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Abstract: A simple and robust methodology for plant disease diagnosis using images in the visible
spectrum of plants, even in uncontrolled environments, is presented for possible use in mobile
applications. This strategy is divided into two main parts: on the one hand, the segmentation of the
plant, and on the other hand, the identification of color associated with diseases. Gaussian mixture
models and probabilistic saliency segmentation are used to accurately segment the plant from the
background of an image, and HSV thresholds are used in order to achieve the identification and
quantification of the colors associated with the diseases. Proper identification of the colors associated
with diseases of interest combined with adequate segmentation of the plant and the background
produces a robust diagnosis in a wide range of scenarios.

Keywords: digital agriculture; Gaussian mixture models; neural networks; plant disease diagnosis;
probabilistic saliency

1. Introduction

Early and reliable diagnoses are important for the adequate treatment of any of the
diseases that are present in plants. Even more, a correct diagnosis of diseases in plants
has the potential to be very important for environmental conservation and for agricultural
efficiency; both are aspects that are crucial for the general well-being of the population.
FAO estimates that annually, up to 40% of global crop production is lost to pests. Each year,
plant diseases cost the global economy over $220 billion.

Chlorosis, necrosis, and white spots are the diseases considered for the automatic
diagnosis generation in this work, because they have a strong association with the coloration
of the leaves of the plants when they have these diseases. A brief description of the
mentioned diseases is presented.

• Chlorosis is a condition in which leaves produce insufficient chlorophyll. As chloro-
phyll is responsible for the green color of leaves, chlorotic leaves are pale, yellow,
or yellow-white.

• Necrosis is a condition when a living organism’s cells or tissues die or degenerate. It
causes leaves, stems, and other parts to darken and wilt. Necrosis weakens the plant
and makes it more susceptible to other diseases and pests.

• White spots: Plants infected with powdery mildew have powdery white spots, which
can appear on leaves, stems, and sometimes fruit. Leaves turn yellow and dry out.
The fungus might cause some leaves to twist, break, or become disfigured.

To monitor the health of the plant, manual checks are normally performed to make
diagnoses, but those are costly and prone to errors due to fatigue and variation in the
diagnoses performed by different individuals. Therefore, automatic diagnosis is an excel-
lent alternative; this work has the potential to be used as a mobile application to assist
in the diagnosis. In our proposal, the problem is divided into two parts. The first is to
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carry out a segmentation; two methods, Gaussian mixture models (GMM) and probabilistic
saliency (PS), were used. The second part is carried out through the use of HSV thresholds.
The methodology has been tested on a dataset of 4977 images.

In several of the works on mobile applications, the identification of plant diseases and
agricultural problems in general use large databases for training by using Convolutional
Neural Networks (CNN) [1–4]. A system for the automated recognition of plants based
on leaves images using CNNs was presented in [5]. A simple and powerful NN for the
identification of three different species of legumes based on the morphological patterns
of the leaf veins was presented in [6]. Two well-known CNN architectures applied to
the identification of plant diseases using an open database and pictures of 14 plants in
experimental laboratory setups were compared in [7], while a similar methodology but for
13 diseases and five different plants was developed in [8]. CNN models for the detection of
nine different tomato species were developed in [9].

Another limitation of some works on the automatic identification of plant diseases
is the use of images with controlled backgrounds and even use different algorithms to
identify each disease [10].

There is a vast literature on segmentation methods in general. There are some pa-
pers that address general image segmentation by means of Gaussian mixture models
(GMM) [11], other methods focus on the development of features of the image and mod-
els of features that get to be as informative as possible, some of those studies combine
the intensity, shape, and texture in order to generate features that mimic the behavior
of human beings [12]. Classic examples are those based on Gabor filters [13], based on
wavelet transformations [14], on co-occurrence matrices [15], and derived features from
Markov models for random fields of models of local textures [16,17]. The literature of the
models that incorporate texture features is very vast, and a thorough summary is available
in [18]. There are some methodologies for image segmentation that impose some type
of spatial regularization, for example, the integration of local characteristics; methods
based on graphs reach that objective by formulating the segmentation as the partition of
a graph [19–21]. In addition, vegetation indices have been used for image segmentation
problems in agricultural settings [22].

Other proposals for achieving the segmentation of an image are based on the concept
of saliency [23], given that a salient object is clearly differentiated from the background.
Commonly, background subtraction is done by the detection of moving objects against
a static background [24–27]. These techniques are effective in certain contexts, but this
approach has problems when the scenes are dynamic or when the camera is not static;
these situations have been treated with some compensations of the camera movements and
with the updating of the background of the model [28,29]. Another approach for image
segmentation is the use of methods that allow the detection of specific objects or shapes
such as human beings, with promising results in [30–32].

Many of the segmentation methods based on saliency measure the contrast of a local
area with respect to its surroundings using features such as the scale of grays, color, and
gradient orientation [33–35]. Some novel methods use low-level features of color and
illumination with promising results in [36]. Other types of saliency detectors implement
the phase spectrum of the Fourier transform of an image [37,38].

The contribution of this paper is twofold. First, the methodology works in a wide vari-
ety of environments; these are not controlled as in most related work. Second, an extensive
database is not necessary to perform the diagnosis.

The remaining of the paper is organized as follows. In Section 2, we explain the
objective of the work and the work plan. In Section 3, a detailed description of the methods
is presented. In Section 4, we perform an analysis of a small set of the dataset that we call
the special set and an analysis of the remainder that is taken from the PlantVillage dataset,
and the results are compared with a benchmark from the current literature. Section 5
corresponds to the discussion of the results, and Section 6 presents the conclusions.
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2. Objective and Work Plan
2.1. Objective

Our objective is to generate a robust and effective proposal for plant disease diagnosis,
which can operate with different species of plants and background focusing on the diseases
that are strongly associated with colors considered in this work.

2.2. Work Plan

In order to reach the objective, we divide the task of generating a diagnosis into
two steps. First, there is the segmentation of the plant in order to separate it from the
background, and then, there is quantification of the presence of colors associated with
the scope of diseases considered to generate the diagnosis expressed as the portion of
the surface of the plant exhibiting a specific disease. Then, we analyze a set of images to
provide the sufficient evidence to evaluate whether the objective is attained.

For the segmentation step, we adapted two techniques depending the type of background:
for low-noise GMM segmentation and for high-noise probabilistic saliency segmentation.

Once the segmentation is achieved, the color quantification is done by using thresholds
for the considered colors in this work; the colors not satisfying those thresholds are labeled
as unidentified, the result of the identification and quantification of colors is the diagnosis.

In order to verify if the objective is achieved, a total of 4977 images are analyzed,
a special set of 23 images, which were selected because of the challenging background,
complement 4954 images of the public dataset PlantVillage, which is used to compare the
performance of the proposal to a benchmark. The analysis of the 23 images has the purpose
of evaluating the performance when subject to challenging backgrounds, and the analysis
of the PlantViallage dataset has the purpose of comparing the effectiveness of the proposal
against previous works.

Lastly, as the final part of the work plan, a discussion of the results in order to
identify the weaknesses and strengths of the proposal was performed coupled with the
conclusions in order to reflect on the most important aspects of the study and the attainment
of the objective.

3. Materials and Methods

A methodology is proposed to carry out a diagnosis of plant diseases by estimating
the percentage of color associated with the diseases considered: chlorosis, necrosis, or white
spots. The proposal is carried out in two steps,

• Segmentation of the plant using GMM or PS.
• Color identification and quantification of the portion of the plant that has pixels with

colors related to any of the considered diseases using HSV thresholds.

A diagram to visualize the overall strategy is presented in Figure 1. The segmentation
of the plant is performed using two methods.

A GMM method is used in the first place because it is faster and has better segmen-
tation in the case of images with low noise; if a high-noise background is detected, a
subsequent segmentation using the PS method is performed, as that method is more robust.

For this methodology, we analyzed a total of 4977 images; a special set of 23 images,
which were selected because of the challenging background, complement the 4954 images of
the public dataset PlantVillage, which is used to compare the performance of the proposal to
a benchmark. The analysis of the 23 images has the purpose of evaluating the performance
when subject to challenging backgrounds, and the analysis of the PlantViallage dataset has
the purpose of comparing the effectiveness of the proposal against previous works.
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Figure 1. Diagram describing the general strategy.

3.1. Segmentation Using GMM

In order to achieve the segmentation of the plant from the background, the intensity
level of each pixel is used, that is the scale of grays; for the case of backgrounds that are
solid or with low noise, the process is the following.

• Prepare the image using Gaussian Blur.
• Classify the pixels in two segments using a GMM model.
• Identify the segment that belongs to the plant.
• Closure of the segment that belongs to the plant.

3.1.1. Prepare the Image Using Gaussian Blur

Gaussian Blur is applied to the image in order to incorporate information of the
surrounding pixels into each of the pixels of an image.

3.1.2. Classify the Pixels in Two Segments Using a GMM Model

A GMM model is used to separate the plant from the background, and the model is
the following.

p(x) = πpN (x|µpσ2
p) + π fN (x|µ f σ2

f ), (1)

where πp, µp, and σ2
p are the weight, mean, and variance, respectively, for the distribution

that represents the plant, π f , µ f , and σ2
f are the weight, mean, and variance respectively

for the distribution that represents the background.
In order to find the optimal value of the parameters of the model, given n pixels

X = {x1, x2, . . . , xn}, the log likelihood function is used; in order to be maximized with the
objective of finding the value of the parameters that best fit into the data, the log likelihood
function is the following

ln p(X|πp, µp, σ2
p , π f , µ f , σ2

f ) =

N

∑
n=1

ln(πpN (xn|µpσ2
p) + π fN (xn|µ f σ2

f )).
(2)

The Expectation Maximization (EM) algorithm is used to find the optimal (local)
values of the parameters.

• Expectation Step
In this step, the weights that the distributions belonging to the plant γ(znp) or the
background have γ(zn f ) for each of the observations xn, znp is a latent binary variable
that takes the value of 1 when it is understood that xn is the result of sampling from
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the distribution that belongs to the plant, with a probability or weight γ(znp), and
the same applies to the background.

γ(znp) =
πpN (xn|µp, σ2

p)

πpN (xn|µp, σ2
p) + π fN (xn|µ f , σ2

f ),
(3)

γ(zn f ) =
π fN (xn|µ f , σ2

f )

πpN (xn|µp, σ2
p) + π fN (xn|µ f , σ2

f ),
(4)

where γ(znp) is the weight that the (p) distribution of the plant has for the n observa-
tion, and γ(zn f ) is the weight that the (b) distribution of the background has for the n
observation.

• Maximization Step
The means are calculated

µnew
p =

1
Np

N

∑
n=1

γ(znp)xn, (5)

µnew
f =

1
N f

N

∑
n=1

γ(zn f )xn. (6)

New variances are calculated.

σ2new

p =
1

Np

N

∑
n=1

γ(znp)(xn − µnew
p )2, (7)

σ2new

k =
1

N f

N

∑
n=1

γ(zn f )(xn − µnew
f )2. (8)

The values of the weights of each distribution are updated.

πnew
p =

Np

N
, (9)

πnew
f =

N f

N
, (10)

where,

Np =
N

∑
n=1

γ(znp), (11)

N f =
N

∑
n=1

γ(zn f ). (12)

• Log likelihood evaluation
With the new parameters, the log likelihood function is evaluated, and the Expectation
and Maximization steps are repeated until reaching convergence or a stop criteria.

ln p(X|πp, µp, σ2
p , π f , µ f , σ2

f ) =

N

∑
n=1

ln(πpN (xn|µpσ2
p) + π fN (xn|µ f σ2

f )).
(13)

3.1.3. Identify the Segment That Belongs to the Plant

Given the fact that a plant is a continuous entity, samples of pixels in both segments
are obtained, and an average distance is obtained for both samples; the sample with the
lower average distance is determined to be the one that represents the plant.



Appl. Sci. 2022, 12, 2199 6 of 15

3.1.4. Closure of the Segment That Belongs to the Plant

Closure operation, a mathematical morphology operation of image analysis, is applied
in order to close small gaps.

Figure 2 is presented in order to visualize the evolution of the segmentation process
using GMM.

Figure 2. Evolution of the segmentation process: (1) Original Image, (2) Segmentation obtained by
GMM, (3) Segmentation obtained after closure.

3.2. Variance Ratio Evaluation

In order to evaluate if an image has a low or high-noise background, the variance of
the pixels that belong to the segment associated with the background is divided over the
variance of the pixels of the complete image. The variance ratio evaluation incorporates the
assumption that a low-noise background is going to have a very small variance compared
to the variance of the complete image; a threshold of 0.016 is selected because it optimally
classifies the initial set of 23 images considered in this work and was later used in a
subsequent set of 4954 images.

VR =
Vbg

Vim
, (14)

where,
VR = Variance ratio;
Vbg = Variance of the background;
Vim = Variance of the complete image.

3.3. Segmentation with Probabilistic Saliency

In the image analysis context, a salient region of the image is the part of the image
that clearly stands out from the rest, and probabilistic saliency is a technique that aids
in detecting the part of an image that is salient. It is expected that even when analyzing
images with backgrounds with large noise, the salient object will be the plant; therefore,
the following process is presented.

• Codify the image with the HSV thresholds.
• Obtain the saliency map.
• Segment the saliency map with Otsu’s method.
• Apply opening and closure operations to the segmented image.

3.3.1. Codify the Image with the HSV Thresholds

With the objective of reducing or homogenizing the background noise of the image
and to increase the accuracy of the segmentation and reduce computational operations, the
image is codified passing from an RGB image to a binary codification in which 1 is for the
pixels that a priori may be part of the plant and 0 is for the pixel that are might not be part
of the plant, and the codification criteria is the following. In this case, we expect that the
black and brown colors of a plant are going to appear as holes that will be closed in the
final step of the proposed process.

• White—0.
• Black—0/1 (Depending on the case).
• Green—1.
• Yellow—1
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• Brown—0/1 (Depending on the case).
• Unidentified color—0 (Noise).

3.3.2. Obtain the Saliency Map

A saliency map is a representation in which to any pixel of an image that has a
probability that the pixel is salient assigned, the pixels with high probabilities could be
considered salient while the ones with low values may not be considered. In order to begin,
a probability of 0.15 is assigned to all of the pixels.

In order to update those values, a group of windows are used to compare the salient
and non-salient regions, arranged in a 15-saliency windows grid that is centered in the
average x coordinate and y coordinate of all of the pixels that were considered a priori
salient as a result of the codification with the neural net; this step is crucial in the reduction
of processing time as we are incorporating the assumption that the place with the higher
concentration of a priori salient pixels may contain the overall salient object. The dimension
of each side of the grid is 65% of the largest side of the image, and the separation between
the center of a window and the next one is 15% of the largest side of the image.

As mentioned earlier, a saliency window is used to contrast the value that a pixel has
related to the rest of the pixels inside of the saliency windows vs. the values outside of the
saliency window; in this research, we consider local and global saliency. Figures 3 and 4
offer a visual representation of the mentioned concepts.

Figure 3. Grid of saliency windows.

Figure 4. Illustration of local and global saliency.

K is considered to be the salient region, W is considered to be the non-salient local
region of the window, and I is considered to be the non-salient global region.

The model is the following.



Appl. Sci. 2022, 12, 2199 8 of 15

• h0 : The pixel is not considered salient; it is associated with I and W,
• h1 : The pixel is considered salient; it is associated with K.

Therefore, for the case of local saliency, the salient probability is calculated as follows.

pl(h1|x) =
p(x|h1)p(h1)

p(x|h0)p(h0) + p(x|h1)p(h1)
, (15)

where
p(h0) is the a priori probability that the pixel is not salient;
p(h1) is the a priori probability that the pixel is salient;
p(x|h0) is the probability to observe the specific value of the pixel given that it is not salient;
p(x|h1) is the probability of observing the value of the pixel given that it is salient.

The conditional probabilities are expressed and calculated in the following way.

p(x|h0) =
W1

WT
, (16)

p(x|h1) =
K1

KT
, (17)

where
W1 is the number of pixels with codification 1 in W;
WT is the total number of pixels in W;
K1 is the total number of pixels with the codification 1 in K;
KT is the total number of pixels in K.

For the case of the global saliency, pg(h1|x) the process is the similar, but for the
calculation of the conditional probabilities, the region I is taken into account.

Therefore, the updated saliency value after a specific window is the following.

p(h1|x) = 0.8 ∗ pl(h1|x) + 0.2 ∗ pg(h1|x). (18)

The process is repeated for the total of 15 saliency windows that are part of the grid,
and it is important to overlap the saliency windows, so the values of a specific pixel are
updated several times.

It is important to state that only the pixels that were codified with “1” by the the HSV
thresholds are updated. The idea is to take those a priori pixels that may be part of the
segment that represents the plant and to discard those that do not belong to the salient
object. By doing so, the computational efforts are vastly reduced, as all the pixels codified
with a “0” are not considered and will not likely be part of the salient object.

3.3.3. Segment the Saliency Map with Otsu’s Method

Otsu’s method, a popular method for the binarization of images, is applied in order
to segment the saliency map and generate a binarized image by calculating the threshold
value for the saliency probabilities.

3.3.4. Apply Opening and Closure Operations to the Segmented Image

Opening and closure operations, two important mathematical morphology opera-
tions of image analysis are applied in order to close small gaps and to erase dots in the
background.

Figures 5 and 6 are presented in order to visualize the evolution of the segmentation
process using probabilistic saliency.
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Figure 5. Evolution of the segmentation process: (1) Original image, (2) First guess codified by HSV
thresholds , (3) Initial saliency map , (4) Final saliency map, (5) Segmentation after Otsu’s method,
(6) Final segmentation after opening and closure.

Figure 6. Evolution of the segmentation process: (1) Original image, (2) First guess codified by HSV
thresholds, (3) Initial saliency map, (4) Final saliency map, (5) Segmentation after Otsu’s method,
(6) Final segmentation after opening and closure.

3.4. Color Identification and Quantification
3.4.1. Identification of Colors Using HSV Thresholds

HSV thresholds were established for the identification of white, black, green, yellow,
and brown colors. Those colors were considered because they are strongly associated with
plant diseases and the vast majority of plants are green; when a color that does not satisfy
any of the threshold criteria, it is classified as “unidentified”.

3.4.2. Color Quantification

Once the segment belonging to the plant has been identified, the quantification of the
pixels that have colors associated to the diseases is executed using the following criteria.

• White portion
WP
TP

, (19)

• Black portion
BP
TP

, (20)
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• Green portion
GP
TP

, (21)

• Yellow portion
YP
TP

, (22)

• Brown portion:
BRP
TP

, (23)

where
WP is the number of white pixels;
BP is the number of black pixels;
GP is the number of green pixels;
YP is the number of yellow pixels;
BRP is the number of brown pixels;
TP is the total number of pixels of the segment that represents the plant.

With the portions calculated now, it is possible to estimate the portion of the tissue of
the plant that has the presence of the following diseases.

• White spots: White.

• Necrosis: Black portion + Brown portion.

• Healthy: Green portion.

• Chlorosis: Yellow portion.

3.5. Plantvillage Dataset and Benchmarking

In order to compare the performance of our method, we used a set of 4954 images
selected from the PlantVillage dataset analyzed in [1], which employed a deep learning
approach specifically trained on the dataset, which is considered the benchmark.

This dataset is composed of images of 256 × 256 dimension that belong to different
classes, which are labeled as either healthy or as having only one specific disease; therefore,
those images that belong to a class associated with a disease presenting colors similar to
any of the three diseases considered in this work were selected.

As the proposed methods generate a diagnosis of the portion of the plant that has a
specific disease, different levels of thresholds were used to transform the original portion
diagnosis into a binary diagnosis. If the portion of the plant that has colors associated
with a specific disease is larger or equal to a threshold, the plant is classified as having
that disease.

Since the dataset is composed of classes of both healthy and diseased plants, we
propose two metrics to evaluate the accuracy of the diagnosis.

• Diseased class. In the case of having a class associated to a disease, the accuracy is
calculated as follows,

ACCD =
DI
TI

, (24)

where
ACCD is the accuracy;
DI is the umber of images classified as diseased;
TI is the total number of images belonging to that class.

• Healthy class. In the case of having a class associated with healthy plants, the accuracy
is calculated as follows,

ACCH = 1− DI
TI

, (25)

where,
ACCH is accuracy,
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DI is number of images classified as diseased,
TI is the total number of images belonging to that class.

Table 1 presents the results achieved with different levels of thresholds; the following
is necessary to be specified.

• Class is the name of the class.
• SZ is the number of images belonging to that class.
• T is the average processing time in milliseconds recorded using a machine with Intel

i7 @ 1.90 GHz 2.40 GHz and 8 GB RAM.
• When using a threshold of 1%, the accuracy achieved is 1%. If the portion of the

plant that has colors associated to a disease is larger or equal to 1%, the plant is
considered diseased.

• When using a threshold of 2%, the accuracy achieved is 2%. If the portion of the
plant that has colors associated to a disease is larger or equal to 2%, the plant is
considered diseased.

• When using a threshold of 5%, the accuracy achieved is 5%. If the portion of the
plant that has colors associated to a disease is larger or equal to 5%, the plant is
considered diseased.

• When using a threshold of 20%, the accuracy achieved is 20%. If the portion of the
plant that has colors associated to a disease is larger or equal to 20%, the plant is
considered diseased.

• MAX is the maximum accuracy achieved per class.
• BM is the accuracy achieved by the benchmark.

Table 1. Evaluation of some results for the PlantVillage dataset and comparison with benchmark.

Class SZ T 1% 2% 5% 20% MAX BM

Apple cedar 275 5.6 98.2% 93.5% 68.4% 20.4% 98.2% 99%

Apple healthy 287 4.9 30.3% 46.7% 65.2% 89.9% 89.9% 95%

Corn common rust 251 2.8 95.2% 85.7% 64.5% 44.6% 95.2% 99%

Corn healthy 259 6.3 99.6% 99.6% 99.6% 100.0% 100.0% 100%

Grape black measles 429 5.8 100.0% 98.1% 84.6% 15.2% 100.0% 97%

Grape healthy 423 6.1 41.6% 63.8% 91.3% 100.0% 100.0% 99%

Peach bacterial spot 150 5.6 96.0% 89.3% 72.7% 43.3% 96.0% 99%

Peach healthy 115 3.9 29.6% 51.3% 82.6% 98.3% 98.3% 98%

Pepper b. bacterial s. 257 5.7 93.8% 86.0% 21.8% 21.8% 93.8% 81%

Pepper b. healthy 247 6.1 78.5% 85.4% 93.9% 99.6% 99.6% 98%

Potato healthy 152 4.9 71.7% 89.5% 94.1% 99.3% 99.3% 98%

Potato early blight 183 4.8 100.0% 97.8% 78.1% 26.2% 100.0% 100%

Strawberry healthy 456 6.2 78.3% 92.1% 99.3% 100.0% 100.0% 98%

Strawberry l. scorch 442 6.0 100.0% 100.0% 95.5% 57.0% 100.0% 99%

Tomato early blight 250 5.3 95.2% 84.4% 74.0% 54.8% 95.2% 93%

Tomato healthy 257 5.5 60.7% 65.8% 82.1% 100.0% 100.0% 93%

Overall 4433 5.3 79.3% 83.1% 79.2% 66.9% 97.8% 96.6%

4. Results

Some of the test images and the results generated by the methods are presented in
Figures 7–9 in order to visually appreciate the results.



Appl. Sci. 2022, 12, 2199 12 of 15

Figure 7. White spots: 0%, Necrosis: 0%, Chlorosis: 18%, Healthy: 82%.

Figure 8. White spots: 0%, Necrosis: 0%, Chlorosis: 7%, Healthy: 93%.

Figure 9. White spots: 0%, Necrosis: 50%, Chlorosis: 23%, Healthy: 20%.

5. Discussion

The processing times are very competitive with all of the test images processed under
160,000 ms and an average of 22,000 ms for the special set and 5600 ms for the subsequent
set. From the results obtained, it can be seen that the GMM method is more efficient on
images with a controlled background, while the PS method is more efficient on images with
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high background noise. Future work could consider using a neural network to perform this
classification of low/high noise background instead of using the variance ratio evaluation.

The results belonging to the evaluation of the performance in a generalized scenario
using the PlantVillage dataset are very interesting. Considering the best accuracy per class,
an overall accuracy of 97.8% is achieved compared to the overall accuracy of 96.9% of the
benchmark, which was specifically trained for this dataset [1].

6. Conclusions

A simple proposal for the problem generating a robust diagnosis of the presence of
chlorosis, necrosis, and white spots was presented; in order to do so, the task was divided
in the segmentation of the plant and subsequent quantification of colors.

Compared to the benchmark, our proposal was able to outperform in 10 classes, which
was an indicator of sustained performance in an untrained scenario, as intended. The
benchmark [1] was selected because it provided easy and open access to the database used
and the codes, and it offered an outstanding overall performance of 96.9%. In addition, it
was recently published in 2021, therefore representing the state of the art for this subject
of study.

It is relevant to highlight that simple and generalizable assumptions were incorporated
in the segmentation process for the cases of segmentation using GMM and PS models;
those assumptions mostly function as a way to encode prior beliefs to the model, such
as the expected colors to be present in the vast majority of plants (green) and the colors
associated with the diseases. It is important to note that even though the ability to correctly
produce a segmentation in several backgrounds with different types of plants was clearly
achieved, at least judging by the test images included in this paper, there are cases in
which those assumptions may have to be modified in order to incorporate the best fitting a
priori information or beliefs into the models. In addition, the incorporation of assumptions
reduced the number of computations, therefore reducing processing time, so in essence,
the work presented in this paper serves as a clear statement of the power that a priori
information has in order to achieve good results for a task in which that type of information
is available.
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