
����������
�������

Citation: Khokhlov, A. Processing

Non-Gaussian Data Residuals in

Geomagnetism. Appl. Sci. 2022, 12,

2097. https://doi.org/10.3390/

app12042097

Academic Editor: Filippos

Vallianatos

Received: 14 December 2021

Accepted: 11 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Processing Non-Gaussian Data Residuals in Geomagnetism
Andrey Khokhlov 1,2

1 Geophysical Center RAS, 3, Molodezhnaya St., 119296 Moscow, Russia; fbmotion@gmail.com
2 IEPT Russian Academy of Sciences, 84/32, Profsoyuznaya, 117997 Moscow, Russia

Featured Application: A possible application of the data processing method described below
is to separate noise due to external effects from noise due to the limited accuracy of the sensor
itself. Such a model may reveal the need for a calibration process and impose some statistical
constraints on external effects.

Abstract: Some time ago, we considered non-Gaussian shapes of histograms of quantities that were
related to residuals in data: we showed at a qualitative level that non-Gaussianity is most likely the
result of mixing of Gaussian distributions. In this addendum, we argue that there is a quantitative
description that can be used in fairly general situations. Briefly, we present here the same magnetic
measurement data that were reported in the original publication: Khokhlov, A.; Hulot, G. On the
cause of the non-Gaussian distribution of residuals in geomagnetism. Geophys. J. Int. 2017, 209,
1036–1047.

Keywords: probability distributions; magnetic field variations through time; data modeling; satellite
magnetic measurements

1. Introduction

Observations of long-term natural processes, in particular magnetometry, at first sight,
fully meet the initial requirements of mathematical statistics and, thus, the methods of this
scientific discipline are widely used in data processing. At the same time, the characteristic
of deviation (from mean values, baseline, mean scatter of instrument readings, etc.), which
is usually referred to as the residual term, is important enough for estimating the quality
of observations. Corresponding statistics are related to the simplest statistical formula,
which works fine in theory in the situation of fairness of the Gaussian hypothesis for the
recorded data. The same hypothesis, at first sight, should be fulfilled in the situation of
vector magnetic measurements because the observed value of the magnetic vector is always
a sum of magnetic influences from many local and global sources, and the distribution
law for sums of random variables is predicted by the Central Limit Theorem of Probability
Theory, which states that under rather simple conditions, the sum of many independent
random influences is very well approximated by the Gaussian law.

Therefore, it is a common opinion that in processing observational data and calculating
the characteristics of these data (for example, calculating the mean value of the residual),
we can use Gaussian statistics without any restrictions and there is no reason to doubt the
numerical value of the answer, which corresponds to the RMS deviation σ of a Gaussian
random variable. However, the stationary nature of natural fluctuations can be assumed
only with respect to specific time intervals: magnetic field measurements over a relatively
short time can include significant nonstationarity of external factors—seasonal variations,
magnetic storms, the presence of specific technological disturbances, etc. Thus, the idea that
the observational series is just a sample of the general population corresponding to a fixed
Gaussian random variable will generally give a very unrealistic picture. A more adequate
model seems to be that of a mixture of random variables differing in parameters, and
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parameter variations are described by a separate random variable whose value distribution
can be neglected only in a stationary situation.

Earlier, the general approach was outlined in the article [1] for the example of real
magnetic data, referring, however, not to ground-based magnetic observations, but to
observations of magnetic satellites of the project Swarm, crossing different intensities of
magnetic fields. In this case, in a relatively small time interval, it is possible to collect a lot of
data that reflect random field variations, the corresponding data model was substantiated
in detail in [1].

In the present article, we will consider the computations and, for the convenience
of understanding the statistical model of variability, we will refer to exactly the same
data as in [1]. The difference in the method of processing a large volume of SWARM
magnetometer data and a large volume of observatory magnetometer data is insignificant
for the explanation of the method as such.

Recall that typical appropriate statistical assumptions are being made with respect to
the distribution of the uncertainties σi affecting the data used. The statistical properties
of these uncertainties, however, are not always well characterized. In such circumstances,
assuming that uncertainties follow a Gaussian distribution would a priori make sense,
since such a distribution often arises naturally as a consequence of the central limit theorem
(i.e., when errors act in an additive manner). Relying on this assumption, and provided that
si is an adequate measure of the error affecting the datum γi, standard statistical estimations
are then used to infer the model. The normalized residuals

{
γi−γ̂i

si

}
(here γ̂i being the

datum value predicted by the model) are expected to follow a standard normal distribution.
Yet, residuals of geomagnetic observations of an arbitrary type often display a sharper

distribution, sometimes much closer to that of the so-called Laplace distribution (e.g., [2–5]).
We suggested in [1] that residuals may be incorrectly normalized and, therefore, their
common statistical distribution is a mixture of Gaussian distributions. In particular, we
demonstrated in [1] several examples of the variability in σ determination that indeed
lead to the non-Gaussian shape of the histogram. Thus, we assume that the observable
residual θ is a mixture of individual Gaussian random variables with zero expectations
and random variances β2. In the present short note, we argue that the distribution of the
random variable β can be well approximated by the lognormal distribution with pdf

fβ(t) =
1

ts
√

2π
exp

[
− ln2 t

2s2

]

We also provide the method that recovers the value of s in the real data case.

2. Mixture Model
2.1. The Unformal Interpretation

The mixture model is appropriate for the situation when the data are inhomogeneous,
for instance, they come from several locations such that each region slightly perturbs
the assumed data distribution law, i.e., the corresponding distribution formulae differ
slightly in their parameters. In practice, we often face an even simpler situation: each set of
regional data is Gaussian with mean zero but the corresponding σ-value depends on the
region. However, we rarely can select the region with absolutely homogeneous data in it;
therefore, we better simulate these situations by means of sequential small perturbations of
the initially homogeneous Gaussian population. Can the limit distribution be described
given the very small intermediate perturbations?

Of course, the model of successive repeated small random perturbations applied
to a stationary process is only one of many possible ones. However, this model allows
statistical estimation of residuals in a simple and straightforward computational procedure
and eventually allows the model data to be simulated in order to compare them with the
actually observed data. Relevant comparison procedures are available in nonparametric
statistics, such as the well-known Kolmogorov–Smirnov test.
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The statistical Kolmogorov–Smirnov criterion on large samples is very sensitive and
therefore can certainly indicate more subtle effects, even of non-random nature, present in
the data.

2.2. Version of the General Formula

If ζ is an arbitrary random variable with density fζ , then for fixed y0 > 0, the ratio
ζ/y0 has density fζ(xy0)y0, see also (see, e.g., [6]). Let now the denominator not be fixed
but a positive random variable with density gη , then, we obtain the pdf for this ratio

h(x) =
+∞∫
0

fζ(xy)ygη(y)dy

We may now compare the mixture of unbiased Gaussian distributions (i.e., with pdf
fα = N (0, σ2)) by randomizing their standard deviations using a random variable β > 0:

fθ(x) =
1√
2π

∞∫
0

exp
(
−1

2
x2

t2

)
t−1 fβ(t)dt =

∞∫
0

1√
2π

exp
(
−1

2
y2x2

)
ygη(y)dy

Obviously, fθ can be interpreted as the pdf of the ratio.
For instance, recall the following example of [1]: the uniform mixture of unbiased

Gaussian distributions with standard deviations varying between 0 and 1, i.e., mixing
pdf is

fβ(t) =

{
1 0 < t < 1
0 otherwise

We may treat that mixture as the ratio of standard Gaussian α divided by η—the
inverse of the uniform distribution:

gη(y) =

{
1
y2 y > 1

0 y 6 1

2.3. Sequential Small Mixtures

The small multiplicative randomization is described in terms of a random β > 0 with
pdf fβ ∼ 0 out of [1− ε, 1 + ε] for some small ε, we may assume β = eδ where expectancy
E(δ) ∼ 0 and variance D(δ) ∼ ε2. For the sequential small mixtures (with independent βi),
we obtain the ratio

α

η1 · η2 . . . · ηm
=

α

e−∑m
i δi

(1)

However, under the mild conditions, the distribution of ∑m
i δi rapidly converges to

a Gaussian distribution N (a, s2) with a ∼ 0 and s ∼
√

∑m
i ε2

i . Thus, the limit pdf for
sequential arbitrary, but small mixtures can be approximated by

fθ(x) =
∞∫

0

1
tσ
√

2π
exp

(
−1

2
x2

t2σ2

)
1

ts
√

2π
exp

[
− (ln t− a)2

2s2

]
dt, a ∼ 0 (2)
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If we rescale x 7→ x
σ in this expression, then we obtain the representation for fθ

( x
σ

)
;

we also apply the change of variables t 7→ σt = u and derive another formula of fθ(x) in
terms of N (0, 1):

fθ(x) =
∞∫

0

1
tσ
√

2π
exp

(
−1

2
x2

t2σ2

)
1

ts
√

2π
exp

(
− ln2 t

2s2

)
dt (3)

for some suitable parameters s and σ.
Of course, the model of successive repeated small random perturbations applied

to a stationary process is only one of many possible ones. However, this model allows
statistical estimation of residuals in a simple and straightforward computational procedure
and eventually allows the model data to be simulated in order to compare them with the
actually observed data.

3. Method: Real Data Analysis

As in [1], we consider the absolute scalar data acquired by two of the Swarm satellites
(Satellites Alpha and Bravo) at quasi-latitudes ranging between +55◦ and −55◦, and
computed residuals with respect to the so-called VFM model of [7]: for the the array ST1 of
one-day std of residuals, take a look at Figure 1 borrowed from our article. Rescale this array
ST1 as r 7→ σ1

r = y where σ1 = mean(ST1) and r ∈ ST1; by virtue of Equation (2), the array
{yi} is expected to obey the lognormal distribution with parameter s1 (see Equation (3))
and we can directly calculate σ1 and s1.

5100 5150 5200 5250 5300 5350
0

1

2

3

4

5

6

7

8

1−Day std for Alpha and Bravo non polar residuals

Figure 1. Standard deviations (in nT) computed every day for the mid-latitude residuals of the
Swarm scalar data used to compute the VFM model of Vigneron et al. (2015). Blue large dots: data
from the Swarm Alpha satellite and red dots: data from the Swarm Bravo satellite. Days are counted
in Julian days, with 1 January 2000 taken as the reference.

Now, repeat all these computations for arrays ST0.25, ST0.5, ST0.75 (i.e., corresponding
to time intervals of 0.25 to 0.75 days). The results are as follows:

ST1: Satellite A σ1 = 2.41 s1 = 0.33, Satellite B σ1 = 2.40 s1 = 0.36

ST0.75: Satellite A σ0.75 = 2.34 s0.75 = 0.36, Satellite B σ0.75 = 2.35 s0.75 = 0.39

ST0.5: Satellite A σ0.5 = 2.22 s0.5 = 0.39, Satellite B σ0.5 = 2.21 s0.5 = 0.46

ST0.25: Satellite A σ0.25 = 1.99 s0.25 = 0.43, Satellite B σ0.25 = 1.96 s0.25 = 0.49
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As often happens, a limited amount of lognormal data cannot provide stable statistical
estimates. So, what are the “true values” of s and σ? To answer this question, let us use the
following well-known method of the statistical moments of θ, namely:

E|θ| =
+∞∫
−∞

|x| fθ(x)dx =

∞∫
0

 +∞∫
−∞

|x| 1
tσ
√

2π
exp

(
− 1

2
x2

t2σ2

)
dx

 · 1
ts
√

2π
exp

(
− ln2 t

2s2

)
]dt

=

∞∫
0

σ

√
2
π
· t 1

ts
√

2π
exp

(
− ln2 t

2s2

)
dt = σ

√
2
π

Eβ = σ

√
2
π

es2/2

Eθ2 =

+∞∫
−∞

x2 fθ(x)dx =

∞∫
0

Eα2 · t2 1
ts
√

2π
exp

(
− ln2 t

2s2

)
dt = σ2Eβ2 = σ2e2s2

Thus, we obtain the explicit expressions of the unknown parameters{
s2 = ln 2

π + ln Eθ2 − 2 ln E|θ|
σ2 = π2

4 ·
(E|θ|)4

Eθ2

(4)

In practice, we recover from real data the estimates of the moments Eθ2, E|θ| and then
get (the estimates of) the unknown parameters.

The satellite scalar data [7] cover a little less than a year (between 29 November 2013
and 25 September 2014) and were further selected following a number of criteria, among
which magnetically quiet and night-time conditions, to ensure that as little as possible
non-modeled external signal is included in the data. This resulted in 42,160 data points for
the Alpha satellite and 42,175 for the Bravo satellite. These data can be expected to reflect
the signal of the field of internal origin the model tries to model, any other source of signal
being treated as a source of noise acting on top of the very low instrumental and satellite
noise (less than 0.3 nT, see [8–10]).

We may now add the quantitative details of the data distribution to the qualitative
analysis of it that was published in [1]: namely, using formula (4), we may now recover the
estimates of the parameters s and σ (the latter can be treated as an estimate for the “inner
precision” of measurements); Figure 2 actually confirms the fact that this close-to-Laplacian
distribution indeed can be represented as the result of a lognormal mixture according to
formula (3).
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Figure 2. Left: Histogram of the residuals (circles) of the Swarm Alpha scalar data used to compute
the VFM model [7] together with histogram (triangles) of an identical number of simulated mixture
of Gaussian distributions according to the parameters s = 0.41, σ = 2.18 recovered from the real data;
right: the same plots but for the Swarm Bravo scalar data, parameters s = 0.47 and σ = 2.10.

4. Discussion

In general, the study of the behavior of residuals in the case of magnetic observations
is aimed at quantifying the accuracy of instrumental measurements and to quantify ex-
ternal influences, which are calculated differently in the Gaussian data model and in the
mixed model.

As part of the reasoning for the applicability of the aforementioned mixture model
in case of SWARM data, it appears that for moderate amounts of data (N ∼ 103), the
KS test does not reject the model; nevertheless, as N grows to several tens of thousands
measurements, the model clearly does not exhaust the complexity of inhomogeneous
effects available in the SWARM magnetic data and is therefore formally rejected by the
KS criterion.

An important detail related to our model is that we assume a continuous mixture
and obtain its analytic form. This is certainly an idealistic assumption, which needs not
be absolutely true, especially if we have strong discrete effects in the magnetic data: for
example, if we consider daytime and nighttime observations simultaneously. In this case,
we are better off using a probabilistic model, which assumes that all data points appear
from a mixture of a finite number of Gaussian distributions with unknown parameters.
Fortunately, when the number of Gaussian distributions involved is known (at least ap-
proximately), then a well-known EM algorithm can provide (via maximum likelihood
estimation) the parameters of the corresponding discrete statistical model.

5. Conclusions

This purely numerical approach is not new, but in the present study, we consider an
assumption that seems to be a rather novel approach to practical residuals. Which approach
is more appropriate depends on the specific situation. For example, the continuous analyti-
cal formula given above gives hope that in the case of ground-based magnetic observations
over a relatively short time interval, our methods for calculating the unsteadiness will
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prove to be a useful refinement and, at the same time, allow us to isolate subtle effects of
unsteady field behavior.
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