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Abstract: This study focused on the atomic scale growth dynamics of amorphous Al2O3 films
microscale structural relaxation. Classical Molecular Dynamics (MD) can not entirely model the
challenging ALD dynamics due to the large timescales. The all-atom approach has rules based on
deposition actions modelled MD relaxations that form as input to attain a single ALD cycle. MD
relaxations are used to create a realistic equilibrium surface. This approach is fitting to this study as
the investigation of the sticking coefficient is only at the first monolayer that includes the layering of a
hydroxyl surface of alumina. The study provides insight between atomic-level numerical information
and experimental measurements of the sticking coefficient related to the atomic layer deposition.
The MD modeling was for the deposition of Al2O3, using trimethylaluminum (TMA) and water as
precursors. The film thickness of 1.7 Å yields an initial sticking coefficient of TMA to be 4.257 × 10−3

determined from the slope of the leading front of the thickness profile at a substrate temperature of
573 K. This work adds to the knowledge of the kinetic nature of ALD at the atomic level. It provides
quantitative information on the sticking coefficient during ALD.

Keywords: atomic layer deposition; film thickness; molecular dynamics; sticking coefficient

1. Introduction

Atomic Layer Deposition (ALD) is a technique in which precursor vapors are alter-
natively pulsed onto a substrate’s surface, with an inert gas purge cycle in between. The
surface reactions in ALD are complementary and self-limiting, allowing for material de-
position through highly uniform and conformal development with atomic-level thickness
control [1–4]. Classical molecular dynamics, which employs predetermined potentials
and force fields based on empirical data or independent electronic structure computations,
has long been recognized as a valuable method for studying a wide range of complex
condensed matter systems, including biomolecular assemblies. In molecular dynamics,
the typical approach is to calculate these potentials ahead of time. The entire interaction
is typically broken down into two-body and many-body contributions, long-range and
short-range terms, electrostatic and non-electrostatic interactions, all of which must be
represented by appropriate functional forms [5–7].

There is an all-atom simulation of the ALD process that provides an atomic-level
understanding of the ALD process. The algorithm in Figure 1 describes the deposition of
consecutive precursor pulses in a physically reasonable manner. The simulation algorithm
starts with a hydroxylated surface and looks for -OH groups on the surface, which are
the active sites. After that, an accessible -OH is chosen at random for the ALD product
deposition [8]. Hu et al. [8] proposed a different technique based on classical MD. Due
to the limited simulation durations for complex systems, MD alone cannot represent the
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whole ALD cycles. Hu et al. overcame this timescale limitation by linking the MD with a
set of deposition criteria [9]. Deposition rules can be considered a function that considers
an uncoated surface as input and a roughly coated surface as output. MD relaxation steps
correct these approximations, resulting in a realistic surface structure fed into the next
cycle’s deposition rules [9].
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The sticking coefficient (SC) is defined as the reaction probability, or the reactivity of
a single precursor molecule with a reactive site on the surface. The SC is an intriguing
metric since it may compare the efficiency of different ALD precursors and reactors [10].
Although the SC idea is extensively utilized, absolute quantities are rare in the literature [11].
The amount of time it takes to feed a saturated monolayer of precursor molecules is
determined by the SC and the concentration of the precursor molecules. In general, feeding
time increases as SC decreases [11]. Rose et al. [11] used the premise that desorption of
chemisorbed precursor molecules is negligibly slow in ALD. The probability of adsorption
of a single precursor molecule by a microscopic planar substrate can be calculated using
Langmuir’s theory (Surface chemistry [12]) of surface coverage [13,14]. The molecular
symmetry of precursor molecules is an intriguing characteristic. Molecules with the same
type of ligand have more symmetry than those with different types of ligands. If the SC of
a single precursor molecule is dictated by the orientation of the precursor molecule during
its interaction with the free reactive site, its value can be calculated from numerous surface
interactions that are governed by the precursor molecule’s symmetry. A large SC is caused
by a high molecular symmetry, whereas a low molecular symmetry causes a small SC [13].
The initial sticking coefficient determines the maximum pumping speed per unit area that
a given film can produce. The sorption capacity determines the time interval during which
the film pumps at a given partial pressure. As a result, reliable estimations of such films’
time-dependent pumping and interaction features are required [15].

The sticking coefficient (SC) is essential for optimizing the ALD process in high topo-
graphical structures. It describes the probability of a precursor adsorbed at the device’s
surface when it collides [16]. The work of Arts et al. [17] established a method for di-
rectly extracting initial sticking probabilities/coefficient from thickness profiles recorded
in constructions with a high aspect ratio. They demonstrated that at high-aspect-ratio
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structures, the leading front of the thickness profile provides direct information on the
reactant sticking probabilities. The front slope of the thickness was utilized to calculate
the sticking probability of Al(CH3)3 and H2O during Al2O3 ALD. The initial sticking
coefficient (SCo) was giving (0.5–2) × 10−3 for Al(CH3)3 and (0.8–2) × 10−4 for H2O at
Tset = 275 ◦C (Tsub~220 ◦C). The initial sticking coefficient value of H2O was shown to
be temperature-dependent, decreasing to (1.5–2.3) × 10−5 at 150 ◦C. The film thickness
determines the sticking coefficient—the film’s thickness profiles slope increases as the
deposition temperature increases. The experimental profiles show that the SC increases
with increasing deposition temperature since steeper slopes correspond to higher SCs [13].
While lateral-high-aspect-ratio trenches were utilized for their study, the aforementioned
method can also be used for other 3D features [17].

Träskelin et al. [18] investigated the sticking process of methyl radicals on carbon
dangling bonds using molecular dynamics simulations. They discovered that the proximity
of unsaturated carbon atom sites significantly impacts the chemisorption of a CH3 radical
onto a dangling bond. The structure and dynamics of water molecules and the hydrogen
bonding network, formed when water molecules interact with a solid crystalline substrate,
were examined by Argyris et al. using MD [19]. At room temperature, Argyris et al. [20]
used molecular dynamics simulations to investigate the dynamic characteristics of wa-
ter at the silica–liquid interface. They found that the anisotropic reorientation of water
molecules is greatly influenced by the relative orientation of interfacial water molecules
and their interactions with surface hydroxyl groups. The wide range of methodologies
used to calculate the sticking coefficient like to use various experimental methods, such as
Auger Electron Spectroscopy and QCM measurements, and theoretical approaches such
as density functional theory (DFT) calculations or Monte Carlo modeling. More recently,
sum-frequency generation has been reported in the literature [21].

This study aims to better understand the structure of precursor sticking coefficient dur-
ing a high temperature of 573 K and high-pressure ALD process at a molecular level. The
study focuses on the ALD deposition process of aluminum oxide, Al2O3, using trimethyla-
luminum (TMA—(Al(CH3) 3)) and water (H2O) as precursors. The SC has been determined
from the thickness profiles generated from the MD approach of the ALD process. While
lateral-high-aspect-ratio trenches were utilized in Arts et al.’s [17] study, we aim to prove
that the same method could be used for other surface structure as it was used for our study.

2. Computational Details
2.1. The Simulation Approach

Hu et al. describes the complicated nature of the ALD growth. Because of the physic-
ochemical mechanisms that regulate ALD growth, a simulation that can depict the time
evolution of interacting atoms during the ALD process is critical. An empirical interatomic
potential is a well-suited approach to describing ALD process and relaxation processes in
MD simulations [8]. The study proposes two ALD, half-reactions equations. The equations
are as follows [8]:

AlOH + Al(CH3)3 → Al−O−Al(CH3)2 + CH4 (1)

Al−O−Al(CH3)2 + 2H2O→ Al−O−Al(OH)2 + 2CH4 (2)

The interatomic potentials for the hydroxylated alumina surface were determined by
Matsui [22]. They are of the Buckingham type. The pair’s interaction potential between
atoms i and j as a function of the inter-atomic distance rij is given by Equation (3) as:

Uij =
qiqj

rij
+ D

(
Bi + Bj

)
exp

(
Ai + Aj − rij

Bi + Bj

)
−

CiCj

r6
ij

(3)

The repulsion and dispersion interactions are included in this potential, which com-
prises a long-ranged electrostatic potential and a short-ranged Buckingham potential. D
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(4.184 kJ−1mol−1) is the force constant, rij is the relative distance between atoms i and j, and
q is the effective charge on each atom in the equation above. A, B, and C, the empirically
fitted parameters, are provided in Table 1.

Table 1. DFT the inter-atomic potentials [9].

Element q(e) A(Å) B(Å) C(Å
3

kJ1/2 mol−1/2)

Al 1.4175 0.78520 0.03400 36.82
O −0.9450 1.82150 0.13800 90.61
H 0.4725 −0.17607 −0.02462 1.86285

The molecular dynamics simulation was built in the LAMMPS-code (Large-scale
Atomic/Molecular Massively Parallel Simulator) offered by SANDIA [23]. The visualiza-
tion and post-processing of results were performed in OVITO (open visualization tool) [24].
In LAMMPS, the cut-off radius is specified by the potential. Short-range interactions are
only taken into account in some MD implementations. All MD simulations were performed
in the canonical ensemble with a time step of 0.1 fs (NVT). The number of particles (N),
the volume of the simulation box (V), and the temperature (T) were all kept constant [20].
The short-range Buckingham interactions were determined using a cut-off of 1 Å. The
long-range Coulombic interaction cut-off was set at 50 Å, accommodating the changing
periodic boundary. In all MD simulations, the Nosé–Hoover chain technique [25] was
employed to integrate the equations of motion. A two-dimensional correction was made to
the Ewald summation below 1 × 10−7 for Coulombic forces. The number of computations
is lowered by including neighbor lists, which track which atoms are predicted to interact on
the next timestep. This strategy saves time by avoiding the need to calculate all-atom pair
distances in the simulation at each timestep. Binning is considered to divide the simulation
domain into smaller portions, as another alternative. After then, atoms need to look for
interactions in their bin and neighboring bins within the cut-off radius [26]. At 1 Å above
the surface, the atoms’ mobility was stopped. As a result, any molecules attempting to
escape the simulation box by breaking loose from the surface were repelled. Zero velocities
were subjected to a setforce, fix-command of LAMMPS. The fix-command froze certain
atoms in the simulation by reducing their force to zero throughout a specified range.

2.2. Substrate Preparation

As detailed in Hu et al. and Brown et al. [8,9], the initial alumina surface model was
made by annealing an alumina model after randomly replacing Al atom. The ALD of Al2O3
was carried out on a hydroxylated Al2O3 surface. A bulk Al2O3 sample with 770-atoms was
generated according to the Al2O3 crystal structure 15.3836208, 20.5114944 and 25.639368 Å
with equal angles, α = β = γ = 55.282635◦. The simulation box was then anisotropically
scaled to produce a large cubic supercell with the simulation box lengths of a = b = c = 26 Å,
see Figure 2.
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Following the rules of the ALD process and relaxation processes in MD simulations,
this study also considered that the ALD reactions occur only on the surface’s active -OH
groups. It is assumed that the products of the metal precursor pulse are fully hydroxylated.
Lastly, it was assumed that there are no impurities from the metal precursors left in the
ALD films. The reverse reactions are negligible and fit with the algorithm approximately
describes the stochastic deposition process [8,9].

ALD deposition rule was used in this study as described by Hu et al. A monolayer
was built as shown in Figure 3a–e. The simulation box was resized to produce the necessary
oxide density after annealing the sample at 5000 K for 300 ps. The sample was then
quenched at a rate of 47 K/ps to 300 K in 100 ps. The box was then duplicated twice in the x
and y directions (to increase the system size), and the surface was formed by expanding the
box length in the z-direction to 51.0 Å. To produce the appropriate H content, specified H
atoms were injected above the frozen layers to generate a hydroxylated surface. An Al atom
was chosen randomly and swapped with an H atom to add to the system. Simultaneously,
an O atom was chosen randomly and removed to maintain the system’s overall charge
neutrality. Finally, the surface was annealed for 500 ps at 1000 K. After annealing, the H
atoms migrated to the surface region, resulting in a -OH terminated surface. The migration
of -OH groups on the surface increases the ALD growth rate, allowing the surface to
accommodate more precursor molecules to react on the surface [8,9]. The atoms in the
bottom 3 Å of the simulation box were frozen at their relaxed geometries for additional
simulation studies [8,27]. At that point, it is assumed that the projectile flux to the surface is
sufficiently low; the sample surface can be assumed to be in equilibrium before the next hit.
Since it is assumed that the duration between incoming projectiles is long enough not to
affect each other, the same sample can be utilized for all simulations in this situation. This
approximation can produce valuable results only if the model is in thermal equilibrium
and a steady-state concerning layer growth [28].
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2.3. Model Validation

The predicted density reduction per cycle are plotted in Figure 4 as a function of the
distance along the z-direction. The results are compared to those of Hu et al. [8], which
studied the same physical system. As the number of deposited layers grows, both density
profiles become flatter. This demonstrates that the ALD-deposited film has a lower density
at the surface region in the early stages of ALD.
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3. Results
3.1. Al2O3 Film Thickness

Since a growth per cycle (GPC) is the amount of film thickness deposited in one cycle,
the final thickness is determined by the cycle number rather than the response time [29].
The accurate prediction of the ALD response of the substrate is spatially dependent on the
film thickness profile [30]. The precursor coverage θ is given by Equation (4) [14] as:

ΘAl2O3(x) =
dALD(x)

Ncycles ·GPCmax
(4)

where dALD is the ALD layer thickness, Ncycles is the number of ALD cycles, and GPCmax at
an assumed full saturation level. The GPC found in this MD study is 1.2 Å that yields to a
film thickness of 1.7 Å (First cycle), where a GPC rate of 0.11nm (1.1 Å) per ALD processing
cycle has been measured experimentally [30]. The precursor coverage θ was equivalent
to 1. The surface was assumed to be fully covered. Figure 5a shows that to reduce the total
energy of H-terminated Al2O3 surfaces, the atoms in the surface region rearrange to form
a different structure than bulk Al2O3 to reduce repulsive interactions (the short-ranged
Buckingham term in Equation (3)) and increase attractive electrostatic interactions between
Al and O [7,8,31,32]. In Figure 5b, the temperature of the system is relaxed at 573 K. It
shows that as the system’s temperature rises, the kinetic energy of the system rises, and
the frequency of the atoms’ vibrations rises with it. The thermal motion becomes more
vigorous as the temperature rises from a thermodynamic standpoint [33].

Figure 6a,b visually demonstrate the layering of hydroxyls that are found in an ALD
process. Most ALD procedures, for example, produce a sub-monolayer of growth after each
cycle, which is usually attributed to steric effects from the precursor’s ligands obstructing
active sites, competing chemisorption pathways, or other factors [34]. It is observed that
rather than being integrated into the majority of the film, the H atoms prefer to rise to the
surface. Due to steric hindrance effects, the -OH distribution on the surface has a significant
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impact on the ALD growth mode. This suggests that avoiding populated -OH during the
early stages of ALD is crucial for minimizing nucleation times.
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3.2. Initial Sticking Coefficient, So

Equation (5) was used to compute the initial sticking coefficient from a half coverage
length of the substrate [17]. The initial sticking coefficient (S0) governs the slope of the
leading front of the thickness profile. The slope was found to be 0.035. It yields an initial
sticking coefficient of 4.257 × 10−3. The relation at the slop normalized to be z̃ = zLx
(1D, one dimensional approach) at the point of half coverage θ = 1

2 along the x-direction,
Equation (6). ∣∣∣∣∂θ

∂z̃

∣∣∣∣
θ=1/2

≈
√

s0/13.9 (5)∣∣∣∣ ∂θ

∂x̃

∣∣∣∣
θ=1/2

≈
√

s0/13.9 (6)

The initial sticking coefficients of TMA found from other methods and substrate struc-
tures are listed in Table 2. This study found an initial sticking coefficient S0 = 4.257 × 10−3

that fits in the range of (2–7) × 10−3 found by Arts et al. [17]. The method using a slope
at a half the surface coverage is the simplest way of computing the sticking coefficient.
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Therefore, the S0 found using an MD relaxation approach fits well with the same method
from the literature like the high-aspect-ratio of trenches that was utilized by Arts et al. [17].

Table 2. Initial sticking coefficient of TMA during ALD of Al2O3, determined from the thickness
profiles at 300 ◦C substrate temperature.

Method Researchers S0

Diffusion model, thickness profiles, lateral
high-aspect-ratio structure (LHAR) Ylilammi et al., Ref. [35] 5.27 × 10−3

1D structures, thickness profiles, lateral
high-aspect-ratio structure (LHAR) Arts et al., Ref. [17] (2−7) × 10−3

LHAR, thickness profiles, 3D structures,
experiments and Monte Carlo simulations Schwille et al., Ref. [14] 2 × 10−2

LHAR, thickness profiles, 3D structures Yim et al., Ref. [36] 4 × 10−3

Molecular Dynamics (All-atom approach),
thickness profiles, as Arts et al.

Ref (Arts et al., 2019)
Current study 4.257 × 10−3

4. Conclusions

The key strength of this study was its focus on the atomic scale growth dynamics of
amorphous Al2O3 films by inspecting microscale (MD) structural relaxation. The current
findings add to a growing body of literature on applying the all-atom approach. There
are rules based on the deposition actions to model MD relaxations of a single ALD cycle.
The study supplemented the MD relaxations to create a realistic equilibrium surface by
including the layering of hydroxyls on alumina. It was from a relaxed surface that an
examination of the initial sticking coefficient of TMA was conducted. The study has gone
some way towards enhancing understanding of the initial sticking coefficient between
atomic-level numerical information and its experimental measurements related to the
atomic layer deposition.

Therefore, the initial sticking coefficient was determined to be 4.257 × 10−3, including
error estimates from the MD model that would need improved interatomic potentials by
using density functional theory (DFT) to account for the ligand exchanges in the presence
of a hydroxylated surface. Notwithstanding these limitations, the study suggests that
the initial sticking coefficient is an essential parameter for predicting the conformality of
ALD growth. The ALD growth is calculated from the slope of the saturation profile. The
saturation profile of ALD Al2O3 has a near-ideal form, namely, a constant thickness of 1.7 Å.
This thickness develops from the first cycle, as expected for an ALD process. The process is
based on repeated self-terminating and the gas–solid interactions as the surface coverage
increases. Therefore, significantly beyond 50% coverage, the overall sticking coefficient
decreases. This is because of the site-blocking hindering diffusion.

The consequence of unavoidable -OH groups that will always be present on the surface
is supported by the current findings. Since viewed on the microscale, the most prominent
finding from this study is that the -OH groups influence the sticking coefficient. Neverthe-
less, if the desorption of ligands is encouraged by increasing the surface temperature (to the
limit of the TMA precursor, but observed in this study at 573 K), the adsorbed molecules
will reduce steric hindrance. As also shown in this study, the steric hindrance effects due
to the -OH distribution on the surface significantly impact the ALD growth mode. The
desired effect is that the surface needs to saturate quickly when the reactant diffuses to
have a sharp profile front that will rapidly increase growth at fewer precursor doses but
gain a steeper slope on the thickness. Therefore, avoiding populated -OH during the early
stages of ALD assists with the rapid thickness growth. However, -OH groups at the surface
lead to decreased sticking coefficient as they limit diffusion.
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This study has shown that the initial sticking coefficient’s influence promotes higher
reactivity on the surface. The effect is best achieved from a stepper slope, which means the
initial sticking coefficient of the TMA precursor will be higher >10−3.

This work adds to the knowledge of the kinetic nature of ALD at the atomic level.
It provides quantitative information on the sticking coefficient during ALD. It shows
the advantage of determining sticking coefficients from ALD thickness profiles without
further modeling. Recent advancements in computing technology have allowed compu-
tational techniques to explore the physical interactions and chemical dynamics of ALD.
Future studies should emphasize the ab initio molecular dynamic techniques for an entire
ALD process.
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