
����������
�������

Citation: Cao, P.; Liu, Y.; Yang, C.

Robust Resource Allocation and

Trajectory Planning of UAV-Aided

Mobile Edge Computing in

Post-Disaster Areas. Appl. Sci. 2022,

12, 2226. https://doi.org/10.3390/

app12042226

Academic Editors: Andrzej

Łukaszewicz and Yosoon Choi

Received: 24 January 2022

Accepted: 15 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Robust Resource Allocation and Trajectory Planning of
UAV-Aided Mobile Edge Computing in Post-Disaster Areas
Peng Cao 1,2, Yi Liu 1,3,* and Chao Yang 1,3

1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
lhcaopeng_2010@163.com (C.P.); chyang513@gdut.edu.cn (C.Y.)

2 Guangdong Key Laboratory of IoT Information Technology, Guangzhou 510006, China
3 Key Laboratory of Intelligent Detection and Internet of Manufacturing Things, Ministry of Education,

Guangzhou 510006, China
* Correspondence: yi.liu@gdut.edu.cn

Abstract: When natural disasters strike, users in the disaster area may be isolated and unable
to transmit disaster information to the outside due to the damage of communication facilities.
Unmanned aerial vehicles can be exploited as mobile edge servers to provide emergency service
for ground users due to its mobility and flexibility. In this paper, a robust UAV-aided wireless-
powered mobile edge computing (MEC) system in post disaster areas is proposed, where the UAV
provides charging and computing service for users in the disaster area. Considering the estimation
error of users’ locations, our target is to maximize the energy acquisition of each user by jointly
optimizing the computing offloading process and the UAV trajectory. Due to the strongly coupled
connectionbetween optimization variables and the non-convex nature for trajectory optimization, the
problem is difficult to solve. Furthermore, the semi-infinity of the users’ possible location makes the
problem even more intractable. To tackle these difficulties, we ignore the estimation error of users’
location firstly, and propose an iterative algorithm by using Lagrange dual method and successive
convex approximation (SCA) technology. Then, we propose a cutting-set method to deal with the
uncertainty of users’ location. In this method, we degrade the influence of location uncertainty by
alternating between optimization step and pessimization step. Finally, simulation results show that
the proposed robust algorithm can effectively improve the user energy acquisition.

Keywords: unmanned aerial vehicle; mobile edge computing; wireless power transfer; trajectory
planning; robust design

1. Introduction

Natural disasters, such as earthquake, flood, and typhoon, often cause huge and
unpredictable losses to human lives and properties [1–3]. Most of these disasters will result
in unavailability of, or severe damage to, traditional terrestrial wireless infrastructures,
as well as disruption to regional communication, which brings challenges to post-disaster
response and relief [4–6]. By virtue of the advantages of dynamic mobility, flexibility,
and on-demand deployment, unmanned aerial vehicles (UAVs) have been deemed as a
promising technique in post-disaster area communication recovery [7–9]. In particular,
the existence of line-of-sight (LoS) links between UAV and ground users has aroused a fast-
growing interest in utilizing UAVs as aerial wireless platforms [10–13], while the limited
power supply in disaster areas restricts the users’ survival time and equipment performance,
which also puts forward higher requirements for UAV-aided post-disaster services.

To tackle the above mentioned challenge, the combination of mobile edge computing
(MEC) and wireless power transfer (WPT) seems to be an effective approach [14–16]. On one
hand, by offloading computation tasks to UAVs, users can significantly improve their data
processing capabilities [17–20]. On the other hand, with the aid of WPT technology, users
can harvest radio-frequency (RF) signals from UAVs to prolong their survival time [21–23].
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Unfortunately, the severe propagation loss of the wireless signals over long distances will
degrade the performance of wireless information transfer (WIT) and WPT [24–26]. To
improve the efficiency of WIT and WPT, UAVs should know the exact location of users
in advance. However, in post-disaster areas, the exact location of users is difficult to
obtain. The incomplete location information profoundly affects the trajectory planning
of UAV and reduces the energy acquisition efficiency of users and the service quality of
UAV [27–30]. Therefore, the robust design of trajectory and resource allocation of UAVs in
post-disaster areas is of paramount importance.

Motivated by the requirements of a UAV-enabled wireless platform in a post-disaster
area, we consider a robust UAV-enabled wireless-powered MEC system in this paper. In
this system, a UAV equipped with MEC device and RF transmitter flies to the post-disaster
area to provide computing and charging services for ground users. In this paper, we assume
that terrestrial communications were destroyed in the disaster. Affected by this, the UAV
only knows the rough areas where the users are, but the exact locations of the users are
unknown. In order to ensure that users have enough power to maintain until the arrival of
ground rescue, our target is to maximize the energy acquisition of each user while meeting
the computation needs of users.

The considered problem is a non-convex semi-infinite optimization problem, which is
intractable and hard to solve. In order to solve this intractability, we transform the original
problem into a solvable form by ignoring the uncertainty of location first. Considering the
coupling between computation offloading optimization and trajectory planning, an iterative
optimization method is proposed by using Lagrange dual method and successive convex
approximation (SCA) technology, respectively. Then, a cutting-set method is proposed to
continuously decrease the impact of worst-case location of users on optimization. Due to the
worst-case location of users changing with the optimization of UAV trajectory, the cutting-
set method is achieved by alternating optimization, i.e., optimizing the UAV trajectory for
given subsets of worst-case users’ locations in the optimization step, and updating the
subsets of worst-case users’ locations according to UAV trajectory in the pessimization step.

To summarize, the difference between our work and those in [13,18] is mainly twofold.
First, the proposed system considers the imperfect location information of users, which
is more suitable for practical applications. Second, the proposed robust algorithm can
effectively degrade the influence of location uncertainty on user energy acquisition. To our
best knowledge, there are few studies that address the robust design for a UAV-enabled
wireless-powered MEC system. In summary, the main contributions of this paper are
as follows:

• We propose a UAV-enabled wireless-powered MEC system in a post-disaster area,
while the imperfect location of users is considered. To ensure users have enough power
in the post-disaster area, UAV provides charging and computing services for users.

• We propose a joint resource allocation and trajectory planning algorithm under known
users’ location to solve the strong coupling between optimization variables.

• We propose a robust cutting-set method to degrade the influence of worst-case location
of users on optimization.

The rest of this paper is organized as follows. We describe the system model and
formulate the optimization problem in Section 2. Then, we give a joint resource allocation
and trajectory planning algorithm under known users’ location in Section. In Section 4,
we propose a robust cutting-set method. After this, the numerical results are presented in
Section 5. Finally, we draw conclusions of our work in Section 6.

2. System Model and Problem Formulation

In this work, we propose a UAV-enabled wireless-powered MEC system in a post-
disaster area, as shown in Figure 1. The terrestrial wireless infrastructures were damaged
in the disaster. In order to get the situation of the disaster area and prepare for further
rescue, a UAV, which is equipped with an RF transmitter and an MEC device, provides
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charging and computing services for a set N , {1, . . . , N} of ground users, which has
certain computation tasks Rn to complete, trapped in the disaster area.

UAV Downlink WPT

GU Uplink WIT

Uncertain

region of User

Destroyed

Base Station

User 1

User 2

User n

x

y

z

Figure 1. The UAV-enabled wireless-powered MEC system in post-disaster area.

Without loss of generality, we adopt a three-dimensional Euclidean coordinate system
to represent the locations, and measure all dimensions in meters. Affected by the destruction
of terrestrial wireless infrastructures, the UAV only knows the approximate location of
nth users, denoted by qn = (xn, yn, 0), with limited location information, while the exact
location of nth users is q̄n = (x̄n, ȳn, 0), with a estimation error ∆qn. The relation between
the exact and approximate location of nth users is given by

q̄n = qn + ∆qn,

∆qn ∈ Ωn , {‖∆qn‖ ≤ εn},
(1)

where Ωn is a continuous set of possible location estimation errors for the nth users, and εn
denotes the radius of the uncertainly region Ωn.

We assume that the UAV takes off and lands at a safe location qs = (xs, ys, 0) within
finite flight duration T . The flight duration T is discretized into T sufficiently small time
slots with equal length δ = T /T. Thus, the UAV can be seen as fixed in a certain position
in each time slot, and its horizontal plane coordinate at tth slot is qu[t] = (xt, yt). Similar
to [29], we assume that the UAV flies at a constant altitude H to avoid the flight energy
consumption caused by frequent ascend or descend. Correspondingly, the distance between
UAV and user n is

dn[t] =
√

H2+ ‖ qu[t]− qn ‖2, (2)

where ‖·‖ denotes the Euclidean norm. Similar to [18], we assume the wireless channel
between the UAV and users is LoS link. Then, the channel power gain between UAV and
users is

gn[t] = β0dn[t]−2, (3)

where β0 is the channel power gain at d0 = 1 m.
In downlink WPT mode, we consider that the UAV uses constant transmission power

Pu for wireless power transmission. The energy harvested by nth user is given as

Eh[t] = ηgn[t]Puδ, (4)
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where 0 < η ≤ 1 denotes the energy conversion efficiency of each user, while in uplink
WIT mode, for given offloading power Po,n[t], the offloading rate rtr,n[t] of nth user in the
tth slot is given as

rtr,n[t] = Blog2(1 +
Po,n[t]gn[t]

σ2 ), (5)

where B is the communication bandwidth, and σ2 is the variance of additive white Gaussian
noise with zero mean.

To utilize the energy in an efficient way, we assume that both UAV and users can
adaptively adjust the CPU frequency [29]. The computation task amounts Rc,n and the
computation energy consumption Ec,n of nth user in the tth slot are given as

Rc,n =
fn[t]δ
Cn

,

Ec,n = θn fn[t]3δ,
(6)

where fn[t] represents the CPU frequency of users, Cn denotes the number of CPU cycles to
complete the computation, and θn is the effective capacitance coefficient of the CPU. The
expressions of computation amounts Rc,u and computation energy consumption Ec,u of
UAV are consistent with users, which are not listed here.

For given UAV trajectory, we can obtain the flight speed of UAV on the horizon-
tal plane:

vu(t) =
‖qu,t+1 − qu,t‖

δ
. (7)

For safety consideration, the maximum flight speed of UAV is vmax. In order to focus
on designing the robust algorithm of trajectory planning and computation offloading
optimization, we adopt a simplified flight energy consumption model in this work, while
many factors will affect the flight energy consumption of UAV in reality. The flight energy
consumption of UAV can be expressed as

E f ly[t] = 0.5muδvu[t]2, (8)

where mu is the mass of UAV.
Considering the inconvenience of obtaining energy in post-disaster areas, it is neces-

sary for users to obtain charging and computing services from UAVs as much as possible
to ensure that users gain more energy. The energy gain of the nth user is given as

Egain,n =
T

∑
t=1

(ηgn[t]Pu − θn fn[t]3)−
T−1

∑
t=1

Po,n[t]. (9)

In this work, our target is to maximize the minimum energy gain among users while
guaranteeing the completion of computation task; the UAV trajectory and offloading
optimization variables are jointly optimized under the estimation error of users’ location.
Then, the optimization problem can be formulated as
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P1 : max
Θ

min
n∈N

max
∆qn∈Ωn

Egain,n, (10a)

s.t. C1 :
T

∑
t=1

(E f ly[t] + Pu) +
T

∑
t=2

θu fu[t]3 ≤ Ebat, (10b)

C2 :
T

∑
t=1

fn[t]
Cn

+
T−1

∑
t=1

rtr,n[t] ≥ Rn, ∀n ∈ N , (10c)

C3 :
T

∑
t=2

fu[t]
Cu
≥

N

∑
n=1

T−1

∑
t=1

rtr,n[t], ∀t ∈ T , (10d)

C4 : fu[t] ≥ 0, fn[t] ≥ 0, ∀n ∈ N , (10e)

C5 : qu[1] = qu[T + 1] = qs, (10f)

C6 : vu[t] ≤ vmax, ∀t ∈ T . (10g)

where Θ = {qu[t], fu[t], fn[t], Po,n[t]} is the optimal variable set, and T−T represents the set
T except the Tth time slot. C1 is the UAV battery constraint; C2 represents all computation
tasks for each user need to be processed; C3 denotes that all computation task from users
should to be handled by UAV in time; C4 are the CPU frequency constraints of user and
UAV; C5 indicates that the UAV takes off and lands at the same safe position; C6 gives the
maximum flight speed constraint of UAV.

3. Joint Resource Allocation and Trajectory Planning under Known Users’ Location

In this section, we propose a joint resource allocation and trajectory planning algorithm
to solve problem P1 under known users’ location. For the known users’ location, we can
ignore the estimation error εn of users, i.e., let q̂n := qn, ∀n ∈ N . Then, the original
optimization problem P1 can be transformed to

P2 : max
Θ

min
n∈N

Êgain,n, (11a)

s.t. C1− C6. (11b)

Due to the coupling among the optimization variables, P2 is still difficult to solve.
Thus, we divide the optimization problem into two parts, i.e., computation offloading
optimization and trajectory planning, and optimize them alternately. Firstly, we optimize
the computation offloading resources by Lagrangian duality method under given UAV
trajectory. Then, the SCA method is adopted to optimize the UAV trajectory for given
computation offloading resources.

3.1. Computation Offloading Optimization

For given UAV trajectory, we can obtain the computation offloading variables opti-
mization problem P3:

P3 : min
Po,n , fu , fn

T

∑
t=1

θn fn[t]3 +
T−1

∑
t=1

Po,n[t],

s.t. C2, C4.

(12)

Obviously, P3 is a convex problem, which can be easily solved by Lagrange duality
method. Then, we can obtain Theorem 1 by solving the Lagrangian function.
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Theorem 1. For given UAV trajectory qu(t), the optimal offloading power and CPU frequencies
of usern can be respectively expressed as

Popt
o,n [t] =

[
λB
ln2
− σ2

gn[t]

]+
, (13)

f opt
n [t] =

√
λ

3θnCn
, (14)

where λ ≥ 0 denotes the dual variable associated with the constraint C2.

Proof. See the Appendix A.

Then, we adopt the subgradient method to obtain the value of dual variables.

λ(i + 1) = [λ(i)− θ(i)∆λ(i)]+, (15)

where i represents the iteration index, θ(i) denotes the iterative step, and the corresponding
subgradient ∆λ(i) can be obtained by

∆λ(i) =
T

∑
t=1

f i,opt
n [t]

Cn
+

T−1

∑
t=1

Blog2(1 +
Pi,opt

o,n [t]gn[t]
σ2 )− Rn, (16)

where f i,opt
n [n], Pi,opt

o,n [t] represent the optimal solutions at the ith iteration.
Then, according to optimal offloading power Pi,opt

o,n [t] and constraint C3, we can obtain
the optimal CPU frequencies of UAV

f i,opt
u [t] =

B
δ

N

∑
n=1

log2(1 +
Pi,opt

o,n [t]gn[t]
σ2 ), (17)

since the lowest computation energy consumption can be obtained only when the compu-
tation frequency is a constant.

3.2. UAV’s Trajectory Planning

For given computation offloading variables, the UAV’s trajectory optimization problem
P4 can be expressed as

P4 : max
qu [t]

min
n∈N

T

∑
t=1

ηgn[t]Pu

s.t. C1, C2, C5, C6.

(18)

Due to the objective function of P4 being non-concave and the constraint C2 being
non-convex with respect to qu[t], the problem P4 is non-convex. For this problem, we
choose the SCA method to solve.

By adopting the SCA method, we can obtain

rtr,n[t] ≥ rlow
tr,n = B log2

(
1 +

Po,n[t]β0

σ2(H2 + l j
n[t]2)

)
− Po,n[t]β0log2e(ln[t]2 − l j

n[t]2)

(H2 + l j
n[t]2)(σ2H2+ σ2l j

n[t]2+ Po,n[t]β0)
,

(19)

where ln[t] =‖ qu[t]− qn ‖, the rlow
k is the lower bound of rn[t], and the equality holds

when ln[t] = l j
n[t].
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Similarly, we can obtain the lower bound glow
n of gn[t]:

gn[t] ≥ glow
n =

β0(H2 + 2l j
n[t]2 − ln[t]2)

(H2 + l j
n[t]2)2

. (20)

According to Formulas (19) and (20), we can transform the problem P4 to

P4.1 : max
qu [t]

N

∑
t=1

ηglow
n Pu (21a)

s.t. C2.1 :
T

∑
t=1

fn[t]
Cn

+
T−1

∑
t=1

rlow
tr,n ≥ Rn, ∀n ∈ N, (21b)

C1, C5, C6. (21c)

In problem P4.1, we can find that the objective function and the constraint C2.1 are
both convex with respect to qu[t]. Thus, the problem P4.1 is a convex problem. We can use
CVX to solve this problem.

3.3. Alternative Algorithm for Solving P2

Based on the Lagranginan duality method and SCA method, we propose a joint
resource allocation and trajectory planning (JRATP) algorithm under known users’ location
in this subsection. The detailed JRATP algorithm is shown in Algorithm 1.

Algorithm 1 Joint Resource Allocation and Trajectory Planning Algorithm under known
users’ location

Input: Initialize P1
o,n[t], f 1

n [t], f 1
u [t], q1

u[t] with feasible solution.
Initialization: Set the radio environment parameters B, β0, σ2, the operation parameters
Pu, η, Cn, Cu, θn, θu, and the tolerance error ε1, ε2
For each iteration i

Calculate Pi,opt
o,n [t], f i,opt

n [t] by Theorem 1 and calculate f i,opt
u [t] according to (17);

Update ∆µ(i), and µ(i + 1) by subgradient formula;
Pi+1

o,n [t] = Pi,opt
o,n [t], f i+1

n [t] = f i,opt
n [t], f i+1

u [t] = f i,opt
u [t], qj

u[t] = qi
u[t].

For each iteration j
Using CVX to solve P4.1 for given Popt,j

o,n [t], f opt,j
n [t], f opt,j

u [t] and obtain qopt,i
u [t];

If ∑N
t=1 ‖ qj+1

u [t]− qj
u[t] ‖≤ ε2, qi

u[t] = qj
u[t], break

End If
update j = j + 1;

End For
If ||∑T

t=1(Ri
c,n[t]− Ri−1

c,n [t]) + ∑T−1
t=1 (Ri

o,n[t]− Ri−1
o,n [t])|| ≤ ε1, break

End If
update i = i + 1;

End For
Output Popt

o,n [t], f opt
n [t], f opt

u [t], qopt
u [t].

The complexity of Algorithm 1 comes from three aspects: (1) the computation of
offloading power and CPU frequencies, (2) the computation of the dual variables, and (3)
the application of CVX for computing UAV trajectory. Let L1 and L2 denote the number of
iterations required for the outer loop and the inner loop of Algorithm 1. Let φ denote the
tolerance error for the subgradient method. Then, we can obtain the total complexity of
Algorithm 1 as O[L1(2NT + 1/φ2 + L2T3)], where O(·) is the big-O notation.

By solving each subproblem alternately, Algorithm 1 can guarantee convergence,
while, due to the usage of SCA method and alternating optimization, the global optimum
of problem P2 cannot be strictly guaranteed.
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4. Robust Design Based on Cutting-Set Method

In this section, we give a cutting-set method to degrade the influence from the un-
certainty of the users’ locations. The robust design is achieved by alternating between
optimization steps and pessimization steps. In the optimization step, joint resource alloca-
tion and trajectory planning are optimized under a given finite subset of worst-case users’
locations by Algorithm 1. Then, in the pessimization step, the subset of worst-case users’
locations is updated according to the UAV trajectory obtained in the optimization step.

4.1. Optimization Step under Finite Subsets of Users’ Location

Note that the worst-case locations of users are changed with the change of UAV
trajectory in the optimization process. To simplify the problem, we assume that the worst-
case locations of users are included in a finite subset of potential locations. Let Sn denote
the potential worst-case locations of the nth user. Then, we can express the finite subset of
the nth user in the kth optimization as Sk

n ⊂ Sn. For a given finite subset, we can transform
the original problem to

P5 : max
Θ

min
n∈N

max
qn∈Sk

n

Egain,n

s.t. C1− C6,
(22)

while the problem P5 can be solved by Algorithm 1.

4.2. Pessimization Step under Given UAV Trajectory

For a given UAV trajectory obtained from the optimization step, the worst-case users’
location is updated in this step. Considering that the distances dn[t] between the UAV and
users are larger than the estimation error ∆qn, in the optimization process, we discretize
the potential locations of the nth user into equal spacing grids-based worst-case locations
with the resolution of π.

For the UAV, the worst-case locations under different trajectories is also different.
Thus, the worst-case users’ location needs to be updated after each trajectory planning,
while, for the users, the location with the least energy harvest and the most transmission
energy consumption corresponds to the worst-case location. Thus, the worst-case location
qw,k

n of nth user after kth optimization is obtained as

‖qu − qw,k
n ‖ = ‖qn − qw,k

n ‖+ εn. (23)

Then, the obtained worst-case locations qw,k
n of the nth user is added into the infinite

subset Sk
n for the next turn of optimization.

4.3. Total Algorithm of Robust Resource Allocation and Trajectory Planning

Based on the cutting-set method, we propose a robust resource allocation and tra-
jectory planning algorithm to solve the uncertainty of users’ location in this subsection.
The detailed robust algorithm is shown in Algorithm 2.

As shown in Algorithm 2, the finite subset of potential users’ locations are firstly
initialized. Firstly, for a given finite subset of users’ locations, the optimal computation
offloading variables Pk

o,n[t], f k
n [t], f k

u [t] and UAV trajectory qk
u[t] are obtained by solving

P5 with Algorithm 1. Then, based on the UAV trajectory from the previous step, we can
obtain the worst-case users’ location and add it into Sk

n for the next turn of optimization.
The robust algorithm processes alternately until the improvement reaches the stable point
or reaches the maximum number k of iterations.
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Algorithm 2 Robust Offloading Trajectory and Computation Offloading Algorithm with
uncertainty of users’ location

Initialization: Set the iterative number k = 1.
Input: Initialize finite subset Sk

n.
repeat

calculate Pk
o,n[t], f k

n [t], f k
u [t] and qk

u[t] by Algorithm 1;
compute qw,k

n for given qk
u[t];

update finite subset Sk+1
n = {Sk

n, qw,k
n };

update k = k + 1;
until reach the stable point or the maximum iterative number k
Output Pk

o,n[t], f k
n [t], f k

u [t], qk
u[t].

5. Numerical Results

In this section, simulation results are presented to validate the performance of the pro-
posed robust joint resource allocation and trajectory planning algorithm, and are compared
with three benchmark schemes. (1) Non-robust: In this scheme, we ignore the estimation
error and optimize the problem under the estimated locations. (2) No-resource-allocation-
optimization: In this scheme, we offload all computation tasks to UAV with fixed offloading
power Po,n = Po,max. (3) No-trajectory-planning: In this scheme, we set the UAV trajectory
as a circle around users with a radius 200 m.

According to the parameters adopted in [21,30], we consider a 500 × 500 m2 post-
disaster area which includes five ground users. The location estimation errors of the users
are εn = 20 m. The flight altitude of UAV is H = 50 m, and the maximum flight speed of
UAV is set as Vmax = 25 m/s. The detailed environment settings are given in Table 1.

Table 1. Simulation parameters.

B 5 MHz The channel bandwidth.

β0 −50 dB The channel power gain at distance d0 = 1 m.

σ2 10−9 W The receiver noise power.

Pmax
o,n 0.5 W The maximum WIT transmit power of user.

Pu 50 W The WPT transmit power of UAV.

η 0.15 The energy conversion efficiency of user.

Cn, Cu 103 cycles/bit The number of CPU cycles.

θn, θu 10−28 The effective switched capacitance.

fn,max, fu,max 10 GHz The maximum frequency of CPU.

In Figure 2, we present the optimized UAV trajectories of the proposed robust joint
resource allocation and trajectory planning algorithm and non-robust scheme under differ-
ent battery capacity. From Figure 2, we can find that with the increase of battery capacity,
the UAV can approach each user to provide services. The reason is that on the premise of
completing the computation task, the larger the UAV battery capacity, the closer it can be to
the users to provide efficient charging services. Note that under the same battery capacity,
the proposed robust algorithm is much closer to users than the non-robust scheme. This
is because in order to eliminate the impact of the worst-case location error on the users’
power supply, the UAV should be close to the user greatly affected by the location error.
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Figure 2. The optimized UAV trajectories under different schemes and battery capacity.

Figure 3 shows the minimum energy gain of users of the proposed robust algorithm
with the other three benchmark schemes with different battery capacity of UAV. According
to Figure 3, we can find that the proposed robust algorithm obtains the highest energy
gain compared with other schemes. The reason is that the proposed robust algorithm can
maximize the minimum energy gain of users by jointly optimizing UAV’s trajectory and
offloading process, and decreasing the influence of estimation location errors, while the
other three schemes only optimize two of the three variables. We can also observe that with
the increase of battery capacity, the energy gain of users increases rapidly, and then slows
down gradually. That is, a larger UAV battery capacity can ensure UAV approach to users
to provide much more efficient charging services.As the distance between UAV and users
decreases, the impact of distance on energy supply decreases gradually, which leads to the
slowing down of energy gain. In addition, the energy gain of the no-trajectory-planning
scheme is a constant when battery capacity is bigger than 11,000 mAh. The reason is that
when the battery capacity can ensure that the UAV flies according to the fixed trajectory,
the distance between UAV and user is a constant. Then, the increase of battery capacity
will not affect the energy gain of users.

In Figure 4, we compare the minimum energy gain of users of the proposed robust
algorithm with the other three benchmark schemes with different estimation errors of users.
From Figure 4, we can find that with the increase of the estimation errors, the minimum
energy gain is decreased, while the reduction of the proposed robust algorithm is less than
the non-robust scheme and the no-trajectory-planning scheme. This is because with the
increase of the estimation errors, the worst-case location error will greatly increase the
distance between UAV and user. Furthermore, compared with the no-trajectory-planning
scheme flying as a circle, the non-robust scheme has less time to approach the user, which
also leads to the fastest decline among all the schemes. Therefore, for the environment with
location errors, it is necessary to introduce robust design into trajectory optimization.
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Figure 3. Energy gain of users under different schemes and battery capacity of UAV.
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Figure 4. Energy gain of users under different schemes and estimation errors of users.

The distance between UAV and user is affected by horizontal distance and flight
altitude. Thus, we present the minimum energy gain of users of the proposed robust
algorithm with the other three benchmark schemes with different flight altitude of UAV
in Figure 5. It can be seen that with the increase of flight altitude, the decrease of user
energy gradually speeds up. The reason is that when the flight altitude is greater than the
horizontal distance dn[t], the distance between the UAV and users is mainly affected by
the flight altitude, and vice versa. Thus, in order to ensure that users receive more energy,
the UAV can appropriately reduce the flight altitude when the estimation error is small.

Figure 6 also compares the minimum energy gain of users of the proposed robust
algorithm with the other three benchmark schemes with different WPT transmit power of
UAV. We can find that the energy gain achieved by the proposed robust algorithm is the
highest among the schemes, while the increase of energy is proportional to the transmission
power. That is, the user’s energy gain is only affected by the transmitting power of the
UAV when the computation task is processed.
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Figure 5. Energy gain of users under different schemes and flight altitude of UAV.
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Figure 6. Energy gain of users under different schemes and WPT transmit power of UAV.

6. Conclusions

In this paper, we proposed a robust UAV-aided wireless-powered MEC system in a
post-disaster area, where the UAV provides charging and computing services for ground
users to ensure that users have enough power. To maximize the energy acquisition of each
user, we jointly optimized the computing offloading and UAV trajectory. Particularly due
to the destruction of terrestrial communications, the UAV only has an imperfect location of
the users. Considering the strongly coupled connectionbetween optimization variables and
the influence of user location estimation error, the robust resource allocation and trajectory
planning was carefully addressed. Firstly, we proposed a joint resource allocation and
trajectory planning algorithm under known users’ location. Then, the robust cutting-set
method was proposed to reduce the impact of worst-case location of users on optimization.
Finally, we conducted extensive simulations to verify the effectiveness of the proposed
robust algorithm.
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UAV Unmanned aerial vehicle
MEC Mobile edge computing
WPT Wireless power transfer
WIT Wireless information transfer
RF Radio frequency
SCA Successive convex approximation

Appendix A

Proof of Theorem 1. Let λ ≥ 0 denotes the dual variable associated with the constraint C2.
Then, for each user, we can get the Lagrangian function of P4−1 as

L(Θ) =
T

∑
t=1

(ηgn[t]Pu − θn fn[t]3)−
T−1

∑
t=1

Po,n[t] + λ{
T

∑
t=1

fn[t]
Cn

+
T−1

∑
t=1

rtr,n[t]− Rn}.

Taking the derivative of the Lagrangian function L w.r.t CPU frequency f [n] and
offloading power Po,n[t] yields

∂L(Θ)

∂Po,n[t]
= λ

B
ln2

g̃n[t]
σ2 + Po,n[t]g̃n[t]

− 1,

∂L(Θ)

∂ fn[t]
= −3θn fn[t]2 +

λ

Cn
.

Let ∂L
∂Po,n [t]

= 0 and ∂L
∂ fn [t]

= 0, the optimal Popt
o,n [t] and f opt

n [t] can be obtained. The proof
of Theorem 1 is finished.
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