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Abstract: In deep learning-based local stereo matching methods, larger image patches usually bring
better stereo matching accuracy. However, it is unrealistic to increase the size of the image patch size
without restriction. Arbitrarily extending the patch size will change the local stereo matching method
into the global stereo matching method, and the matching accuracy will be saturated. We simplified
the existing Siamese convolutional network by reducing the number of network parameters and
propose an efficient CNN based structure, namely adaptive deconvolution-based disparity matching
net (ADSM net) by adding deconvolution layers to learn how to enlarge the size of input feature
map for the following convolution layers. Experimental results on the KITTI2012 and 2015 datasets
demonstrate that the proposed method can achieve a good trade-off between accuracy and complexity.

Keywords: stereo matching; deep learning; convolutional neural network; KITTI2015; KITTI2012

1. Introduction

Three-dimensional scene reconstruction is important in autonomous driving navi-
gation, virtual/augmented reality, etc. The texture/color information of a scene can be
captured directly by cameras, whereas the scene geometry (especially the depth informa-
tion) cannot be obtained easily. There are two ways to obtain the depth information, one is
a direct measurement, another is binocular vision. Special devices, like laser detectors and
millimeter-wave radars, are needed for direct measurement. Besides the direct measure-
ment, depth information can also be obtained by binocular vision-based stereo matching
indirectly. With the great development of high- performance computing devices, the depth
information will be estimated easily by using the captured left and right view images
without additional expensive devices.

Figure 1 shows a typical binocular camera model [1]. The two-camera centers are
placed on the same horizontal line with a baseline of B. Usually, the center of the left camera
is set to be the base point, that is, left focus. The optical axes of the two cameras are parallel,
and the optical axis of the left camera is denoted as the axis Z. The image plane of the
two cameras is parallel with the XY plane which is perpendicular to the axis Z. Suppose
a point V(x, y, z) in the 3D space, which can be projected onto the pixel position pl and
pr of the image plane. The discrepancy between pl and pr is defined as the disparity, i.e.,
d = |pl − pr|. By using the principle of similar triangles, the depth z of the point V(x, y, z)
can be calculated by:

z = B× f /d (1)

where f represents the focal length of the camera. The value of x and can be calculated by:

x = z× xl
f

y = z× yl
f

(2)
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where xl and yl are the horizontal and vertical coordinates of the point on the left image
plane. Because the baseline B and the focal length f can be obtained after camera calibra-
tion [2], only the disparity should be calculated to obtain the depth information of a scene.
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Figure 1. Binocular vision camera model converts binocular vision into a coordinate system.

Stereo matching [3] between the left and the right images can be used to calcu-
late the disparity. Generally speaking, there are three kinds of stereo matching algo-
rithms, i.e., local minimization-based matching, regional minimization-based matching,
and global minimization-based matching. With a given matching error function, the local
minimization-based matching algorithms are conducted by finding the disparity that can
result in local minima for a pixel. Typical algorithms are cross-based local stereo match-
ing with orthogonal integral images [4], local stereo matching with improved matching
cost [5], etc. The regional minimization-based matching assumes that the disparities of
pixels in a texture/color region can be modeled by a linear function. By using the initial
disparities that are obtained from local minimization-based matching, the disparities of
the pixels in each region can be modified by regression [6]. The basic concept of global
minimization-based matching is to estimate the disparities of all the pixels directly by
modelling and solving a global energy function according to global optimization [7]. Typ-
ical global matching algorithms are dynamic programming-based algorithm [8], a belief
propagation algorithm [9,10], a graph cut-based algorithm [11,12] and so on. There are
different merits and demerits for each kind of algorithm. The complexity of the local
minimization-based algorithms is very small, but the accuracy is somewhat not good
enough. The global minimization-based algorithms usually give better results than the lo-
cal minimization-based algorithms, but the complexity is very high. Besides, the boundary
effect usually occurs because the global energy function cannot deal with the local texture
and depth variations in the scene. The regional minimization-based algorithms seem to
exploit the merits of local and global minimization-based algorithms simultaneously, but
additional image segmentation is introduced, which increases the complexity.

Recently, because of the excellent performance in dealing with computer vision prob-
lems, convolutional neural network (CNN) has also been used for stereo matching [13].
The CNN-based stereo matching algorithms can also be divided into two kinds. One is
the end-to-end training-based methods, which usually require relatively large network
parameters [14,15], and the other is to use CNNs to extract compact features of blocks
in the left and the right images for further matching, a kind of network that is usually
simpler than the former. Academically, we usually understand it by analogy with simase
convolution network, in contrast to the pseudo simase network, we only need one set of
network parameters [16–19].
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In this paper, we propose an improved CNN-based local matching algorithm. Specifi-
cally, to efficiently extract the patch features, we add a deconvolution module in front of
the network to learn how to enlarge the size of the input image patches. The de-convolved
features of the left and the right view image patches are further fed into the successive con-
volutional layers with max-pooling to obtain compact features. Afterwards, these compact
features are put together by dot product operation to generate a one-dimensional feature.
Finally, softmax activation is performed based on the one-dimensional feature to estimate
the disparity of the central pixel of the input left view image patch. Experimental results in
the KITTI2012 and 2015 datasets show that more accurate disparities can be obtained by
the proposed method.

The remainder of this paper is organized as follows. Related work is briefly introduced
in Section 2. The proposed algorithm is described in detail in Section 3. Experimental
results and conclusions are given in Sections 4 and 5 respectively.

2. Related Work

Traditional stereo matching algorithms mainly include SGM (Semi global match-
ing [20], BM (Block Matching) [21], GC (Graph Cut) [22], BP (Belief Propagation) [10] and
DP (Dynamic Programming) [23]. In recent years, apart from the CNN-based stereo match-
ing algorithms, the end-to-end method has also been developed well. N. Mayer et al. [24]
created a large end-to-end deep neural network with the synthetic dataset. Dispnet. J.
Pang et al. [25] proposed a two-stage coarse end-to-end model to refine the convolutional
network for stereo matching. Recently, Khakis [26] proposed an end-to-end neural network
that used the stacked hourglass backbone and increased the number of 3D convolutional
layers for cost aggregation. However, the end-to-end method usually needs large memory
and possesses large computational complexity, and it is hard to converge [27].

For the CNN-based local matching algorithm, A. Geiger et al. [28] built a prior for the
disparity to reduce the matching ambiguities of the remaining points. Melekhov et al. [29]
created two channels local window with conventional confidence features. The features
and disparity patches were trained by CNN simultaneously. Chang et al. [15] proposed
a pyramid stereo matching network, namely PSM-Net. The network structure consists
of two main modules: spatial pyramid pooling and 3D CNN. It can fully exploit context
information for finding correspondence in ill-posed regions. J. Zbontar, et al. [16] proposed
a binary classification neural network with supervised training to calculate the matching
error with small image patches. Xiao Liu et al. [17] proposed using dilated convolution in
the CNN to preserve the features of different scales so that better matching accuracy can be
achieved. Compared to traditional convolution, the advantage of dilated convolution is
that it can obtain a larger receptive field under the same convolution kernel size. However,
too much dilated convolution will lead to too large a network structure and increase
redundant information. Luo et al. [18] proposed a stereo matching algorithm by using
the twin convolutional networks with shared weights in the left and the right network
layers. In this method, the size of image patches ranges from 9 × 9 to 37 × 37. By using the
constant size of the convolution kernel and the limited number of layers, the inference time
for an image with resolution of 375 × 1275 is only 0.34 s. To improve the matching accuracy
of the boundary and the low-texture regions, Feng et al. [27] proposed a deeper neural
network with a larger kernel size (such as 17 × 17), while the input images are up-sampled
to two times.

In summary, to achieve higher accuracy, the patch size is usually enlarged. But larger
patch size also entails larger computational complexity. Moreover, the disparity map size
decreases with the increase of the input patch size. For example, in the case that the original
image size is 375 × 1242, it will be 347 × 1216, when using the network trained with an
input patch size of 29 × 29. When the input patch size is 45 × 45, it will change into
331 × 1198. For the missing pixels at the edge of the image, it’s disparity value is derived
from the outermost layer of the disparity map. Besides, there is also an upper bound of
the accuracy increment when increasing the input patch size. The above conclusions will
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be experimentally verified at the end of paper In this paper, we expand the size of the
image patch by deconvolution layers instead of using naive up-sampling methods and
then obtain better results.

3. Proposed Method

We propose a type of CNN neural network with deconvolution layers [30] to adap-
tively expand the size of the input patches by referring to the GA-Net feature extraction. We
introduce deconvolution at the beginning of the convolutional network and then perform
the convolution operation. Deconvolution plays the role of up-sampling. The feature
size after deconvolution is larger than the feature size before deconvolution. The back-
bone of the proposed network is based on the Siamese neural network [31] and MC-CNN
network [19], and we refer to the previous part of MC-CNN and combine the network
architecture with the Siamese neural network. The basic structure of the proposed network
is shown in Figure 2. As can be seen, the overall network structure can be divided into four
modules: image patch input module, deconvolution module, convolution module with dot
product, and the Softmax-based loss calculation module. In the process of post-processing,
we use the internal check method for checking the left and the right consistency, and use
the ray filling method for filling invalid pixels. The flow chart of the overall algorithm is
shown in Figure 3.

Image patch input module: Two image patches, denoted by PL
W×H(p) and PR

(W+200)×H(q)
respectively, are input into the neural network, where the superscripts “L” and “R” denote
the left and the right image patch, the subscripts “W × H” and “(W + 200)× H” represent
the size of the two image patches, p is the horizontal position of central pixel in the left
image patch, and q is the horizontal position of a pixel in the central line of the right image
patch. The aim of the neural network is to determine whether the left image patch can be
matched by a sub-patch with a size of W × H in the right image patch, as shown in Figure 4.
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Figure 3. The overall structure of the stereo matching algorithm. The left and right image will
pass through ASDM Net and generate a three-dimensional array called the DSI (disparity space
image). After four-way cost aggregation, a new DSI will be generated. In this paper, we will use
the quadratic fitting method to directly attend the sub-pixel level. After that, we use the inner check
method to check the left and right consistency and finally, use the ray filling method to fill the invalid
pixel position.
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Figure 4. Illustration of the input left and right image patches. Since the input images have been
rectified by pole line, the center of the left and right image are all on the uniform line.

3.1. Deconvolution Module

As shown in Figure 5, let the input vector that is reshaped from a 2× 2 matrix of the
deconvolution operation be i ∈ R4×1, the output (o ∈ R9×1) vector that can be reshaped to
a 3× 3 matrix of the deconvolution operation can be written as:

oDC = HHH i (3)

where the subscript “DC” means deconvolution, HHH ∈ R9×4 denotes the parameter matrix
of the deconvolution operation,

HHH =


h11, h12, h21, h22, 0, 0, 0, 0, 0
0, h11, h12, 0, h21, h22, 0, 0, 0
0, 0, 0, h11, h12, 0, h21, h22, 0
0, 0, 0, 0, h11, h12, 0, h21, h22


T

(4)
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Figure 5. The operation of the one-step of deconvolution. Deconvolution is similar to convolution
except that it can enlarge the original image.

For the case of multi-deconvolution layers, the output of the deconvolution layer can
be represented as:

oDC = HHH N(· · · (HHH 2(HHH 1i))) (5)

where, the HHH 1, . . . , and HHH N are parameters that should be learnt.
Convolution module: The aim of the convolution module is to extract compact fea-

tures of the left and the right image patches for further matching. As introduced in the
deconvolution module, the input vector, the output vector, and the convolution operation
can be expressed by X ∈ R9×1, Y ∈ R4×1, and C ∈ R4×9,

C =


c11, c12, c21, c22, 0, 0, 0, 0, 0
0, c11, c12, 0, c21, c22, 0, 0, 0
0, 0, 0, c11, c12, 0, c21, c22, 0
0, 0, 0, 0, c11, c12, 0, c21, c22

 (6)

For the case of multi-convolutional layers, the output of convolution layer can be
represented as:

Y = CN(· · · (C2(C1i))) (7)

where, the CCC1, . . . , and CCCN are the parameters of each layer that should be learnt.
Figure 6 shows the difference between convolution and deconvolution operations.

The calculation relationship of the size of the convolutional network is:

O =
(I − k + 2p)

s
+ 1 (8)

while the calculation relationship of the size of the deconvolution network is:

O = s(I − 1)− 2p + k (9)

where O represents the output feature size, I represents the input feature size, s rep-
resents the step size, p represents the fill size, and k represents the convolution kernel
size. In the convolutional neural network, the number of channels of the input feature
is CHi, the number of channels of the output feature map is CHo, and the size of the
convolution kernel is w× h. Then the number of parameters of the convolutional layer
is CHi × h× w× CHo + CHo. If the batch normalization structure is adopted, CHo [25]
should be omitted.

As shown in Figure 2, the left and the right image patch pass through their respective
network branches. Each network branch contains different sizes of convolutional kernels.
The size of the convolutional kernels of each layer varies according to the size of the
previous layer. Each layer is then followed by a rectified linear units (ReLU) layer and
batch normalization (BN) function except for the last layer. The output of the two branches
are Ole f t〈1×1×64〉, Oright〈1×201×64〉 respectively, where:

Ole f t =
[
ol

1, · · · , ol
64

]
(10)

Oright = [or
1, · · · or

n, · · · , or
201] (11)
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and
or

n = [or
1, · · · , or

64] (12)

n ∈ {1 . . . 201}. Finally, the following dot product layer is adopted.

r = OleftOT
right =


ol

1or
11
+ ol

2or
12
+ · · ·+ ol

64or
164

...
ol

1or
2011

+ ol
2or

2012
+ · · ·+ ol

64or
20164

 (13)

to generate a vector r to indicate the matching degree of each possible disparities between
the two image patches.
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Figure 6. Illustration of convolution and deconvolution. (a,b) represent the convolution operation,
the green part represents the convolution result and blue part represents the input, the shadow part
represents the size of convolution kernel. (c,d) represent the deconvolution operation, the green part
represents the deconvolution result, the blue part represents the input and the shadow part represents
the kernel of deconvolution.

3.2. Softmax-Based Loss Calculation Module

In this module, we use Softmax classifier equipped by cross-entropy loss function
to calculate the loss of each disparity. Note that there are 201 possible disparities in the
proposed method. For each possible disparity j ∈ {1, · · · 201}, the softmax function can be
written to be:

pj = Softmax(j) =
ej

∑201
i=1 ei

(14)

where pj denotes the probability of j. The outputs of all the possible disparities is then
generated to be an output vector po = (p1, · · · p201). The cross-entropy loss can be calcu-
lated by:

L(Θ) = −∑201
j=1 pgt(j)log(po(j)) (15)

where Θ denotes the current network parameters, pgt is the ground truth label of each
possible disparities. The ground truth label pgt can be defined as a vector with only a
single “1” element and “0” for all the other elements, where the position of the “1” element
corresponds to the actual disparity, as shown in Figure 7a. To be more flexible, we define
the pgt to be:

pgt(j) =


0.5 j = dgt

0.2
∣∣j− dgt

∣∣ = 1
0.05

∣∣j− dgt
∣∣ = 2

0 otherwise,

(16)

where dgt represents the groundtruth disparity value, as shown in Figure 7b. The training
procedure is to find the optimal network parameter Θopt to minimize the cross-entropy
loss of (18).
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3.3. Post-Processing

In the training procedure, we put the left and right images into the network model,
and the raw output of the neural network (whose softmax layer is excluded for test) is a
three-dimensional array. As shown in Figure 8a, H, W, D represent the three dimensions
of DSI, respectively. Each element in the plane of HW represents the matching cost of the
pixel under a certain disparity d. If the final disparities are selected based on the minimum
matching cost of each pixel, noises will be inevitable, as shown in Figure 9. Although by
adding the deconvolution layers, noises can be reduced to some extent, the result is still not
satisfactory. Therefore, we adopted the semiglobal matching (SGM) method [20] to further
process the raw output of the convolutional network and generate a better disparity map.

Based on the SGM method, we select four directions (up, down, left, and right) for
cost aggregation as shown in Figure 8b. Take the left horizontal direction cost aggregation
as an example, the cumulative cost iteration can be expressed as,

La(x, y, d) = Cost(x, y, d) + min


La(x− 1, y, d),

La(x− 1, y, d− 1) + P1,
La(x− 1, y, d + 1) + P1,

mind[La(x− 1, y, d)] + P2

−mini{La(x− 1, y, d)}, (17)

where (x, y, d) is the position of the cost cube, P1 = 30 and P2 = 160 are the predefined penalty
parameters, Cost(x, y, d) represents the matching cost obtained directly from the convolution network,
and La(x, y, d) is the cost after aggregation whose initial value is the output of the neural network,
mind{La(x− 1, y, d)} represents the minimum cost of the position (x− 1, y, d) in the cost cube for all
possible disparity d. After the aggregation, one HD plane will be updated. Similarly, for the up and
down directions, the corresponding HW plane will be updated. Finally, the aggregate values of the
four directions are added as the final DSI.
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Figure 9. The upper image was generated by the proposed neural network with 4Conv, the following
image was generated by 1Deconv(5) and 4Conv. The input block size was set to be 37 × 37.

After the above steps, we still choose the disparity according to the principle of minimum
cost value. To further improve the accuracy of the disparity map with low complexity, we adopt
the inner check method [19] in the left/right consistency check step. The inner check method is to
calculate the DSI of the right image through the DSI of the left image rather than network again.
Let CostL denote the DSI of the left image, CostR denote the DSI of the right image, DL denote
the disparity map obtained by CostL, and DR denotes the disparity map obtained by CostR. If∣∣DL(x, y)− DR(x− d, y)

∣∣ ≤ 1, pixel p(x, y) is valid in the DL, otherwise we will mark it as an invalid
pixel and assign it with disparity values from surrounding pixels.

4. Experimental Results and Analyses
We used KITTI2015, KITTI2012 binocular dataset to verify the performance of the proposed

neural network. The resolution of the images in the dataset is 1242 × 375. We first cropped each
image into patches with size of 37 × 37 (for the left image) and 37 × 237 (for the right image). We
randomly selected 75% of the images for training, while the remaining images were used for the test.
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During the training, the batch size is set to be 128. The NVIDIA GeForce GTX 1070Ti graphical card
was used for training, and the iteration number was set to be 40000.

4.1. KITTI Datasets Description
The KITTI stereo dataset is filmed by calibrated cameras while driving, such as Figure 10. The

content of the dataset mainly includes roads, cities, residential areas, campuses, and pedestrians. The
3D laser scanner can obtain relatively dense distance information, and the depth map of the scene
obtained by 3D laser scan can be used as the real disparity map after calculation. The KITTI platform
provides 3D point cloud data obtained by 3D scanning lasers, corresponding calibration information,
and coordinate transformation information, from which we can generate the real disparity maps.
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Figure 10. Sample images of KITTI2015 dataset.

4.2. Patch Pair Generation
We first cropped the left image into patches with a size of 37 × 37. Then, the ground truth

disparity of the central pixel p of the patch is recorded. For each of the cropped left image patch,
we found the pixel position q in the right image according to the ground truth disparity of the pixel
p. Centered by the position q, we cropped the patch with the size of 37 × 237 as the input right
image patch, as shown in Figure 3. Then the input of the proposed neural network can be denoted as〈
PL

37×37(p), PR
37×237(q)

〉
. Therefore, for the position p in the left image patch, there are 200 potential

matching positions, {
PR

37×237(q− 100), . . . PR
37×237(q + 100)

}
, (18)

and the aim is of the neural network is to select the optimal matching position. To this end, we
also define the label of the neural network to be {0, · · · , 0.05, 0.2, 0.5, 0.2, 0.05, · · · , 0}, as shown in
Figure 7.

4.3. Image Sample Processing
In the KITTI2015 dataset, the disparity map is saved in “png” format and the data type is uint16.

In the disparity map, the point with a gray value of 0 is an invalid point, that is, there is no real
disparity value at this point [12]. For these points, we did not put them into the training set. The
disparity map processing is expressed as follows:

DispValue(x, y) = (( f loat)Disp(x, y))/256.0 (19)

where, Disp(x, y) represents the original disparity map, DispValue(x, y) represents the processed
disparity map. The image patch should be further normalized to [0,1] for the input of the proposed
neural network.

4.4. Training
We first tested six configurations of layers and convolutional kernels for the proposed neural

network without deconvolution layers, as shown in Table 1. 3Conv in the table represents three
convolution layers, Conv13 represents 13× 13 as the size of the convolution kernel in the convolution
layer, ReLU represents rectified linear units, BN represents batch normalization function and so
forth. By taking the deconvolution layers into the network structure, the overall convolution neural
network configurations are given in Table 2, in which 1Deconv(3) stands for a single deconvolution
layer with a kernel of 3 × 3.
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Table 1. Six configurations of convolutional layers for the proposed neural network.

3Conv 4Conv 6Conv

Conv13 + BN + ReLU Conv10 + BN + ReLU Conv9 + BN + ReLU
Conv13 + BN + ReLU Conv10 + BN + ReLU Conv9 + BN + ReLU

Conv13 + softmax Conv10 + BN + ReLU Conv7 + BN + ReLU
Conv10 + softmax Conv7 + BN + ReLU

Conv5 + BN + ReLU
Conv5 + softmax

7Conv 9Conv 11Conv
Conv7 + BN + ReLU Conv5 + BN + ReLU Conv5 + BN + ReLU
Conv7 + BN + ReLU Conv5 + BN + ReLU Conv5 + BN + ReLU
Conv7 + BN + ReLU Conv5 + BN + ReLU Conv5 + BN + ReLU
Conv7 + BN + ReLU Conv5 + BN + ReLU Conv5 + BN + ReLU
Conv5 + BN + ReLU Conv5 + BN + ReLU Conv5 + BN + ReLU
Conv5 + BN + ReLU Conv5 + BN + ReLU Conv5 + BN + ReLU

Conv5 + softmax Conv5 + BN + ReLU Conv5 + BN + ReLU
Conv5 + BN + ReLU Conv3 + BN + ReLU

Conv5 + softmax Conv3 + BN + ReLU
Conv3 + BN + ReLU

Conv3 + softmax

Table 2. The overall convolution neural network configurations for the proposed neural network.

1Deconv(5) and
4Conv

1Deconv(3) and
4Conv 2Deconv and 6Conv 3Deconv and 6Conv

Deconv5 + BN Deconv3 + BN Deconv3 + BN Deconv3 + BN + ReLU
Conv11 + BN + ReLU Conv11 + BN + ReLU Deconv5 + BN Deconv5 + BN + ReLU
Conv11 + BN + ReLU Conv11 + BN + ReLU Conv9 + BN + ReLU Deconv7 + BN + ReLU
Conv11 + BN + ReLU Conv10 + BN + ReLU Conv9 + BN + ReLU Conv9 + BN + ReLU

Conv11 + softmax Conv10 + softmax Conv9 + BN + ReLU Conv9 + BN + ReLU
Conv7 + BN + ReLU Conv9 + BN + ReLU
Conv7 + BN + ReLU Conv7 + BN + ReLU

Conv7 + softmax Conv7 + BN + ReLU
Conv7 + softmax

Moreover, we also verified the effectiveness of the proposed method with different image block
input sizes. We try to set the size of the left image block to 29 × 29, 33 × 33, 37 × 37, 41 × 41, and
45 × 45. Accordingly, the right input image block sizes were set to be 29 × 229, 33 × 233, 37 × 237,
41 × 241, 45 × 245.

4.5. Comparison
Figure 11 shows the loss curve of each network configuration. We can see that the network with

nine convolutional layers and four convolutional layers converges better than the other configurations.
Table 3 shows the percentage of missing matching pixels with a threshold of 2, 3, 4, 5 in the test set,
in which 37 × 37 represents the size of the input image block. The threshold means the absolute
difference between the estimated disparity and the actual disparity. We can see that the network with
nine convolutional layers configuration performs better for 2, and 3 pixel errors (with percentages of
10.86% and 8.07%), whereas, the network with four convolution layers configuration performs better
for 5 pixels error (with a percentage of 6.01%). For the threshold of 4, the performances are the same
as each other. (the percentage is 6.82%).

Moreover, Table 4 compares the number of parameters of different network configurations. We
can see that the more convolutional layers produce fewer network parameters. In Figure 12, we can
see that the network structure that takes up more space of “ckpt” file can obtain better matching
results. However, it is difficult to obtain a good matching result if the network parameters are too
small such as the network with 11Conv configuration.



Appl. Sci. 2022, 12, 2086 12 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20 
 

  Conv7 + BN + ReLU Conv7 + BN + ReLU 

  Conv7 + softmax Conv7 + BN + ReLU 

   Conv7 + softmax 

Moreover, we also verified the effectiveness of the proposed method with different 

image block input sizes. We try to set the size of the left image block to 29 × 29, 33 × 33, 37 

× 37, 41 × 41, and 45 × 45. Accordingly, the right input image block sizes were set to be 29 

× 229, 33 × 233, 37 × 237, 41 × 241, 45 × 245. 

4.5. Comparison 

Figure 11 shows the loss curve of each network configuration. We can see that the 

network with nine convolutional layers and four convolutional layers converges better 

than the other configurations. Table 3 shows the percentage of missing matching pixels 

with a threshold of 2, 3, 4, 5 in the test set, in which 37 × 37 represents the size of the input 

image block. The threshold means the absolute difference between the estimated disparity 

and the actual disparity. We can see that the network with nine convolutional layers con-

figuration performs better for 2, and 3 pixel errors (with percentages of 10.86% and 8.07%), 

whereas, the network with four convolution layers configuration performs better for 5 

pixels error (with a percentage of 6.01%). For the threshold of 4, the performances are the 

same as each other. (the percentage is 6.82%). 

Table 3. The percentage of missing matching pixels with threshold of 2, 3, 4, 5 in the 2015 KITTI test 

set. 

ConvNet-ValError 2-Pixel-Error 3-Pixel-Error 4-Pixel-Error 5-Pixel-Error 

37-3Conv 12.21 8.55 6.95 6.05 

37-4Conv 11.11 8.12 6.82 6.01 

37-6Conv 11.79 8.73 8.35 6.53 

37-7Conv 11.96 8.87 7.53 6.73 

37-9Conv 10.86 8.07 6.82 6.07 

37-11Conv 14.95 10.36 8.82 7.92 

 

Figure 11. Loss curve of different network configurations. 

Moreover, Table 4 compares the number of parameters of different network config-

urations. We can see that the more convolutional layers produce fewer network parame-

ters. In Figure 12, we can see that the network structure that takes up more space of “ckpt” 

file can obtain better matching results. However, it is difficult to obtain a good matching 

result if the network parameters are too small such as the network with 11Conv configu-

ration. 

  

Figure 11. Loss curve of different network configurations.

Table 3. The percentage of missing matching pixels with threshold of 2, 3, 4, 5 in the 2015 KITTI
test set.

ConvNet-ValError 2-Pixel-Error 3-Pixel-Error 4-Pixel-Error 5-Pixel-Error

37-3Conv 12.21 8.55 6.95 6.05
37-4Conv 11.11 8.12 6.82 6.01
37-6Conv 11.79 8.73 8.35 6.53
37-7Conv 11.96 8.87 7.53 6.73
37-9Conv 10.86 8.07 6.82 6.07
37-11Conv 14.95 10.36 8.82 7.92

Table 4. The number of network parameters of different network structures for input left patch
size 37.

NetworkType 3Conv 4Conv 6Conv 7Conv 9Conv 11Conv

Number of unilateral
network parameters 1,416,896 1,248,000 953,536 918,720 721,600 627,932
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Table 5 compares the number of parameters of different network configurations with deconvolu-
tion structure. The size of image layers will be increased because of the operation of the deconvolution
kernel. Therefore, in the following, the size of the convolution kernels will also be enlarged corre-
spondingly. From Tables 4 and 5, we can see that the best matching result can be obtained with a
constant convolution kernel size and appropriate deconvolution structure layers such as 1Deconv(5)
and 4Conv.
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Table 5. The number of network parameters with deconvolution structure for input left patch size 37.

Network Type 1Deconv(5)
and 4Conv

1Deconv(3)
and 4Conv

2Deconv
and 6Conv

3Deconv
and 6Conv

Number of unilateral network
parameters 1,987,264 1,812,160 1,701,568 1,902,182

Table 6 shows the performances of the neural network with different deconvolution layers.
we can see the 1Deconv(5) with 4Conv configuration owns the best performance in the table. The
corresponding 2, 3, 4, and 5 pixel errors are only 10.31%, 7.60%, 6.38%, and 5.74%, whereas the errors
are 15.02%, 12.99%, 12.04%, and 11.38% for the method in Zbontar [19]. We can also see that excessive
usage of deconvolution layers will not always improve the matching accuracy. We believe the reason
is that although deconvolution can strengthen the edge information and equip them with better
model expression ability, more deconvolution layers will introduce more irrelevant elements such as
“0” in formula 6.

Table 6. The results with deconvolution structure and other network for input left patch size 37.

ConvNet-ValError 2-Pixel-Error 3-Pixel-Error 4-Pixel-Error 5-Pixel-Error

37-1Deconv(5) and 4Conv 10.31 7.60 6.38 5.74
37-1Deconv(3) and 4Conv 10.36 7.67 6.49 5.78

37-2Deconv and 6Conv 13.63 10.56 9.27 8.53
37-3Deconv and 6Conv 15.65 12.46 11.17 10.45

MC-CNN-acrt [19] 15.02 12.99 12.04 11.38
MC-CNN-fast [19] 18.47 14.96 13.18 12.02
Efficient-Net [18] 11.67 8.97 7.62 6.78

As shown in Table 7, we can see that the proposed neural network with deconvolution layers
can achieve better matching results in different image block sizes compared to the neural network
without deconvolution layers. When the input image block size is 29 × 29, the best result of the
neural network without deconvolution layers (4Conv configuration) is 12.76%, 9.98%, 8.63%, 7.84%
for the 2, 3, 4, and 5 pixel errors. As a comparison, the best result of the neural network with
deconvolution layers (1Deconv(3)-4Conv configuration) is 12.47%, 9.89%, 8.71%, and 8.02%. That is
to say, benefiting from the deconvolution layers, better results can be achieved in the cases of 2 and
3 pixel errors. Furthermore, we also enlarged the input image block size to discuss the influence
of the block size. When the input image block size is 41 × 41, the best result of the neural network
without deconvolution layers (5Conv configuration) is 10.39%, 7.64%, 6.43%, and 5.69% for the 2, 3,
4, and 5 pixel errors, while that with deconvolution layers (also 1Deconv(3)-4Conv configuration) is
9.94%, 7.31%, 6.15%, 5.47%, which are all better than those without deconvolution layers. In summary,
equipped with the deconvolution layers, better results can be achieved in most cases, indicating the
effectiveness of the proposed method.

To further verify the effectiveness of the proposed neural network, we also undertook the
experiments with the KITTI2012 validation set. As shown in Table 8, better results can also be
achieved by the proposed neural network. The corresponding 2, 3, 4, and 5 pixels errors are only
8.42%, 7.07%, 6.43%, 6.02%, whereas the errors are 12.86%, 10.64%, 9.65%, and 9.03% for the method
in [18].

In addition, we also compared the proposed method with the other state-of-the-art methods, MC-
CNN [19], Efficient-CNN [18], Elas [28], SGM [20], SPSS [30], PCBP-SS [30], StereoSLIC [31], Displets
v2 [32] in Tables 9 and 10, respectively. From Table 9, we can see that, for the KITTI2012 dataset,
the DispletsV2 [32] is the best, the corresponding 2, 3, 4, and 5 pixel errors are 4.46%, 3.09%, 2.52%,
and 2.17%. However, we should also note that the accuracy is achieved with great computational
complexity. The processing time for a picture on average is 265 s. The MC-CNN-acrt also achieves
good results, i.e., the 2, 3, 4, and 5 pixel errors are 5.45%, 3.63%, 2.85%, and 2.39%. However, its
processing time is still large, i.e., 67 s. The proposed method can achieve comparable accuracy (i.e.,
5.62%, 4.01%, 3.02%, and 2.65% for 2,3,4, and 5 pixel errors) with a much small processing time, i.e.,
2.4 s. For the results of the KITTI2015 dataset, as shown in Table 10, we can see that the proposed
method can achieve the smallest 2 pixel error (4.27%). The 3, 4, and 5 pixel errors (3.85%, 2.57%,
and 2.00%) of the proposed method is only a little larger than MC-CNN-slow which achieves the
best accuracy on the whole. However, the processing time of the proposed method is only 2.5 s on
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average, which is much smaller than MC-CNN-slow. Disparity maps and error maps obtained by
final matching are shown in Figures 13 and 14.

Table 7. The percentage of missing matching pixels with threshold of 2, 3, 4, 5 in the 2015 KITTI test
set for input left patch size 29, 33, 41, 45.

Input Patch Size ConvNetModel 2-Pixel-Error 3-Pixel-Error 4-Pixel-Error 5-Pixel-Error
3Conv 13.49 10.29 8.79 7.92
4Conv 12.76 9.98 8.63 7.84
5Conv 12.8 10.1 8.78 8.03

29 × 29 7Conv 13.21 10.44 9.13 8.36
1Deconv(3)-4Conv 12.47 9.89 8.71 8.02
1Deconv(2)-4Conv 12.96 10.28 9.04 8.32

4Conv 12.34 9.59 8.25 7.45
8Conv 13.11 10.31 8.63 7.84

33 × 33 1Deconv(3)-4Conv 12.20 9.70 8.55 7.88
1Deconv(5)-4Conv 12.80 10.20 9.03 8.35

4Conv 10.61 7.69 6.41 5.66
5Conv 10.39 7.64 6.43 5.69
8Conv 11.03 8.21 6.96 6.21

41 × 41 10Conv 11.47 8.51 7.21 6.45
1Deconv(3)-4Conv 9.94 7.31 6.15 5.47
1Deconv(5)-4Conv 10.26 7.51 6.29 5.56

4Conv 10.48 7.55 6.24 5.47
45 × 45 5Conv 10.54 7.69 6.44 5.69

8Conv 10.78 7.88 6.62 5.85
1Deconv(3)-4Conv 9.45 6.86 5.72 5.03

Table 8. The percentage of missing matching pixels with thresholds of 2, 3, 4, 5 in the 2012 KITTI
validation set.

ConvNetModel 2-Pixel-Error 3-Pixel-Error 4-Pixel-Error 5-Pixel-Error

MC-CNN-acrt [21] 16.92 14.93 13.98 13.32
MC-CNN-fast [21] 19.56 17.41 16.31 15.51
Efficient-Net [15] 12.86 10.64 9.65 9.03

Ours 8.42 7.07 6.43 6.02

Table 9. Error comparison of disparity with different algorithms (KITTI2012) %.

Algorithm 2-Pixel-
Error

3-Pixel-
Error

4-Pixel-
Error

5-Pixel-
Error

Runtime
(s)

StereoSLIC [31] 7.20 5.11 4.04 3.33 2.3
PCBP-SS [30] 6.75 4.72 3.75 3.15 300

SPSS [30] 6.28 4.41 3.52 3.00 2
MC-CNN-acrt [19] 5.45 3.63 2.85 2.39 67

Displets v2 [32] 4.46 3.09 2.52 2.17 265
Efficient-CNN [18] 6.51 4.29 3.36 2.82 0.7

Ours 5.62 4.01 3.02 2.65 2.4

Table 10. Error comparison of disparity with different algorithms (KITTI2015) %.

Algorithm 2-Pixel-
Error

3-Pixel-
Error

4-Pixel-
Error

5-Pixel-
Error

Runtime
(s)

Elas [28] 24.09 19.21 17.59 16.82 0.669
SGM [20] 10.03 6.93 5.47 4.48 1.8
SPSS [30] 7.15 4.58 3.46 2.93 3

Efficient-CNN [18] 6.78 4.38 2.56 2.03 1
MC-CNN-fast [19] 7.53 4.01 2.84 2.33 0.2

MC-CNN-slow [19] 6.38 3.27 2.37 1.97 35
Ours 4.27 3.85 2.57 2.00 2.5
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5. Conclusions and Future Work 

To improve the accuracy of stereo matching, based on CNN stereo matching, we de-

signed a novel neural network structure by adding a deconvolution operation before the 

formal convolutional layers. The deconvolution operation introduced at the beginning of 

the network increases the size of the input features maps for the following convolution 

layers, and as a result the whole convolution network learns more information. Besides, 

we also dropped the fully connected layer and replaced it with a dot product to enable it 

to obtain matching results in a short time. Experimental results demonstrated that better 

matching results can be achieved by the proposed neural network structure (with the con-

figuration of 37-1Deconv(5) and 4Conv) with low inference and training time complexity. 
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5. Conclusions and Future Work
To improve the accuracy of stereo matching, based on CNN stereo matching, we designed a

novel neural network structure by adding a deconvolution operation before the formal convolutional
layers. The deconvolution operation introduced at the beginning of the network increases the size of
the input features maps for the following convolution layers, and as a result the whole convolution
network learns more information. Besides, we also dropped the fully connected layer and replaced
it with a dot product to enable it to obtain matching results in a short time. Experimental results
demonstrated that better matching results can be achieved by the proposed neural network structure
(with the configuration of 37-1Deconv(5) and 4Conv) with low inference and training time complexity.
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