This must be considered from an operational
perspective when making the decision to implement advanced technologies and selecting
the most appropriate one.

All three technological systems showed perfect repeatability for the present research
sample, i.e., the systems consistently made the same serviceability decision when presented
with the same part twice. The human operator in contrast was, on average, consistent
only 82.5% of the time. However, five operators (10%) showed a consistency of 100%. No
previous study was found that applied repeated inspection to measure the repeatability
of the inspection performance, possibly because it is expected that any technology would
perform highly repeatably.
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6.1.2. Benefits and Limitations of Humans and Advanced Technologies

The strengths, weaknesses, opportunities and threats of each technology were iden-
tified and compared with the human operator. In summary, both humans and advanced
technology were not perfect and came with their own benefits and limitations. An overview
of the generic pros and cons is provided in Table 7. Generally, the strength of one system
(human) is the weakness of the other (technology), and vice versa. Thus, some factors may
be listed only once to avoid repetition.

Table 7. Benefits and limitations of humans versus advanced technologies.

Human Operator Advanced Technology
e  Applies common sense e 24/7 availability
e  Sophisticated decision- e  Faster processing, thus higher
making capabilities efficiency
e  Strong cognitive ability e  Higher system repeatability
Benefits o Versatility e  Rational and unbiased decision
o General intelligence making
e  Ability to ask questions and e  Excels at dealing with large
overcome uncertainties amounts and high-dimensional
e  Improves with experience data
Lacks contextual knowledge
Difficulties with decisions that
require general understanding
High implementation cost
e Affected by human factors e  Often requires other assisting
Limitations ©®  Prone toerr technologies (more cost)
e  High inconsistency e  Technological dependency

May cause laziness and

complacency of human operator
e  Lack of understanding the effect

the decision has (look-ahead [100])

6.2. Implications for Practitioners

This work assessed the performance of different technologies for visual blade inspec-
tion. In this context, 3D scanning showed the highest inspection accuracy, while offering
the ability to quantify the defect. However, it is not always technically feasible (e.g., in
a borescope inspection) nor economically viable. In such instances, software might be
a more suitable option. The choice of the type of software is dependent on the number
of parts being inspected each year and the ratio of defective blades. If the sample size is
sufficiently large for deep learning, then an Al approach could be used, which provides the
most flexibility. Previous research [88] showed that similar performance can be achieved
using conventional image processing approaches. This is particularly beneficial if only a
few samples parts are available.

One of the advantages of advanced technologies is the documentation of inspection
findings. 3D scanning would enable the creation of a digital twin (model) of the blade. This
might enable tracking the deterioration and wear of a part over time and could possibly be
fed back into the design process of new engine blades (reverse engineering).

The visual-tactile inspection of engine blades is a tedious and highly repetitive task.
There is a risk of causing numbness, wrist joint pain or upper limb disorder [101,102]. Thus,
considering 3D-scanning could not only improve the inspection quality, but might be also
interesting from an ergonomics and health & safety perspective.

To ascertain if advanced technologies can be superior to the human performance
by overcoming human factors, more comparisons are required [85]. The most suitable
inspection tasks for automation are typically ones with large volumes, high speeds and
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simultaneous checks. Less suitable are inspections of complex parts with rare defects under
varying conditions that require contextual knowledge and complex reasoning.

When the assessment of advanced technology does not provide satisfying performance
results, an alternative improvement strategy should be chosen. Rather than investing
into potentially expensive technologies, a company could, in such circumstances, aim to
provide better training [103], optimised workplace design [104], revised standards [105]
and improved processes [105]. This might be a more cost-efficient and effective way of
improving an inspection system.

Organisations might consider implementing advanced technologies when aiming
for one or more of the following: (a) improving inspection quality, i.e., the accuracy
and consistency, (b) increasing efficiency by reducing inspection time that is considered
as waste, (c) streamlining inspection processes, (d) reducing labour cost, (e) avoiding
manual handling either to protect the part (sensitive) or the operator (unsafe environment),
(f) monitoring the inspection process in real time or (g) reducing human error by eliminating
subjective evaluation.

The findings of this study could be useful for organisations that are considering
investing into advanced technologies. While the present work specifically addressed the
visual inspection of engine blades, the applied approach and insights might be transferable
to other part inspections, processes and industries. The SWOT analysis and weighted
factor analysis have been proven to be useful when comparing factors that are difficult to
quantify and for unequal inspection agents, such as humans and technologies. Since the
three agents were applied to three different types of inspection, companies could repeat
the assessment using those methods and their own list of criteria that are relevant to the
specific organisation and operational situation.

It is a matter of debate whether new technologies such as artificial intelligence will
cause job losses or will create new and possibly more interesting jobs. The World Economic
Forum predicts that significantly more jobs will be created than lost [106]. Advanced
technologies such as automated inspection machines have the potential to take on the
highly repetitive and tedious tasks and free up the human operator. For the operator
this means less strain and being able to focus on their expertise, higher skills and more
fulfilling tasks, which may provide more motivation and excitement, leading to higher
job satisfaction. From an organisation perspective, employees can do more difficult and
value-added activities that cannot be automated and require fundamental knowledge and
more sophisticated decision-making abilities, e.g., development of new innovations to
enhance productivity and processes. There is also potential for ‘hybrid intelligence’, as
discussed later.

6.3. Limitations

There are several limitations, some of which have already been addressed in previous
sections. The attempt was made to perform a ‘fair’ (equal) comparison [48] by presenting
the same dataset in each comparison to both inspection agents. While the research sample
was equal it was not necessarily equitable. The authors acknowledge that the research
design was rather in favour of the technology and might have limited the human perfor-
mance. This limitation was accepted to allow for the utilisation of eye tracking as part of
this research project [9,10]. In concrete terms, this means that in comparisons 1 and 2 the
inspection agents were presented with images as opposed to borescope videos or physical
parts. Only in comparison 3 were the operators given the blades, which allowed them to
view them from different angles and use their tactile sense (further discussed below).

The image processing software in comparison 1 was developed for detecting edge
defects, such as nicks, dents, tears, tip curls and tip rub, and was unable to detect defects
on the airfoil surface, e.g., airfoil dents. This decision was made due to edge defects being
the most critical and common types of defects. To represent the real situation in MRO, a
similar defect distribution was assessed, and thus most blades had damage on the leading
and trailing edges. Only a small proportion of airfoil defects were included due to their
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rare occurrence. Therefore, the performance of the software was only marginally affected
by this limitation.

The limitation in the borescope comparison was that both the human and Al were
presented with images rather than borescope videos for the same reason as above. Seeing
the blade rotating past the borescope camera from slightly different angles and under
varying lighting conditions might provide additional information. With 30-60 frames per
blade (depending on frame rate) the Al has a higher chance of detecting a defect than on a
single image. Likewise, the operator has multiple frames per blade to detect any anomaly.
However, the computational power of the software is much greater, and the Al can process
every single frame, whereas the human operator might only perceive every fifth frame due
to the rotational speed [107]. On the other hand, the operator has contextual knowledge
and the cognitive ability to perceive motion, which might provide additional cues that hint
at defects. In summary, both inspection agents were tested under somewhat non-ideal
conditions; and performance might improve when presented with videos. This would be
an interesting topic for future work.

The 3D scanner created a model of the blade and compared it quantitatively with the
nominal. The operator, in contrast, had to sense the blade using their eyes and fingertips to
look for and feel for any irregularities in the shape. However, they were unable to quantify
the deviation (in metric terms). Measuring tools (e.g., shadowgraphs) were not provided
because in practice the operator would make a serviceability determination based on a
(subjective) perception. Measuring every blade is time consuming and not economical.

The weighted factor analysis in Section 5 attempted to provide a proof-of-concept
for rating different inspection agents based on a variety of criteria. Both, the scores of the
pairwise comparison and of the weighted factor analysis were assigned to the authors’ best
knowledge, but could be subjective, particularly for non-quantifiable factors. In future, the
scoring process could apply the nominal group technique [108] to reduce the subjectivity
of the scoring system.

6.4. Future Work

Several future work streams have been proposed previously and are not repeated here.
It is well understood that manual inspection is not error free, while full automation of the
inspection processes is not always technically feasible or economical [77]. Thus, hybrid
systems, combining the strengths of both human operators and advanced technologies,
offer potential for future research. Rather than comparing the individual performances
and capabilities of each inspection agent independently, the combined performance of
such technology integrated inspection systems could be assessed, i.e., do human operators
perform better when aided by technology? Attribute agreement analysis and eye tracking
could be used to extract any improvements in their performance and search approach.
There are several conceivable scenarios concerning the integration of human operator and
technology: (a) the technology could be used as a “pre-scan” highlighting any anomalies
and leaving the defect confirmation and serviceability decision to the operator, (b) both
agents inspect the parts independently and only in cases of disagreement is the expert is
consulted. Those and other options could be evaluated to ensure optimal utilisation of
both agents.

There is a potential that by implementing a hybrid inspection system, the operator
undergoes some form of training, as they must evaluate not only their own findings but
also the ones of the aide. This might improve the underlying mental model [9,10] of the
operator to the extent that their sensing gets stimulated by the findings of the aide, i.e., other
conditions and defect manifestations that would have otherwise not attracted the operators’
attention. Future work could investigate the possibility of using advanced technology for
training purposes.

Previous work [10,87] has indicated that human operators have been inaccurate in
their defect classification. The classification performance was not tested in the present study
due to the limitations of the technological systems. In principle, however, it is possible to
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program a classification algorithm and compare it to the accuracy of the human operator.
The classification accuracy could then be added to the weighted factor analysis.

SHERPA (developed by [109]) applies hierarchical task analysis to anticipate deeper
causes of human error. The present study did not explore for such deeper causality, and to
do so would require the prior development of a classification system or taxonomy of human
errors. This might be an interesting and useful avenue of future research. The SHERPA
taxonomy (action, check, retrieval, communication, selection) may or may not be the best
way forward for the specific case of visual inspection, as it is weaker on the cognitive
processes than the existing visual inspection framework [10]. Somewhat related work,
from a SHERPA perspective, is evident in [110] for the construction industry. Possibly a
Bowtie approach might be considered because this is well attested in the aerospace industry.
Furthermore, a taxonomy of blade defects already exists [111], as does a Bowtie of human
error for the inspection task [13,14].

7. Conclusions

This research makes several novel contributions to the field. First, 3D scanning
technology was applied to scan damaged blades. This was different to previous applications
in manufacturing, where parts were inspected as part of the quality assurance process to
ensure that they conformed to the standard and the critical sizes were within manufacturing
limits. In a maintenance environment however, parts are in used condition and need to
be inspected for operational damage, such as nicks, dents or tears. To the authors’ best
knowledge, this is the first study that applied 3D scanning to attribute inspection.

Second, this work presents the first human—technology comparison in the field of
visual blade inspection with ‘state-of-the-art’ technology (at the time the research was
conducted). The basis for the comparison was the inspection performance measured
in accuracy, time and consistency. Furthermore, this work provides a list of additional
evaluation criteria beyond the sole inspection performance that could be considered when
weighing up different inspection systems. An attempt was made to semi-quantitatively
compare the different agents based on those criteria using a SWOT and weighted factor
analysis. The defect types that were difficult to detect by the different inspection agents
were identified and compared.

Several implications for practitioners and future work streams were suggested, specifi-
cally regarding hybrid inspection systems. The results of this work may contribute to a better
understanding of the quality management system, the current performance of both humans
and advanced technologies, and the strengths and weaknesses of each inspection agent.
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