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Abstract: Modern deep neural network (DNN)-based approaches have delivered great performance
for computer vision tasks; however, they require a massive annotation cost due to their data-hungry
nature. Hence, given a fixed budget and unlabeled examples, improving the quality of examples to be
annotated is a clever step to obtain good generalization of DNN. One of key issues that could hurt the
quality of examples is the presence of redundancy, in which the most examples exhibit similar visual
context (e.g., same background). Redundant examples barely contribute to the performance but rather
require additional annotation cost. Hence, prior to the annotation process, identifying redundancy is
a key step to avoid unnecessary cost. In this work, we proved that the coreset score based on cosine
similarity (cossim) is effective for identifying redundant examples. This is because the collective
magnitude of the gradient over redundant examples exhibits a large value compared to the others.
As a result, contrastive learning first attempts to reduce the loss of redundancy. Consequently, cossim
for the redundancy set exhibited a high value (low coreset score). We first viewed the redundancy
identification as the gradient magnitude. In this way, we effectively removed redundant examples
from two datasets (KITTI, BDD10K), resulting in a better performance in terms of detection and
semantic segmentation.

Keywords: deep learning; redundancy identification; convolutional neural network (CNN); semantic
segmentation; object detection

1. Introduction

Deep-learning-based approaches have been a key technique in various computer
vision tasks, such as image classification [1], object detection [2], and image segmentation [3].
However, achieving an excellent performance usually entails two requirements: (i) a
massive cost for annotating examples that usually require human labor and (ii) a good
quality of annotated examples, that is, examples belonging to the same class that exhibit
diverse appearances [4]. Therefore, to reduce the annotation cost while achieving a great
performance, assessing the quality of unlabeled examples could be a key step. One of
the issues that hinders the quality of the examples is the presence of redundancy. Clearly,
many images with identical visual contents, such as nearly the same background and
foreground, seldom contribute to the performance but could lead to a severe over-fitting. In
general, a dataset with a large number of redundant examples may introduce bias and harm
the generalization of the classifier regardless of the type of machine learning algorithm
used. In addition, in terms of the annotation cost, these redundant examples require a
higher annotation budget while exhibiting less fruitful features. In this regard, identifying
redundant examples in an unlabeled dataset plays a crucial role in dataset refinement.
As a result, one can obtain high-quality examples and reduce the annotation cost. It
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was discovered that redundant examples occupy a relatively large portion of well-known
datasets [5]. However, few studies have focused on identifying redundancy, particularly for
unlabeled data; thus, this topic remains an issue. The most related topic could be key frame
detection, which aims to discover the frame that provides powerful features from a video.
Yan et al. [6] recently achieved key frame detection in a self-supervised manner, that is, at
zero annotation cost. They verified their method by applying a thorough experiment on an
action recognition dataset. However, key frame detection is mostly concentrated on a video
in which capturing the correlation between consecutive frames is a key technique; thus, it
is an impossible approach for a dataset that consists of still images. Moreover, Ju et al. [7]
achieved unsupervised coreset selection using a coreset score established by constrastive
learning. Their goal was to identify the subset of unlabelled data, which exhibit high
contribution to the performance. Hence, they built a coreset score that measures the level
of contribution. Inspired by this work, we conjectured that a low coreset score might be
able to capture redundancy. This is because redundant examples would obviously exhibit
the low level of contribution, thereby being captured by the coreset score. Hence, we
confirmed our conjecture via thorough experiment and theoretical analysis with a simple
redundant set, where identical examples are present. Again, the aim of this study is to
identify redundant examples from unlabeled datasets based on contrastive learning. Hence,
prior to the annotation process, with our approach, redundancy scores are recommended
that lead to an avoidance of unnecessary annotations. Our contributions are as follows:

• We extended the work [7] to identify redundant examples.
• We provided theoretical explanation on the why coreset score. established by con-

trastive learning is effective for capturing redundant examples.
• We built two different subsets from the entire unlabeled dataset; one with identified

redundant examples removed, the other with examples randomly removed. Addition-
ally, the quality of each subset was evaluated by training the existing DNN model for
detection and segmentation tasks.

The rest of our paper is structured as follows. Section 2 summarizes recent literature on
a topic of identifying redundancy and key-frame detection. Section 3 describes theoretical
analysis to explain why the coreset score based on contrastive learning can measure the
level of redundancy. Section 5 shows the experimental results in object detection and
semantic segmentation tasks. Sections 6 and 7 provide our conclusion and the limitation
and future direction, respectively.

2. Related Work
2.1. Identifying Redundancy.

Birodkar et al. [5] recently provided concrete proof that there exists significant redun-
dancy in a popular dataset, such as CIFAR10, CIFAR100 [8], and ImageNet [4]. Hence,
removing the identified redundant examples from the training set did not lead to a perfor-
mance degradation. In addition, they claimed that these redundancies account for more
than 10% of the training set. They achieved identified redundancy through supervised
learning. Namely, they first obtained a semantic space that was established from ResNet
[9] based on fully annotated examples. They then grouped examples in the space using the
clustering method [10] and assumed that the resulting cluster represents each redundancy
group. By doing so, except for representative examples that are closest to the center of
each group, they identified the remaining examples as redundancy. However, note that
their method is solely applicable to supervised learning, which requires fully annotated
examples; hence, it does not reduce the annotation cost. In contrast, our study is mainly
focused on identifying redundancy in the absence of an annotation, thus avoiding unnec-
essary annotations. In addition, there have been a few attempts to assess the priorities of
examples and identify redundancy. Vodrahalli et al. [11] relied on the magnitude of the
gradient of examples for importance sampling; that is, they regarded examples with the
highest gradient as the most important subset of the training set. Carlini et al. [12] viewed
the redundancy problem as a prototypical example, which claims to be in agreement with
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human intuition. However, these methods also demand fully annotated examples, which
is the same as that in [5].

2.2. Key Frame Detection

The aim of our study agrees partly with the subject of key-frame detection, which
aims to identify the most important frame and plays a key role in a given task. The topic
of key-frame detection mostly deals with video; however, our study handles still images.
Because the direct comparison between key frame detection and our approach was not fair,
we introduces related research in this section. In one recently reported study, Yan et al. [6]
provided a new method that required no annotation. Their proposed approach had a self-
supervised learning framework that could identify the key frames in a video. The authors
verified that their method was effective at detecting key frames for action recognition.
In addition, numerous deep-learning-based approaches for key-frame detection ([13–20])
were proposed. They commonly considered the knowledge between consecutive frames to
capture the correlation in a video, which is contrary to our approach.

3. Methods

We concentrated on the magnitude of the gradient of contrastive loss. As our under-
lying assumption, in which a low coreset score might be able to capture redundancy, the
collective magnitude of the gradient for redundant examples may be relatively larger com-
pared to that of non-redundant examples. This assumption was derived from a gradient
calculation using simple examples, in which the same examples (extreme case of redun-
dancy) were present in the dataset. We captured the gradient for each example through
the cosine similarity (cossim), which can be readily obtained from contrastive learning.
Furthermore, using the coreset score described in the literature [7], which is established
based on cossim, we easily achieved a redundant identification by finding examples with the
lowest coreset score. In this section, we provide a detailed theoretical perspective on why
cossim exhibits high value for redundant examples, thereby resulting in a low coreset score.

Cossim for Redundant Examples

Consider a contrastive loss for SimCLR [21], which is described through the following
equation:

l (zi, zj) = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k 6=i]exp(sim(zi, zk)/τ)

, (1)

where sim(u, v) = uTv/‖u‖‖v‖ denotes cossim, that is, the dot product between two
vectors with l2 normalization, and 1[k 6=i] ∈ {0, 1} is the indicator function that yields
a value of 1 if and only if k 6= i, and zero otherwise. In addition, τ is a temperature
parameter and N is the number of positive examples. Hereafter, we used different notations
for a clear understanding and provided a theoretical analysis of a contrastive loss on
redundant examples.

Assume that we are given a neural network F(·) = g( f (·)) and a set of examples X.
Here, g(·) and f (·) are the projection and feature extraction functions (refer to [21] for more
detailed definitions of g(·) and f (·)), respectively, and X is defined as follows:

X = Xr ∪ Xnr, Xr ∩ Xnr = ∅,

Xr =
{

x | x = x′, x ∈ Xr, x′ ∈ Xr
}

, |Xr| = M

Xnr =
{

x | x 6= x′, x ∈ Xnr, x′ ∈ Xnr \ {x}
}

, |Xnr| = N

In other words, Xr denotes a set of M identical examples (a set of redundant examples),
i.e., an extreme case of redundancy, and Xnr denotes a set of N different examples in which
no redundant examples are present (a set of non-redundant examples). We draw two
separate data augmentation functions from the same family of augmentations, t ∼ T and
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t′ ∼ T, and sequentially apply the drawn augmentation function and F(·) to each example
such that F(t(x)) and F(t′(x)). We obtain the following sets:

Zr =
{

z | z = F(t(x)), x ∈ Xr
}

,

Z
′
r =

{
z | z = F(t′(x)), x ∈ Xr

}
,

Znr =
{

z | z = F(t(x)), x ∈ Xnr
}

,

Z
′
nr =

{
z | z = F(t′(x)), x ∈ Xnr

}
Zr = {(z, z

′
) : z = F(t(x)), z

′
= F(t′(x)), x ∈ Xr}

Znr = {(z, z
′
) : z = F(t(x)), z

′
= F(t′(x)), x ∈ Xnr}

Using these notations, we rewrite Equation (1) (for brevity, we assume τ = 1) for z
and z

′
, i.e., z = F(t(x)), z

′
= F(t′(x)), and x ∈ Xr as follows.

l (z, z
′
) = −log exp(sim(z, z

′
))

∑ẑ∈Zr\{z} exp(sim(z,ẑ))+∑
ẑ∈Z
′
r

exp(sim(z,ẑ))+∑ẑ∈Znr exp(sim(z,ẑ))+∑
ẑ∈Z
′
nr

exp(sim(z,ẑ)) (2)

Similarly, for z and z
′
, i.e., z = F(t(x)), z

′
= F(t′(x)), and x ∈ Xnr,

l (z, z
′
) = −log exp(sim(z, z

′
))

∑ẑ∈Zr exp(sim(z,ẑ))+∑
ẑ∈Z
′
r

exp(sim(z,ẑ))+∑ẑ∈Znr\{z} exp(sim(z,ẑ))+∑
ẑ∈Z
′
nr

exp(sim(z,ẑ)) (3)

If we write the total loss for X, we can obtain the following equations:

L =
1

N + M
(

Lr + Lnr)
Lr = ∑

(z,z′ ) ∈ Zr

l (z, z
′
) + l (z

′
, z)

Lnr = ∑
(z,z′ ) ∈ Znr

l (z, z
′
) + l (z

′
, z)

(4)

Note that the total loss is computed by a summation of pair losses (l (z, z
′
) + l (z

′
, z)) ,

as described in [21]. In addition, if we calculate the gradient of the total loss, we can obtain

∇L =
1

N + M
(
∇Lr +∇Lnr)

∇Lr = ∑
(z,z′ )∈Zr

∇l (z, z
′
) +∇l (z

′
, z)

∇Lnr = ∑
(z,z′ )∈Znr

∇l (z, z
′
) +∇l (z

′
, z)

Recall that Xr =
{

x | x = x′, x ∈ Xr, x′ ∈ Xr
}

, which obviously results in
(z, z

′
) = (ẑ, ẑ

′
), (z, z

′
) ∈ Zr, and (ẑ, ẑ

′
) ∈ Zr. Considering Equation (3) again, the following

can be obtained:
∇Lr = M∇l (z, z

′
) + M∇l (z, z

′
), (z, z

′
) ∈ Zr. (5)

As can be seen in Equation (5), a gradient of total loss for redundant examples is
M-fold of a gradient of a single loss. In other words, the resulting gradient for redundant
examples is multiplication of M and an identical gradient. This implies that SimCLR
may update its parameters toward the direction of ∇Lnr in loss surface. However, a
gradient of total loss for non-redundant examples (∇Lr) is a summation of individual
gradient, which is not identical. Hence, we conclude that SimCLR is likely to reduce the
total loss in the direction of the gradient for redundant examples. This will also result in
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the highest cossim for redundant examples. In contrast, the collective gradient of loss for
non-redundant examples points in different directions, exhibiting a lower cossim compared
to that of redundant examples. Consequently, we speculated that we were able to identify
redundant examples using the cossim value. Therefore, we utilized the coreset scores (see
Algorithm 1), as in the work [7], and proved that our assumption was correct based on
thorough experiments.

Algorithm 1 building coreset score (Ju et al. [7]).

input: unlabelled dataset S
initialize metric score[k] = 0, k ∈ {1, . . . , sizeo f (S)},
while SimCLR learning is not finished do

for all k ∈ {1, . . . , sizeo f (S)} do
score[k] = score[k]− cossim(z(k), z′(k))

# z(k), z′(k) are a latent positive pair of the k-th example
X = argsort(score, ascending order)
return X

4. Datasets
4.1. KITTI 2D Object Detection Dataset

The KITTI dataset was established to evaluate the 2D object detection performance. It
consists of 7481 training images and 7518 test images [22]. Each image has a resolution of
approximately 1240 × 370 pixels. The names of the annotated classes and the numbers of
their corresponding objects in the training set were car (40,037), van (2914), truck (1094),
pedestrian (4487), person sitting (222), cyclist (1627), tram (511), and miscellaneous (973),
totalling 51,865 objects.

4.1.1. Data Preparation

After observing each example in the training set, we noticed that there were hundreds
of examples that exhibited similar visual contents (see Figure 1). These examples seemed
to be images taken while the camera was still in the same location. The only difference
between their visual content was that of a moving pedestrian. In this study, we regarded
these examples as redundancies (441 examples). Because the test dataset was not accessible,
we randomly divided the remaining training set (7040 examples) that had no redundant
examples into a clean dataset (5000 examples) and a test set (2040 examples).

4.1.2. Data Refinement for Object Detection

We first augmented redundancy examples with two augmentation methods, that is,
brightness and darkness. Figure 2 shows the results of such augmentations. In this way,
we obtained 1323 (441 × 3) redundant examples. To summarize our resulting dataset,
we obtained 6323 training examples (clean training examples + augmented redundant
examples) and 2040 test examples for the object detection experiment.
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Figure 1. Our KITTI dataset preparation. The original KITTI dataset only provided 7481 examples of
the training set. There were 441 examples that appeared to be nearly identical (see the redundancy).
We split these redundancies from the original training set and randomly divided the remaining
training set into a clean training set (5000) and a test set (2040). Consequently, we prepared the
original training set to obtain a clean training set, redundancy set, and test set.

or
ig

in
al

da
rk

br
ig

ht

Figure 2. Augmentation results for redundant examples of KITTI. Original examples (top row),
darkness (middle row), and brightness (bottom row) augmentation results for the original examples.

4.2. BDD10K

The BDD10K dataset [23] was constructed to evaluate the performance of semantic
segmentation, instance segmentation, and panoptic segmentation and consisted of a train-
ing set (7000 examples), validation set (1000 examples), and test set (2000 examples). For
semantic segmentation, there were 19 classes in total: road, sidewalk, building, wall, fence,
pole, light, sign, vegetation, terrain, sky, person, rider, car, truck, bus, train, motorcycle,
and bicycle. Each example had a resolution of 1280 × 720. Examples taken during the
daytime or at night were mixed in the training and validation sets. In this study, we
focused on semantic segmentation tasks and used a validation set as the test set because it
is inaccessible to the annotations of the test set.
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4.2.1. Data Preparation

Because our study does not focus on the variation in lighting conditions, we first
removed 381 examples and 54 examples taken at night from the training and test sets,
respectively, as shown in Figure 3. In addition, we defined redundant examples as those
where the same visual contents continuously appeared in multiple frames and considered
the remaining examples (6429) of the training set as the clean training set. Following this
process, we obtained 6619 examples (clean train set + redundant examples) of our training
set and 946 examples of the test set.

4.2.2. Data Refinement for Semantic Segmentation

For dataset refinement (see Figure 4), we applied augmentation on redundant exam-
ples using five methods: (i) darkness, (ii) brightness, (iii) flipping, (iv) a combination of
flipping and darkness, and (v) a combination of flipping and brightness. In this way, we
obtained 1140 (190 × 6) redundant examples. To summarize our resulting dataset, we
obtained 7569 training examples (clean train examples + augmented redundant examples)
and 946 test examples for the semantic segmentation experiment.

(a) Training set split.

Figure 3. Cont.
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(b) Test set split
Figure 3. Our BDD10K dataset preparation. (a) The original BDD10K dataset provided 7000 examples
of the training set. We first ignored 381 examples taken at night and did not use these examples for
our experiment. We defined redundant examples as those that exhibited similar visual contents in
multiple frames (at least four frames). In this regard, we identified 190 redundant examples from
the original training set (see redundancy). We split these redundancies from the original training
set and regarded the remaining examples as a clean training set. Consequently, we prepared the
original training set to obtain a clean training set and a redundancy set. (b) Similar to the training set,
we removed 54 examples taken at night from the original BDD 10 K test set. Thus, we obtained 946
examples for testing.
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Figure 4. Augmentation results for redundant examples of BDD10K. Original examples (top row),
and darkness (second row), brightness (third row), flipping (fourth row), flipping followed by
darkness (fifth row), and flipping followed by brightness (bottom row) augmentation results for the
original examples.
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5. Experiments
5.1. Implementation Details
5.1.1. Contrastive Learning

We deployed ResNet18 [9] to achieve SimCLR across the dataset. Our coreset was
constructed based on the code available on the website (https://github.com/Spijkervet/
SimCLR (accessed on 1 December 2020)). Prior to starting SimCLR on two datasets (KITTI
and BDD10K), to reduce the learning time, we first resized the examples of each dataset to
256 × 128 and 320 × 180 for KITTI and BDD10K, respectively. We set the hyper-parameters
(batch size, number of epochs, and dimensions of the projection) to 200, 200, and 1024 for
KITTI and 200, 1000, and 256 for BDD10K. We employed the LARS optimizer [24] across the
datasets. For the augmentation techniques that were involved in SimCLR, we implemented
randomly resized crops, random horizontal flipping, color jittering, and random grayscale.

5.1.2. Identifying Redundancy

Once SimCLR was completed on each dataset, we established the coreset scores based
on cossim and sorted them (see Algorithm 1). Based on these sorted scores, we identified
redundant examples given the training set. In other words, if one chooses the bottom 10%
of the coreset scores for the training set, the chosen examples will be redundant.

5.1.3. Object Detection

For object detection on KITTI, we used YOLO-v5s (https://github.com/ultralytics/
yolov5 (accessed on 1 October 2021)), which is an improved version of vanilla YOLO
[25]. Once the building coreset score on the KITTI dataset was completed, we chose 1323
examples with the bottom coreset scores as redundant examples. Hence, we used the
remaining examples (5000) to train YoLO-v5s. For comparison with the random selection
method, we randomly selected 5000 out of 6323 examples (i.e., our refined training set).
In this way, we prepared five different training subsets using different seeds to initialize
the weights of the selection model (ResNet18). Thus, we proved that the object detection
performance increased with our subset (which includes less redundancy) compared with
the random subset (which includes more redundancy) with five runs. We set the batch size,
learning rate scheduling, and number of epochs to 32, polynomial, and 300, respectively.

5.1.4. Semantic Segmentation

For semantic segmentation on BDD10K, we used DeepLab [26], which has been widely
applied in image semantic segmentation. We employed ResNet50 [9] as the backbone model
for the encoder part of DeepLab. Once the building coreset score on the BDD10K dataset
was completed, we chose 1169 examples with the bottom coreset scores as redundant
examples. Hence, we used the remaining examples (6400) to train DeepLab. For comparison
with the random selection method, we randomly selected 6400 out of 7569 examples (i.e.,
our refined training set). In this way, we prepared five different training subsets using
different seeds to initialize the weights of the selection model (ResNet18). Thus, we
proved that the performance of the semantic segmentation increased with our subset
(which includes less redundancy) compared with the random subset (which includes more
redundancy) with five runs. We set the batch size, learning rate scheduling, and number of
epochs to 24, linear, and 100, respectively.

5.2. Visual Inspection

For a visual inspection on the KITTI dataset, we did not use our refined training set
(clean train + augmented redundant examples); instead, we used our prepared training set
(clean and redundant examples). In contrast, for visual inspection of BDD10K, we used
our refined training set (clean and augmented redundant examples). To enable a thorough
visual inspection, we identified the top and bottom 10 examples for KITTI and the top and
bottom 20 examples for BDD10K using a single coreset score with SimCLR, as shown in
Figures 5 and 6. As shown in Figure 5, the top 10 examples exhibited various structures and

https://github.com/Spijkervet/SimCLR
https://github.com/Spijkervet/SimCLR
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


Appl. Sci. 2022, 12, 2201 10 of 16

patterns, i.e., they did not visually resemble one another and instead appeared dissimilar.
In contrast, the bottom 10 examples primarily comprised nearly the same structures and
backgrounds. The difference between them was the pedestrian, i.e., each image had a
different person. Similarly, as shown in Figure 6, the top 20 examples exhibited various
structures and patterns. In contrast, the bottom 20 examples primarily comprised nearly
the same sky and road environments. The obvious difference between them was the type
of car, i.e., each image had a different car. Hence, we conclude that our identification of
redundant examples captures the redundancy fairly well.

Bottom 10 Top 10

Figure 5. Cont.
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Figure 5. Visual inspection for KITTI. In total, 10 examples with a bottom coreset score (left column)
showed a similar appearance. A total of 10 examples with a top coreset score (right column) were
dissimilar in appearance to each other.

Bottom 20 Top 20

Figure 6. Cont.
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Figure 6. Visual inspection for BDD10K. In total, 20 examples with a bottom coreset score (left
column) showed a similar appearance. A total of 20 examples with a top coreset score (right column)
were dissimilar in appearance to each other.

5.3. Object Detection Task

Recall that our selection method removed 1323 examples of the identified redundancy
from our refined training set (6323 examples) and we used the remaining subset (5000) to
train YOLO-v5s. In contrast, the random selection method simply chose 5000 examples
out of our refined training set. In this way, there were approximately 701 and 12 examples
of true redundancy in the randomly selected subset and our subset, respectively. As
listed in Table 1, we displayed the object detection performance with the mAP metric. We
achieved an overall performance of 0.9326 in terms of mAP@0.5. Except for the misc class,
the pedestrian class exhibited the largest improvement over the other classes. Notably,
considering that our identified redundant examples were mostly composed of the same
background and pedestrian, we conjectured that the improvement was due to a reduction
in the over-fitting. In other words, because a randomly selected subset included more
(nearly 60-fold) redundant examples compared to our subset, as a result, YOLO-v5s might
suffer from an overfitting.
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Table 1. Object detection performance on KITTI. The average ± std value was obtained from five
runs. The number of instances represents the number of bounding boxes for each class in the test set.
In addition, () denotes our improvement over random selection.

Selection Instance Performance Metric
Method Class Count mAP@0.5 mAP@0.5:0.95

all 11,493 0.9326 ± 0.0032 (+ 0.0060) 0.7214 ± 0.0047 (+ 0.0176)
car 8323 0.9810 ± 0.0000 (+ 0.0028) 0.8592 ± 0.0011 (+ 0.0116)
van 805 0.9714 ± 0.0024 (+ 0.0038) 0.8336 ± 0.0030 (+ 0.0154)

Our truck 313 0.9828 ± 0.0031 (+ 0.0032) 0.8582 ± 0.0070 (+ 0.0136)
Selection pedestrian 1110 0.8708 ± 0.0069 (+ 0.0136) 0.4970 ± 0.0041 (+ 0.0158)

person sitting 73 0.7764 ± 0.0228 (− 0.0132) 0.4584 ± 0.0260 (+ 0.0042)
cyclist 439 0.9402 ± 0.0043 (+ 0.0112) 0.7034 ± 0.0050 (+ 0.0246)
tram 157 0.9674 ± 0.0078 (+ 0.0106) 0.7628 ± 0.0106 (+ 0.0226)
misc 273 0.9712 ± 0.0036 (+ 0.0172) 0.7712 ± 0.0024 (+ 0.0332)

all 11,493 0.9266 ± 0.0043 0.7038 ± 0.0024
car 8323 0.9782 ± 0.0011 0.8476 ± 0.0023
van 805 0.9676 ± 0.0024 0.8182 ± 0.0011

Random truck 313 0.9796 ± 0.0029 0.8446 ± 0.0047
Selection pedestrian 1110 0.8572 ± 0.0068 0.4812 ± 0.0040

person sitting 73 0.7896 ± 0.0377 0.4812 ± 0.0135
cyclist 439 0.9290 ± 0.0033 0.6788 ± 0.0082
tram 157 0.9568 ± 0.0040 0.7402 ± 0.0073
misc 273 0.9540 ± 0.0080 0.7380 ± 0.0098

5.4. Semantic Segmentation Task

Recall that our selection method removed 1219 examples of the identified redundancy
from our refined training set and we used the remaining subset (6400) to train DeepLab.
In contrast, the random selection method simply chose 6400 examples out of our refined
training set. In this way, there were approximately 641 and 87 examples of true redundancy
in the randomly selected subset and our subset, respectively. As listed in Table 2, we
displayed a semantic segmentation performance in terms of the IoU for each class and the
overall performance in terms of the mIoU. We achieved a 0.5614 mIoU and an improvement
of +0.0381 compared with random selection. First, we consider both the number of pixels
and the IoU performance. We counted the number of pixels in the test set in terms of
percentage. It was obvious that there was a strong correlation between the number of
pixels and the IoU performance. Namely, as the number of pixels increased, the IoU also
exhibited a higher value for both our method and random selection. Hence, because
the pixels belonging to the road class occupied the highest percentage of total pixels, the
corresponding IoU showed the highest values. In contrast, the class with the least number
of pixels, that is, the train class, achieved a performance of nearly zero. Apart from the
wall, terrain, and rider classes, our selection methods outperformed the random methods.
Particularly for the motorcycle class, we observed the highest improvement (+0.2831). We
conjecture that the redundant training examples removed for random selection may include
more motorcycles than that of our selection.
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Table 2. Semantic segmentation performance on BDD10K dataset. The average ± std was obtained
for the three runs. We measured the performance for each class using the IoU for all classes with the
mIoU. In addition, we counted the pixels for each class in the test set in terms of percentage (second
column). Notably, because pixels belonging to the training class exhibited a performance of nearly
zero (0.01), both selection methods failed to capture the train.

Pixel Our Random
Class Count (%) Selection Selection

all 100 0.5614 ± 0.0017 (+ 0.0381) 0.5233 ± 0.0018
road 24.76 0.9367 ± 0.0002 (+ 0.0013) 0.9654 ± 0.0010

sidewalk 2.41 0.5963 ± 0.0014 (+ 0.0028) 0.5935 ± 0.0050
building 17.13 0.8384 ± 0.0003 (+ 0.0002) 0.8382 ± 0.0010

wall 0.40 0.2550 ± 0.0177 (− 0.0217) 0.2767 ± 0.0339
fence 0.97 0.4955 ± 0.0007 (+ 0.0106) 0.4849 ± 0.0116
pole 1.18 0.4566 ± 0.0026 (+ 0.0098) 0.4468 ± 0.0060
light 0.16 0.5111 ± 0.0017 (+ 0.0096) 0.5015 ± 0.0026
sign 0.27 0.4700 ± 0.0067 (+ 0.0007) 0.4693 ± 0.0079

vegetation 18.21 0.8571 ± 0.0004 (+ 0.0009) 0.8562 ± 0.0003
terrain 1.07 0.4795 ± 0.0020 (− 0.0024) 0.4819 ± 0.0049

sky 20.62 0.9588 ± 0.0005 (+ 0.0026) 0.9562 ± 0.0004
person 0.29 0.6557 ± 0.0047 (+ 0.0048) 0.6510 ± 0.0051
rider 24.75 0.0000 ± 0.0000 (− 0.0024) 0.0024 ± 0.0042
car 10.54 0.8900 ± 0.0005 (+ 0.0006) 0.8895 ± 0.0007

truck 1.19 0.5169 ± 0.0069 (+ 0.0101) 0.5068 ± 0.0059
bus 0.73 0.7822 ± 0.0004 (+ 0.0062) 0.7760 ± 0.0029

train 0.01 0.0000 ± 0.0000 (+ 0.0000) 0.0000 ± 0.0000
motorcycle 0.03 0.4289 ± 0.0133 (+ 0.2831) 0.1458 ± 0.2525

bicycle 0.02 0.5390 ± 0.0297 (+ 0.1795) 0.3596 ± 0.1779

6. Conclusions

In this paper, we prove that the coreset score establised by contrastvie learning is
effective for identifying redundant examples. Considering coreset selection task [7], the
main assumption was that a low cossim represents coreset examples; however, for the
redundant identification problem, we focused on cossim in a reverse manner. Namely, a
high cossim has the power to represent a redundant example. This is because the collective
magnitude of the gradient over redundant examples exhibits a large value compared to
the others. As a result, contrastive learning first attempts to reduce the loss of redundancy.
Consequently, cossim for the redundancy set exhibited a high value (low coreset score).
We first viewed the redundancy identification as the gradient magnitude. In this way, we
effectively removed redundant examples from the dataset, resulting in a better performance
in terms of detection and semantic segmentation.

7. Discussion

As can be seen in the KITTI dataset, there could be a high probability of taking
redundant examples in real world scenarios. Those examples carry similar visual context
but exhibit a low level of contribution to performance. Given a fixed budget, avoiding
redundant examples annotation is essential before the annotation process starts. Hence, our
work can play the role of identifying redundant examples with the absence of annotations.
However, there are limitations to our study, which can be directions for future research.

• Although we proved that cossim is appropriate for identifying a redundancy, the
problem of defining a new metric better tailored to identifying redundancy should be
addressed. The other future direction could be defining a new loss function, such that
the DNN explicitly captures redundant examples. Our current work did not define
the loss function but utilized a contrastive loss function.
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• For simplicity, we depended on the heuristic method through a human visual inspec-
tion to define redundant examples. However, the precise definition of redundancy
could help derive a clear objective function.

Finally, we hope that our study provides insight for future research on advanced
methods for reducing redundant examples.
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