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Abstract: This paper presents a fault-tolerant control scheme for the sensor fault in the acceleration
process of the variable cycle engine. Firstly, an adaptive equilibrium manifold model with multiple
inputs and multiple outputs is established. Combined with the Kalman filter bank, sensor fault
diagnosis is carried out to realize the diagnosis and signal reconstruction of the engine in the case
of a single sensor and double sensor faults. On this basis, isolation and group isolation are used to
diagnose sensor faults and reconstruct signal in speed closed-loop control. Then, the control plan
of the acceleration process is optimized based on the target shooting method, aiming to simulate
the variation of various variables in the engine acceleration process more accurately, so as to verify
the feasibility of the sensor fault-tolerant control scheme. Finally, a hardware-in-loop simulation
platform is built based on the idea of distributed control, and the fault-tolerant control scheme of the
sensor proposed previously is verified based on this platform. The results show that the proposed
scheme can accurately diagnose the sensor faults and reconstruct the signal within 0.2 s, and the
actual speed can rise from 67.87% to 99.9% in 4 s, ensuring the safe and rapid completion of the
acceleration process.

Keywords: fault-tolerant control; sensor fault; acceleration process; variable cycle engine; adaptive
equilibrium manifold model; target shooting method

1. Introduction

As the “brain” of an aeroengine, the role of the control system is to make the engine
work stably and reliably under any changing conditions and give full play to its perfor-
mance benefits [1]. Visible, stability and reliability are the fundamental guarantee of all
other higher control requirements. Modern aero engines adopt a full authority digital elec-
tronic control (FADEC) system responsible for complex tasks including control, monitoring
and management. Its structure consists of numerous sensors, actuators and electronic
control components. Due to the long-term work in high temperature, high pressure and
intense vibration, these components are prone to failure during system operation. Once
a fault occurs, the whole control system may collapse, resulting in severe consequences.
According to the data, the sensor fault of aeroengine is higher than 80% of the total system
fault [2].

Fault-tolerant control (FTC) means that when the system fails, the remaining control
tasks can be completed safely according to the specified performance index, or the perfor-
mance index can be reduced but still within the acceptable range. At present, the most
fault-tolerant design of engine control systems is based on hardware redundancy. The
development of non-hardware redundancy is mainly focused on sensor fault diagnosis and
signal reconstruction. In the 1970s, Wallhagen, R. E. and D. J. Arpasi proposed a passive
FTC technology with analytic redundancy to reconstruct the fault system for engines with
sensor faults [3]. Since the 1980s, NASA has designed an analytical redundancy scheme to
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improve engine control reliability, which can detect and distinguish between hard and soft
faults of the control system and reconstruct the system for sensor faults [4]. Around the 90s,
Merrill et al. used a set of Kalman estimators in fault detection and isolation. By monitoring
the residuals of each estimator, specific faults that have occurred can be detected and
isolated [5,6]. Since the end of the last century, intelligent algorithms have been applied in
sensor fault diagnosis and FTC systems and successfully verified in turbojet, turbofan and
other engines [7,8]. Xianghua Huang used a self-association neural network to construct
the analysis redundancy of sensors to ensure the reliability of aircraft engine closed-loop
control [9]. Yang et al. used wavelet transform to diagnose sensor faults, and used BP
neural network to predict the output data of fault sensors [10]. Zhao et al. obtained a set of
modal functions by empirical mode decomposition of the output signal of the sensor, and
took its sample entropy as the fault feature of the sensor, and classified the fault state of
the sensor by sparse representation-based classifier [11]. Chen and Liu used radial basis
function (RBF) neural network and general regression neural network (GRNN) respectively
to predict timing data. If the difference between the predicted value and the actual output
value of the sensor exceeds the set threshold, the sensor is considered to be faulty, and the
sensor signal is reconstructed with the predicted value [12,13]. Sheng et al. proposed an
intelligent FTC system based on an Online Sequential Extreme Learning Machine (OS-ELM)
for sensor faults. The system can realize online fault diagnosis and signal reconstruction
without establishing a system model [14]. These latest research results are mostly combined
with artificial intelligence algorithm for sensor fault diagnosis, most of them stay at the
theoretical level. The complexity of the algorithm reduces the speed of diagnosis and makes
it difficult to apply it in engineering practice. Besides, most of the research on sensor FTC
is based on steady-state control. In the process of engine transition, because the speed and
other parameters are sensitive parameters closely related to the engine performance, to
improve the stability and reliability of the transition, closed-loop control is often carried
out. Therefore, the sensor FTC problem in the transition process also exists, but the relevant
research is still relatively rare.

Because of this, this paper presents an acceleration control scheme based on fault
tolerance of the sensor for variable cycle engine (VCE), as shown in Figure 1. First, in
Section 2, an improved multi-input multi-output adaptive equilibrium manifold model
(AEMM) with dual scheduling variables is established. In Section 3, the AEMM is combined
with the Kalman filter bank to design the single sensor fault and the double sensor faults
diagnosis scheme. Based on this, the actual engine parameter estimation under the sensor
fault is obtained. In Section 4, A multi-target method is used to optimize the engine
acceleration process control plan to verify the FTC scheme. In Section 5, the above procedure
is verified by hardware-in-the-loop simulation, and the FTC of the accelerated process
is proved from the perspective of engineering realizability. Section 6 concludes with a
summary of the paper.
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2. On-Board Adaptive Model
2.1. Equilibrium Manifold Model

Equilibrium manifold model (EMM) is a model developed from the linearization
model [15].

Consider the following smooth nonlinear system:{ .
x = f (x, u)

y = g(x, u)
, (1)

where f (x, u) and g(x, u) are smooth functions. Do Taylor expansion at any equilibrium
point and abandon the higher-order terms, and a linear model of the original system can
be obtained: { .

x = A(x− xe) + B(u− ue)

y− ye = C(x− xe) + D(u− ue)
. (2)

The set of all equilibrium points in a system constitutes an equilibrium family Γe and
Γe can be considered an equilibrium manifold.

Γe = {(xe, ue, ye)| f (xe, ue) = 0, ye = g(xe, ue)}. (3)

These equilibria can be scheduled with a variable of the same dimension as the control
quantity u, which is defined as the scheduling variable α. α is composed of relevant
variables of the current working point and can be expressed as α = p(x, y, u). Then we
can get: 

xe = xe(α)

ue = ue(α)

ye = ye(α)

. (4)

Similarly, the state matrix and control matrix of the linearized model of the system
at each equilibrium point can also be expressed as the matrix scheduled with α, so as to
obtain the dynamic model of the system near the equilibrium manifold:{ .

x = A(α)(x− xe(α)) + B(α)(u− ue(α))

y− ye(α) = C(α)(x− xe(α)) + D(α)(u− ue(α))
. (5)

To make the linearized model family (5) a nonlinear model, it is necessary to establish
the relationship between scheduling variables α and the current working point. Considering
the algebraic relationship between y and x, u, only the following design is needed:

α = p(x, u). (6)

By combining Equations (5) and (6), a nonlinear model scheduled by x and u can be
obtained, that is, an equilibrium manifold model. It can be seen that the EMM is derived
from the linearized model family (5) and the scheduling relation (6). It has the characteristic
of variable parameter of linear parameter varying (LPV) model whose coefficient matrix
all changes with the working state, and the introduction of Equation (4) makes the model
always change near the equilibrium manifold, which overcomes the deficiency of steady-
state error in LPV model.

In terms of the structure of the model, the EMM can be regarded as a Taylor expansion
model at the equilibrium point of real-time change. The Equation (6) essentially establishes
a mapping of the current operating point to the Taylor expansion point on the equilibrium
manifold. Figure 2 shows the three mapping modes of equal input u = ue(α), equal

partial state xi = xie(α), and the orthogonal expansion
√
(xe(α)− x)2 + (ue(α)− u)2. The

Equation (6) can be obtained from these mappings. The three designs have different EMM
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and different errors from Equation (1). Determine the value of the scheduling variable utiliz-
ing equal input shown in Figure 2 and select fuel flow W f and nozzle area A8 as the scheduling

variables. Then, there is W f e(α) = W f , A8e(α) = A8 and α =
(

W f , A8

)
. Represent A(α) as[

a11(α) a12(α)
a21(α) a22(α)

]
and the EMM of the above process can be expressed as:


.
nh = a11(α)(nh − nhe(α)) + a12(α)(nl − nle(α))
.
nl = a21(α)(nh − nhe(α)) + a22(α)(nh − nle(α))

α = u =
(

W f e, A8e

) . (7)

It can be seen that, due to the selection of scheduling variables and scheduling relations,
the control matrix B(α) will not appear in the equilibrium manifold expansion model, and
the EMM is reduced to a group of differential equations without initial input. It should be
noted that the complete dynamic matrix can be obtained by taking partial derivatives of the
corresponding variables [16]. In other words, the EMM and the nonlinear model have the
same state-space matrix at the same equilibrium point, that is, their linearization models
are the same. Using this property, the B matrix at any equilibrium point can be obtained.
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Due to the strong nonlinear characteristics of the engine, just as different input com-
binations can obtain different linearized models, a nonlinear object also has multiple
equilibrium manifold dynamic structures, which means different combinations of inputs
give different A(α). That is to say, if a set of inputs is applied at a certain equilibrium
point and identification data is obtained, then the identified model can only be used in the
neighborhood of the set of inputs (i.e., the point with little state change). In addition, since
the EMM loses the B matrix and only retains a matrix, different input combinations are
easy to identify and obtain a matrix with great differences. Compared with the traditional
MIMO linearization model, it is easier to generate dynamic characteristics with remarkable
differences. To solve this problem, one way is to build different EMMs for different input
combinations. We can define the following variables:

θ =
∆W f /`W f

∆W f /`W f + ∆A8/`A8
, (8)

where `W f and `A8 represent the length of the subinterval, ∆W f and ∆A8 represent the
change value of the input quantity. Therefore, this variable can be regarded as the pro-
portion of the change of fuel flow in the shift of total input quantity and can be called the
modification of control quantity.



Appl. Sci. 2022, 12, 2085 5 of 23

Then the EMM of the engine with a wide range of variable cycles can be obtained
through identification and the parameterized representation of the model coefficient matrix
under each θ [17]. It should be noted that parameter identification of coefficient matrix
needs to be based on nonlinear component level model (CLM) of the engine. The establish-
ment method of CLM of VCE has been very mature. For example, detailed steps are given
in reference [18], which will not be elaborated in detail in this paper.

The following is to test the operation effect of the model by changing the control
quantity randomly in an extensive range. The control quantity shown in Figure 3 is applied
to the CLM and the EMM. The operation results of the two models are shown in Figure 4.
It can be seen that the model has high steady-state accuracy and good dynamic accuracy.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 24 
 

8 8

,f f

f f

W W
W W A A

θ
Δ

=
Δ + Δ

l
l l

  (8)

where fWl  and 8Al  represent the length of the subinterval, fWΔ  and 8AΔ represent 
the change value of the input quantity. Therefore, this variable can be regarded as the 
proportion of the change of fuel flow in the shift of total input quantity and can be called 
the modification of control quantity. 

Then the EMM of the engine with a wide range of variable cycles can be obtained 
through identification and the parameterized representation of the model coefficient 
matrix under each θ  [17]. It should be noted that parameter identification of coefficient 
matrix needs to be based on nonlinear component level model (CLM) of the engine. The 
establishment method of CLM of VCE has been very mature. For example, detailed steps 
are given in reference [18], which will not be elaborated in detail in this paper. 

The following is to test the operation effect of the model by changing the control 
quantity randomly in an extensive range. The control quantity shown in Figure 3 is 
applied to the CLM and the EMM. The operation results of the two models are shown in 
Figure 4. It can be seen that the model has high steady-state accuracy and good dynamic 
accuracy. 

 
Figure 3. EMM vs CLM—input quantity. 

 
Figure 4. EMM vs CLM—output quantity. 

2.2. On-Board Adaptive Equilibrium Manifold Model 
Referring to the conventional linear state variable model with degradation, the 

following EMM with degradation is established: 

( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

+
,e

e e

x A x x L h

y y C x x M h

α α α

α α α α

 = −


− = − +

&
 (9)

0 5 10 15 20 25

time(s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Wf
A8

0 5 10 15 20 25
time(s)

65

75

85

95

105

lo
w

 s
po

ol
 s

pe
ed

 (%
)

nl-CLM
nl-EMM

0 5 10 15 20 25
time(s)

83

88

93

98

103

hi
gh

 s
po

ol
 s

pe
ed

 (%
)

nh-CLM
nh-EMM

Figure 3. EMM vs CLM—input quantity.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 24 
 

8 8

,f f

f f

W W
W W A A

θ
Δ

=
Δ + Δ

l
l l

  (8)

where fWl  and 8Al  represent the length of the subinterval, fWΔ  and 8AΔ represent 
the change value of the input quantity. Therefore, this variable can be regarded as the 
proportion of the change of fuel flow in the shift of total input quantity and can be called 
the modification of control quantity. 

Then the EMM of the engine with a wide range of variable cycles can be obtained 
through identification and the parameterized representation of the model coefficient 
matrix under each θ  [17]. It should be noted that parameter identification of coefficient 
matrix needs to be based on nonlinear component level model (CLM) of the engine. The 
establishment method of CLM of VCE has been very mature. For example, detailed steps 
are given in reference [18], which will not be elaborated in detail in this paper. 

The following is to test the operation effect of the model by changing the control 
quantity randomly in an extensive range. The control quantity shown in Figure 3 is 
applied to the CLM and the EMM. The operation results of the two models are shown in 
Figure 4. It can be seen that the model has high steady-state accuracy and good dynamic 
accuracy. 

 
Figure 3. EMM vs CLM—input quantity. 

 
Figure 4. EMM vs CLM—output quantity. 

2.2. On-Board Adaptive Equilibrium Manifold Model 
Referring to the conventional linear state variable model with degradation, the 

following EMM with degradation is established: 

( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

+
,e

e e

x A x x L h

y y C x x M h

α α α

α α α α

 = −


− = − +

&
 (9)

0 5 10 15 20 25

time(s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Wf
A8

0 5 10 15 20 25
time(s)

65

75

85

95

105

lo
w

 s
po

ol
 s

pe
ed

 (%
)

nl-CLM
nl-EMM

0 5 10 15 20 25
time(s)

83

88

93

98

103

hi
gh

 s
po

ol
 s

pe
ed

 (%
)

nh-CLM
nh-EMM

Figure 4. EMM vs CLM—output quantity.

2.2. On-Board Adaptive Equilibrium Manifold Model

Referring to the conventional linear state variable model with degradation, the follow-
ing EMM with degradation is established:{ .

x = A(α)(x− xe(α)) + L(α)h

y− ye(α) = C(α)(x− xe(α)) + M(α)h
, (9)

where h is the engine health parameter, representing the degradation of the flow/efficiency
of each engine component. α is the scheduling variable. Since the health parameters
are independent of the scheduling variables, they are not scheduled by them, while the
coefficient matrices L and M are related to the engine operating points and are scheduled
by the scheduling variables.

Considering that performance degradation is a slow development process during the
service period of the engine, it does not require high dynamic characteristics and focuses
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on its steady-state value. Therefore, based on the EMM without degradation, the matrix
expressions are retained, and the health parameters are changed in the component level
model to cause changes in state quantities and output quantities. The degradation coeffi-
cient matrices L(α) and M(α) are obtained by the changing steady-state values identification
to form the final EMM with degradation.

An EMM with degradation is not enough to be called an adaptive model. It needs
to have the ability to update health parameters (degradation) to match with the actual
engine running state. For this reason, a Kalman filter is introduced to estimate the starter
degradation from the measurable output deviation containing the measured noise. Firstly,
model (9) is written into a standard form. For this reason, the health parameters are
extended to state quantities.

[ .
x
.
h

]
= Aaug

[
x− xe(α)

h

]
+ ω

y− ye(α) = Caug

[
x− xe(α)

h

]
+ υ

, (10)

where Aaug =

[
A(α) L(α)

0 0

]
and Caug =

[
C(α) M(α)

]
. ω and υ are the system noise

matrix and measurement noise matrix respectively, and the covariance matrices are Q and
R. Then, the Kalman filter uses the probability distribution of the measured value and the
optimal estimate to obtain the optimal state estimate:

[ .
x̂
.
ĥ

]
= Aaug

[
x̂− xe(α)

ĥ

]
+ K(y− ŷ)

ŷ− ye(α) = Caug

[
x̂− xe(α)

ĥ

] , (11)

where x̂, ŷ, ĥ are estimated values of state quantity, output quantity and degradation
quantity. K is called the Kalman filter gain, and K = PCaugR−1. P is the solution of the
following Riccati equation:

AaugP + PAT
aug − PCT

augR−1CaugP + Q = 0. (12)

Thus, the AEMM is formed. The ability of health parameter estimation of this model
is verified at the design point below. Set high-pressure turbine component efficiency in
degrading by 2%, and the steady-state deviation of the output of the CLM and the output
without degradation is respectively ∆nl = −1.98%, ∆nh = −1.93%, ∆Pt3 = −52.84 Kpa
and ∆Tt3 = −10.0 K. The steady-state output is added with Gaussian noise and fed into the
Kalman filter to obtain the optimal estimation of health parameters and measured values,
as shown in Figures 5 and 6.

It can be seen that the Kalman filter can accurately estimate the efficiency degradation
of the high-pressure turbine components at 2% within 1.5 s, and the estimation accuracy
of other health parameters is also within 0.1%. At the same time, the estimation of the
measured values also has high accuracy.



Appl. Sci. 2022, 12, 2085 7 of 23Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 24 
 

 
Figure 5. Estimation of degradation by AEMM. 

 
Figure 6. Estimation of measurements by AEMM. 

It can be seen that the Kalman filter can accurately estimate the efficiency degradation 
of the high-pressure turbine components at 2% within 1.5 s, and the estimation accuracy 
of other health parameters is also within 0.1%. At the same time, the estimation of the 
measured values also has high accuracy. 

3. Sensor Fault Diagnosis 
In this section, the AEMM is combined with the Kalman filter bank to design a fault 

diagnosis scheme for single sensor and double sensors. In the case of the single sensor 
fault, filter banks are designed. Each filter isolates one of the sensors, and the output 
estimation is carried out by using the remaining sensor information. In the case of the two 
sensor faults, they are grouped and the single-sensor diagnosis mode is adopted. 

3.1. Single Sensor Fault 
Assuming that m measurable parameters are used to estimate engine performance, 

m Kalman filters are designed accordingly. Each filter isolates the measured value of one 
of the sensors, and the remaining ( 1)m−  measured values are used for state/output 
estimation. The structure is shown in Figure 7. Take the ith Kalman filter as an example. 
Its input contains the remaining ( 1)m−  measurement values except for the ith sensor. 
After the failure of the ith sensor, the estimated values of the other filters are deviated 

va
ria

tio
n 

of
 fa

n
 e

ffi
ci

en
cy

 (%
)

va
ria

tio
n 

of
 

fa
n 

flo
w

 (%
)

va
ria

tio
n 

of
 H

PT
 e

ffi
ci

en
cy

 (%
)

0 0.5 1 1.5 2 2.5 3

time(s)

-3

-2

-1

0

lo
w

 s
po

ol
 

sp
ee

d 
(%

) nl-KF
nl-sensor

0 0.5 1 1.5 2 2.5 3

time(s)

-3

-2

-1

0

hi
gh

 s
po

ol
 

sp
ee

d 
(%

) nh-KF
nh-sensor

0 0.5 1 1.5 2 2.5 3

time(s)

-60

-40

-20

0

ou
tle

t p
re

ss
ur

e 
of

 H
PC

 (K
Pa

) Pt3-KF
Pt3-sensor

0 0.5 1 1.5 2 2.5 3
time(s)

-10

-5

0

ou
tle

t t
em

pe
ra

tu
re

 o
f H

PC
 (K

) Tt3-KF
Tt3-sensor

Figure 5. Estimation of degradation by AEMM.
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Figure 6. Estimation of measurements by AEMM.

3. Sensor Fault Diagnosis

In this section, the AEMM is combined with the Kalman filter bank to design a fault
diagnosis scheme for single sensor and double sensors. In the case of the single sensor fault,
filter banks are designed. Each filter isolates one of the sensors, and the output estimation
is carried out by using the remaining sensor information. In the case of the two sensor
faults, they are grouped and the single-sensor diagnosis mode is adopted.

3.1. Single Sensor Fault

Assuming that m measurable parameters are used to estimate engine performance,
m Kalman filters are designed accordingly. Each filter isolates the measured value of one
of the sensors, and the remaining (m − 1) measured values are used for state/output
estimation. The structure is shown in Figure 7. Take the ith Kalman filter as an example. Its
input contains the remaining (m− 1) measurement values except for the ith sensor. After
the failure of the ith sensor, the estimated values of the other filters are deviated from the
actual measured values due to the access of the fault sensor signal. When the deviation of
all the measured values is added up in a certain way, a relatively significant change can
be obtained, and the faulty sensor can be identified. Moreover, since the ith filter is not
connected to the fault sensor, the error between its estimated value and the actual measured
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value is small so that it can be used for fault signal reconstruction. The Kalman filter for the
ith sensor is: 

[ .
x̂
.
ĥ

]
= Aaug

[
x̂− xe(α)

ĥ

]
+ Ki(yi − ŷi)

ŷi − yi
e(α) = Ci

aug

[
x̂− xe(α)

ĥ

] (13)

where yi is the subset of measurement parameters excluding the ith sensor, matrix Ci
aug is

the submatrix of matrix Caug after removing the ith row, and K is the gain of the filter.
Define the residual between the filter input yi and the optimal output estimate ŷi:

ei = yi − ŷi (14)

when the sensor is fault-free and the filtering tends to be stable, the residual should obey
the multi-dimensional standard normal distribution. However, when a fault occurs, the
residual error does not possess this property, and its expectation is often not zero. Define
the following variables:

WSSRi = Wi
r

(
ei
)T(

σ2
i

)−1(
ei
)

(15)

where WSSR is the weighted sum of squared residual. When there is no fault, WSSR obeys
the χ2-distribution of (m− 1) degrees of freedom. Wi

r is the weight, and it can adjust the
output of the filter. Its value will affect the diagnostic effect, resulting in misdiagnosis and
missed diagnosis.
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Select sensor measurement parameters as y = (nl , nh, Pt3, Tt3, Pt21, Tt21, Pt6, Tt6). Com-
pared with AEMM established previously, the four additional sensors are the total pressure
and temperature at the fan outlet and the total pressure and temperature at the mixing
chamber inlet. State quantity and health parameters remain unchanged. The noise ma-
trices Q and R are reselected, and 8 Kalman filters are designed. The input of each filter
is another 7 measured values. Set the efficiency of high-pressure turbine components to
degrade by 2%, and obtain the steady-state deviations of 8 sensors under normal conditions:
∆nl = −1.98%, ∆nh = −1.93%, ∆Pt3 = −52.84 Kpa, ∆Tt3 = −10.0 K, ∆Pt21 = −0.28 Kpa,
∆Tt21 = −2.35 K, ∆Pt6 = −2.96 Kpa, ∆Tt6 = 21.18 K. At 2 s, a certain bias signal is injected
into the outlet temperature sensor of the high-pressure compressor (T3). As can be seen
from Figure 8, except for the fourth filter, the WSSR value of all the other filters underwent
drastic abrupt changes and then gradually approached a stable value, while the WSSR
value of the fourth filter remained at a low level. Therefore, it can be determined that the
fourth sensor, the temperature sensor Tt3, has failed. Then, a drift fault of 1 K/s is injected
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into the sensor. As can be seen from Figure 9, the WSSR of the other filters also drifts, while
only the fourth filter remains unchanged. Therefore, the designed Kalman filter bank can
diagnose all kinds of single sensor faults effectively.
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Figure 8. WSSR value under single sensor bias fault.
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Subsequently, this filter is used to re-estimate the degradation, and the result is shown
in Figure 10, which is in line with the actual situation. Finally, the actual degradation
is brought into the on-board AEMM to reconstruct the fault sensor signal, as shown in
Figure 11, where the short red line is the fault sensor signal, and the solid black line is the
corresponding sensor signal reconstructed from the on-board model.
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3.2. Dual Sensor Faults

Although the probability of simultaneous failure of two or more sensors is relatively
low, due to the high-reliability requirements of engine control and fault diagnosis system,
on the basis of being able to diagnose a single fault accurately, this section further studies
the fault diagnosis and signal reconstruction of two sensors.

When the dual-sensor fault occurs, the Kalman filter design scheme that isolates one of
the sensors mentioned above will not work because all the filters use the fault information.
The output residual will make the WSSR of all the filters change. In this case, a conservative
but effective scheme is to isolate the two sensors, but the number of Kalman filters required
will increase as the number of combinations. So, when there are more sensors, the idea
of grouping sensors can be used to design. For example, there are 2 N sensors, which
are divided into groups A and B. Each group has N sensors. Kalman filter banks are
independently designed for these two groups to carry out the single fault diagnosis. If
both sensor faults occur in one group, the WSSR values of the filters in this group will
deviate from the normal values, while the other group will keep low values. In this case,
the signals in this group can be completely abandoned, and the optimal state estimation
and signal reconstruction can be carried out with another group of filters. If sensor faults
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occur in both groups A and B, only one filter will remain low in both groups. The two
fault sensors can be diagnosed and isolated at this time, and the remaining sensors can be
used for optimal state estimation and signal reconstruction. Figures 12–15 are the results
of adopting this scheme. Group A contains the signals as yA = (nl , nh, Pt3, Tt3, Pt21, Tt21)
while yB = (Pt3, Tt3, Pt21, Tt21, Pt6, Tt6). Firstly, the fault sensors are set as the high spool
speed sensor (Nh) and the total pressure sensor at the inlet of the mixing chamber (Pt6).
As shown in Figures 12 and 13, group A and group B each have a filter with a low WSSR
value so that the fault sensor can be easily diagnosed. Secondly, the fault sensors are set as
the total pressure sensor (Pt6) and temperature sensor at the inlet of the mixing chamber
(Tt6). As shown in Figures 14 and 15, it can be seen that the WSSR of all the filters in Group
A remains low, while all the filters in Group B are offset. Therefore, it is judged that both
sensor faults occur in Group B, and all sensors in Group A are normal. The methods for
optimal state estimation and signal reconstruction using normal sensors are similar to those
in the previous section and will not be repeated here.
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Figure 13. Group B of dual-sensor faults grouping diagnosis—fault in different groups.



Appl. Sci. 2022, 12, 2085 12 of 23Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 24 
 

 
Figure 14. Group A of dual-sensors fault grouping diagnosis—fault in the same group. 

 
Figure 15. Group B of dual-sensor faults grouping diagnosis—fault in the same group. 

4. Optimization Design of Acceleration Control Plan 
4.1. Optimization Scheme of Control Plan Based on Shooting Method 

In the 1980s, H.G.Bock proposed the idea of a direct multiple target shooting method, 
whose essence is to transform the optimal control problem into a parameter optimization 
problem [16,17]. Consider the following optimal control problem: 

( ) ( ) ( )( ), ,x t f x t u t t=&  (16)

The variation range of control variables and state variables is constrained as: 

( )
( )

1 1

2 2

l u t h

l x t h

≤ ≤


≤ ≤
 (17)

For initial state and terminal state, there are the following boundary conditions: 

0(0)
( ) T

x x
x T x

=
 =

 (18)

The optimal performance index is: 

( ) ( )( )
0

, ,
T

J L x t u t t d t=   (19)

0 2 4 6 8
0

50

100

W
SS

R
1

0 2 4 6 8
0

50

100

W
SS

R
2

0 2 4 6 8
0

50

100

W
SS

R
3

0 2 4 6 8
0

50

100

W
SS

R
4

0 2 4 6 8

time(s)

0

50

100

W
SS

R
5

0 2 4 6 8

time(s)

0

50

100

W
SS

R
6

0 2 4 6 8
0

500

W
SS

R
1

0 2 4 6 8
0

500

W
SS

R
2

0 2 4 6 8
0

500

W
SS

R
3

0 2 4 6 8
0

500

W
SS

R
4

0 2 4 6 8
time(s)

0

100

200

W
SS

R
5

0 2 4 6 8

time(s)

0

500

W
SS

R
6

Figure 14. Group A of dual-sensors fault grouping diagnosis—fault in the same group.
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4. Optimization Design of Acceleration Control Plan
4.1. Optimization Scheme of Control Plan Based on Target Shooting Method

In the 1980s, H.G.Bock proposed the idea of a direct multiple target shooting method,
whose essence is to transform the optimal control problem into a parameter optimization
problem [16,17]. Consider the following optimal control problem:

.
x(t) = f (x(t), u(t), t). (16)

The variation range of control variables and state variables is constrained as:{
l1 ≤ u(t) ≤ h1

l2 ≤ x(t) ≤ h2
. (17)

For initial state and terminal state, there are the following boundary conditions:{
x(0) = x0

x(T) = xT
. (18)

The optimal performance index is:

J =
∫ T

0
L(x(t), u(t), t)dt. (19)
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Terminal time T can be fixed or free. For the case where T is free, a new time vari-
able τ ∈ [0, 1] can be introduced. Let T be a variable parameter in a range and define
t = Tτ, dt

dτ = T and dT
dτ = 0. At the same time, the augmented state variable xl+1 and state

equation are introduced:

.
xl+1 = T · L(x(τ), u(τ), Tτ), xl+1(0) = 0. (20)

Thus, the above optimal trajectory problem is equivalent to the following Mayer
problem [18] with fixed terminal time.

min f1(xl+1(1), T). (21)

The Equation of state of the system is as follows:

.
x = T f (x(τ), u(τ), Tτ) = F(x(τ), u(τ), T, τ). (22)

The starting and ending constraints become:{
x(0) = x0

x(1) = x f
. (23)

Control variables, state variables, and process time constraints are shown in the
following Equation: 

L1 ≤ u(τ) ≤ H1

L2 ≤ x(τ) ≤ H2.

L3 ≤ T ≤ H3

(24)

Next, the Mayer problem can be solved by using a direct multiple target shooting
method. The basic idea of the target shooting method is to transform the infinite dimen-
sional problem into a finite dimension problem. The optimization process is divided into
several intervals, and the design values of control variables and state variables are given
in the interval nodes. In this way, the constraints on the whole process state and control
variables can be transformed into constraints on these design values, and the performance
indicators can also be transformed into functions of the design values. The following match-
ing conditions should be considered: Set the change rule of the control quantity in each
interval. It can be in the form of a constant value or polynomial. Then, the state variables
at the end of each interval can be obtained from the guess value of the state variables at
the beginning of the interval and the system state equation as shown in Equation (22).
This value needs to be equal to the estimated value of the state here, which will be met by
continuously revising the design value through the optimization algorithm. The specific
steps of the target shooting method are as follows:

(1) Divide the fixed time interval [0, 1] into m equal parts to get the node: τi =
i
m , where

i = 0, 1, . . . , m.
(2) Parameterize the control quantity. Introduce a set of vectors Pi ∈ Rq where i = 0, 1, . . . , m

and define:
u(τ) = ui(P0, Pi, . . . , Pm), τ ∈ [τi, τi+1], (25)

where ui(τ) can be a constant value or some interpolation function.
(3) Set up the initial value problem. A set of vectors Si ∈ Rn is selected as an estimate of

the state variables xi(τi) at the node τi. Then we have m initial value problems (IVP):

.
xi(Si, ui, T, τ) = F(xi(Si, ui, T, τ), ui(τ), T), τ ∈ [τi, τi+1], (26)

where the initial value is:

xi(Si, ui, T, τi) = Si, i = 0, 1, . . . , m− 1. (27)
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(4) Constituting Nonlinear Programming (NLP). The optimization objective is:

min f1(S∗m, T), (28)

where S∗m is the estimate of xl+1(1). The endpoints of each interval meet the match-
ing conditions:

x(Si, ui, T, τi)− Si+1 = 0, i = 0, 1, . . . , m− 1. (29)

The starting and terminal states meet the boundary conditions:{
S0 = x0

Sm = xT
. (30)

Constraints on state quantity, control quantity and terminal time in the process are
transformed into constraints on parameters at the end of the interval:

l1 ≤ Pi ≤ h1

l2 ≤ Si ≤ h2, i = 0, 1, . . . , m

l3 ≤ T ≤ h3

. (31)

Finally, the Mayer optimization problem is transformed into a general NLP problem
as shown in the following Equation. 

minF1(y)

F2(y) = 0,

F3(y) ≤ 0

(32)

where F1, F2 and F3 respectively represent the objective, equality constraint and inequality
constraint function, and the optimization variable y is:

y =
(

ST
0 , ST

1 , . . . , ST
m, PT

0 , PT
1 , . . . , PT

m, T
)T

. (33)

For the solution of the NLP problem, any NLP algorithm can be used, such as se-
quential quadratic programming, active set, interior point method, etc. In this paper, the
Quasi-Newton method is used. The optimization variables are iteratively updated by the
following formula:

yk+1 = yk + tk∆yk, tk ∈ [tmin, tmax], (34)

where the increment ∆yk is determined by the Kuhn-Tucker condition of the quadratic
approximation problem below:

min 1
2 ∆yT Bk∆y +∇Fk

1 ∆y

Fk
2 +∇Fk

2 ∆y = 0

Fk
3 +∇Fk

3 ∆y ≥ 0

, (35)

where Fk
i and ∇Fk

i (i = 1, 2, 3) are the values and gradients of the function at yk, and Bk is
the approximation of the Hessian matrix (∇2

yL) of the following Lagrange equation:

L(y, λ) = F1(y)− λT
1 F2(y)− λT

2 F3(y). (36)
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The above parameters can be updated by the following formula:
Bk+1 = Bk + U

(
Bk, ∆yk, γk

)
γk = ∇L

(
yk+1, λk

1, λk
2

)
−∇L

(
yk, λk

1, λk
2

) , (37)

where U
(

Bk, ∆yk, γk
)

represents some correction method. The more commonly used is
BFGS correction.

4.2. Accelerated Process Control Plan Design of VCE

Acceleration is the process of an engine from one thrust level to another. An important
index to measure the performance of the acceleration process is acceleration time, which
is mainly determined by the residual power of the engine. The main control variables
of the acceleration process are the fuel flow and the nozzle area, among which the fuel
quantity is the biggest factor affecting the engine acceleration performance. Increasing
the fuel flow can increase the gas temperature in front of the turbine (Tt4), thus increasing
the power capacity of the turbine. However, it should be noted that Tt4 is limited by the
strength of turbine blades and oil-rich flameout of the combustion chamber, and the sharp
increase in fuel quantity will also cause engine speed to exceed limit and pose a certain
threat to the mechanical load of the rotor. On the other hand, the acceleration process will
lead to the decline of the compressor stability margin, so the compressor stability margin
is often increased by opening the nozzle, deflating air, adjusting the guide vane of the
compressor, etc.

Select the starting point of the accelerated process state x0 and the control quantity u0:{
x0 : nl = 67.87%, nh = 84.37%

u0 : W f = 0.33 kg/s, A8 = 0.088 m2
. (38)

Set the terminal state quantity xT and terminal control quantity uT :{
xT : nl = 99.90%, nh = 98.50%

uT : W f = 0.80 kg/s, A8 = 0.096 m2
. (39)

The constraints in the optimization process are as follows:

nh < 100%

nl < 100%

Tt4 < 1850 K

SMCDFS > 5%

SMHPC > 5%

W f < 0.84 kg/s

A8 < 0.1 m2

.
W f < 0.25 kg/s2

.
A8 < 0.01 m2/s

, (40)

where the last two terms represent the limit on the rate of change of the control quantity.
The optimization objective is the shortest acceleration time:

minJ =
∫ T

0
dt. (41)
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The AEMM is used as the optimization model of the accelerated process. Then the
problem is modified to apply it to the target shooting method. Divide acceleration process
into m intervals and the optimization variables y =

(
ST

0 , ST
1 , . . . , ST

m, PT
0 , PT

1 , . . . , PT
m, T

)T can
be obtained. The starting and ending constraints can then be translated into the following
equality constraints:

F1(y)1 =

{
S0 − x0
Sm − xT

= 0. (42)

In addition, the state quantity of the starting point and the end point of each subinterval
should be guaranteed to match.

F1(y)2 = x(Si, ui, T)− Si+1 = 0, i = 0, 1, . . . , m− 1. (43)

These two expressions together form equality constraints F1(y). Note that the fourth-
order Runge-Kutta method is used here to calculate the state quantities at the end of
each interval. In the process, the restrictions on the high and low spool speed, the gas
temperature in front of the turbine, the surge margin, the change rate of the control quantity,
etc. are also easily expressed in the form of F2(y) < 0. For example, the limit on the rate of
change of fuel flow can be written as:

F2(y)1 =
(Pi+1,W f − Pi,W f ) · T

m
− 0.3 < 0, i = 0, 1, . . . , m− 1, (44)

where Pi,W f represents the parameterized results of fuel flow at each node. The optimization
goal is transformed into:

minF3(y) = T. (45)

At this point, the problem has been transformed into an NLP problem as shown in
Equation (32).

Solve the above problems, and the results are shown in Figures 16–18, where CDFS
represents the core drive fan stage of VCE.
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It can be seen that the low spool speed changes from 67.87% to 99.9%, and the high
spool speed changes from 84.37% to 98.5%. The acceleration time is about 2.4 s. The
acceleration process is fast and stable without overshoot, and no overshoot occurs. At
the beginning of acceleration, the dominant limiting condition is the rate of change of the
control quantity, while at the later stage of acceleration, the dominant limiting condition is
A8 and the upper limit of T4. On the whole, the proposed accelerated process control plan
meets the expected objectives.

4.3. Sensor Fault Simulation

Use the variation rule of low spool speed and nozzle throat area optimized by target
shooting method in 4.2 as control instructions for the acceleration process, and the accel-
eration control scheme of low spool speed closed-loop and nozzle throat area open-loop
is adopted. The Kalman filter bank is designed by selecting sensors of low spool speed,
high spool speed, high-pressure compressor outlet total pressure and total temperature,
which constitute the sensor fault diagnosis module. Next, the sensor fault simulation in the
acceleration process is carried out. The result is shown in Figures 19–22.
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Figure 20. Changing curve of speed in acceleration FTC process. (a) Low spool speed. (b) High
spool speed.
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Figure 22. Changing curve of control quantity in acceleration FTC process. (a) Fuel flow. (b) Noz-
zle area.

At 3 s, the acceleration control begins. At about 3.8 s, 4% bias fault occurres in the low
spool speed sensor, resulting in a large difference from the command speed. Therefore,
the controller rapidly increases the amount of fuel to reduce the error between the two,
as shown in Figure 22a. It can be seen from the changes of high spool speed and turbine
front temperature that this adjustment leads to great changes in the actual engine state.
From Figure 19, at 3.8 s the WSSR value of nh, Pt3, Tt3 filters change greatly, and only the
nl filter keeps a low value, so it is quickly determined that the low spool speed has been
faulty. It is worth noting that the WSSR values of each filter also changes after 3 s, which
is mainly caused by the difference between the on-board model and the real engine in
the acceleration process. Compared with the change caused by sensor faults, the value
is much smaller, so it does not affect the diagnosis. At about 4 s, the controller uses the
analytical redundancy of low spool speed provided by the on-board model, and it can
be seen that the engine states are restored. At about 5.4 s, the low spool speed output
by the on-board model successfully keeps up with the control command, and the engine
completes acceleration. In general, the scheme successfully achieves acceleration control
under sensor faults. However, the sudden change of the control quantity caused by the
sensor failure leads to the great change of the engine state, which is mainly because the
actuation characteristics and small closed-loop control characteristics of the actuator are
not considered in the digital simulation. Therefore, the hardware-in-the-loop test is used to
further verify the results.

5. Hardware-in-the-Loop Simulation and Verification

The hardware-in-the-loop (HIL) test platform is shown in Figures 23 and 24, which
consists of an engine simulator, a distributed controller and a monitoring computer. The
engine simulator includes NI myRIO and interface simulator. NI myRIO is responsible
for the real-time operation of the engine model and simplified actuator model, and the
interface simulator is responsible for simulating the signals of various sensors of the engine
and collecting the current signals of actuator valves. The distributed controller comprises
several intelligent nodes, including high and low spool speed acquisition node, pressure
acquisition node, fuel flow control node, nozzle area control node, core control node and
backup. Each intelligent node is an embedded system based on the ZYNQ development
board and communicates with each other via the TTP/C bus. In addition to the tasks
specified by TTP/C communication, each intelligent node also needs to complete the duties
prescribed by the control system, which is conducted by two CPUs in the logical processing
unit and the program processing unit in ZYNQ. The nodes are programmed and developed
by Vivado’s integrated development environment and SDK software development suite.
The monitoring computer is responsible for sending control instructions and monitoring
the engine state, and is produced by LabVIEW. In terms of time schedule, the simulation
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step size of the engine simulator is 20 ms. In the distributed control system, the step size
of the data acquisition node and the core control node is also 20 ms, while the step size
of the actuator control node is 5 ms. Data transmission of each node on the TTP/C bus
has a specified time sequence and is scheduled by a pre-planned Message Description List
(MEDL).
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The low spool speed, the high spool speed, the total pressure and the total temperature
at the outlet of the high-pressure compressor are also selected for fault diagnosis and design.
FTC results are shown in Figures 25–28. At 3 s, the acceleration control starts. At this time,
the speed of the engine and the speed of the on-board model is both good for tracking
instructions. At about 3.8 s, a 5% bias occurs to the low spool speed sensor, as shown by
the red dash in Figure 26. The controller rapidly increases the fuel flow control instruction,
as shown in the solid black line in Figure 28. However, different from the result in 4.3, since
the change rate of the actuator has reached the limit at this time, the actual fuel volume
does not increase dramatically but maintains the maximum rate of increase. As shown
in Figure 25, the low spool speed bias is quickly diagnosed by the Kalman filter, and the
diagnosis effect is noticeable. At about 4 s, the reconstructed signal of the airborne model is
switched for FTC and the fuel flow control instruction falls back. At 6.8 s, the reconstructed
low spool speed signal keeps up with the control instruction and tends to a steady state,
and the engine accelerates successfully. The fault diagnosis and signal reconstruction can be
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done within 0.2 s, and the whole FTC process can be carried out in less than 3 s. Parameters
before and after the acceleration process are shown in Table 1. In general, the proposed
scheme has good fault diagnosis ability and fault tolerance ability. The acceleration control
under sensor fault is successfully realized, and the acceleration process does not cause a big
change of engine state. Therefore, the validity of the FTC scheme proposed in this paper
and its compatibility with the real-time embedded platform has been proved.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 24 
 

tracking instructions. At about 3.8 s, a 5% bias occurs to the low spool speed sensor, as 
shown by the red dash in Figure 26. The controller rapidly increases the fuel flow control 
instruction, as shown in the solid black line in Figure 28. However, different from the 
result in 4.3, since the change rate of the actuator has reached the limit at this time, the 
actual fuel volume does not increase dramatically but maintains the maximum rate of 
increase. As shown in Figure 25, the low spool speed bias is quickly diagnosed by the 
Kalman filter, and the diagnosis effect is noticeable. At about 4 s, the reconstructed signal 
of the airborne model is switched for FTC and the fuel flow control instruction falls back. 
At 6.8 s, the reconstructed low spool speed signal keeps up with the control instruction 
and tends to a steady state, and the engine accelerates successfully. The fault diagnosis 
and signal reconstruction can be done within 0.2 s, and the whole FTC process can be 
carried out in less than 3 s. Parameters before and after the acceleration process are shown in 
Table 1. In general, the proposed scheme has good fault diagnosis ability and fault 
tolerance ability. The acceleration control under sensor fault is successfully realized, and 
the acceleration process does not cause a big change of engine state. Therefore, the validity 
of the FTC scheme proposed in this paper and its compatibility with the real-time 
embedded platform has been proved. 

 
Figure 25. The sensor fault diagnosis results in the HIL test. 

 
Figure 26. Changing curve of speed in HIL test. 

W
SS

R
1

W
SS

R
2

W
SS

R
3

W
SS

R
4

Figure 25. The sensor fault diagnosis results in the HIL test.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 24 
 

tracking instructions. At about 3.8 s, a 5% bias occurs to the low spool speed sensor, as 
shown by the red dash in Figure 26. The controller rapidly increases the fuel flow control 
instruction, as shown in the solid black line in Figure 28. However, different from the 
result in 4.3, since the change rate of the actuator has reached the limit at this time, the 
actual fuel volume does not increase dramatically but maintains the maximum rate of 
increase. As shown in Figure 25, the low spool speed bias is quickly diagnosed by the 
Kalman filter, and the diagnosis effect is noticeable. At about 4 s, the reconstructed signal 
of the airborne model is switched for FTC and the fuel flow control instruction falls back. 
At 6.8 s, the reconstructed low spool speed signal keeps up with the control instruction 
and tends to a steady state, and the engine accelerates successfully. The fault diagnosis 
and signal reconstruction can be done within 0.2 s, and the whole FTC process can be 
carried out in less than 3 s. Parameters before and after the acceleration process are shown in 
Table 1. In general, the proposed scheme has good fault diagnosis ability and fault 
tolerance ability. The acceleration control under sensor fault is successfully realized, and 
the acceleration process does not cause a big change of engine state. Therefore, the validity 
of the FTC scheme proposed in this paper and its compatibility with the real-time 
embedded platform has been proved. 

 
Figure 25. The sensor fault diagnosis results in the HIL test. 

 
Figure 26. Changing curve of speed in HIL test. 

W
SS

R
1

W
SS

R
2

W
SS

R
3

W
SS

R
4

Figure 26. Changing curve of speed in HIL test.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 24 
 

 
Figure 27. Changing curve of CDFS surge margin and turbine front temperature in HIL test. 

 
Figure 28. Changing curve of control quantity in HIL test. 

Table 1. Parameters before and after the acceleration process. 

Variable Before the Acceleration 
Process 

After the Acceleration 
Process 

Low spool speed (%) 67.87 99.9 
High spool speed (%) 84.37 98.5 

Stall margin of CDFS (%) 7.62 10.13 
Inlet temperature of HPT (K) 1435.25 1823.69 

Fuel flow (kg/s) 0.33 0.80 
High spool speed (%) 84.37 98.5 

6. Conclusions 
In this paper, an FTC scheme for the sensor fault in the transition process of VCE 

based on AEMM is proposed. The scheme adopts closed-loop control of speed and open-
loop control of other control variables for transition control. To diagnose the sensor faults 
and study the control of transition state, a modeling study is first carried out. The fuel 
flow and the nozzle area are selected as the two scheduling variables to establish the EMM 
of VCE with multiple inputs and multiple outputs. Then the AEMM is obtained by 
introducing health parameters and Kalman filter. After that, the AEMM is combined with 
the Kalman filter bank to design a fault diagnosis scheme for the single sensor fault and 
double sensor faults. The simulation results of bias and drift fault cases show that the 
proposed scheme can accurately diagnose the fault sensors except when two fault sensors 
are grouped in the same group. But in either case, the scheme can accurately estimate the 
state and reconstruct the signal. Then, the target shooting method is used to optimize the 
engine acceleration control plan, and based on this, the fault simulation of the low spool 

Figure 27. Changing curve of CDFS surge margin and turbine front temperature in HIL test.



Appl. Sci. 2022, 12, 2085 22 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 24 
 

 
Figure 27. Changing curve of CDFS surge margin and turbine front temperature in HIL test. 

 
Figure 28. Changing curve of control quantity in HIL test. 

Table 1. Parameters before and after the acceleration process. 

Variable Before the Acceleration 
Process 

After the Acceleration 
Process 

Low spool speed (%) 67.87 99.9 
High spool speed (%) 84.37 98.5 

Stall margin of CDFS (%) 7.62 10.13 
Inlet temperature of HPT (K) 1435.25 1823.69 

Fuel flow (kg/s) 0.33 0.80 
High spool speed (%) 84.37 98.5 

6. Conclusions 
In this paper, an FTC scheme for the sensor fault in the transition process of VCE 

based on AEMM is proposed. The scheme adopts closed-loop control of speed and open-
loop control of other control variables for transition control. To diagnose the sensor faults 
and study the control of transition state, a modeling study is first carried out. The fuel 
flow and the nozzle area are selected as the two scheduling variables to establish the EMM 
of VCE with multiple inputs and multiple outputs. Then the AEMM is obtained by 
introducing health parameters and Kalman filter. After that, the AEMM is combined with 
the Kalman filter bank to design a fault diagnosis scheme for the single sensor fault and 
double sensor faults. The simulation results of bias and drift fault cases show that the 
proposed scheme can accurately diagnose the fault sensors except when two fault sensors 
are grouped in the same group. But in either case, the scheme can accurately estimate the 
state and reconstruct the signal. Then, the target shooting method is used to optimize the 
engine acceleration control plan, and based on this, the fault simulation of the low spool 

Figure 28. Changing curve of control quantity in HIL test.

Table 1. Parameters before and after the acceleration process.

Variable Before the Acceleration
Process

After the Acceleration
Process

Low spool speed (%) 67.87 99.9
High spool speed (%) 84.37 98.5

Stall margin of CDFS (%) 7.62 10.13
Inlet temperature of HPT (K) 1435.25 1823.69

Fuel flow (kg/s) 0.33 0.80
High spool speed (%) 84.37 98.5

6. Conclusions

In this paper, an FTC scheme for the sensor fault in the transition process of VCE based
on AEMM is proposed. The scheme adopts closed-loop control of speed and open-loop
control of other control variables for transition control. To diagnose the sensor faults and
study the control of acceleration process, a modeling study is first carried out. The fuel
flow and the nozzle area are selected as the two scheduling variables to establish the
EMM of VCE with multiple inputs and multiple outputs. Then the AEMM is obtained
by introducing health parameters and Kalman filter. After that, the AEMM is combined
with the Kalman filter bank to design a fault diagnosis scheme for the single sensor fault
and double sensor faults. The simulation results of bias and drift fault cases show that the
proposed scheme can accurately diagnose the fault sensors except when two fault sensors
are grouped in the same group. But in either case, the scheme can accurately estimate the
state and reconstruct the signal. Then, the target shooting method is used to optimize the
engine acceleration control plan, and based on this, the fault simulation of the low spool
speed sensor is carried out. Finally, a HIL simulation platform is built to verify the FTC
method considering the actuation characteristics and other limitations of the actuator in
the actual process. The results show that the fault sensor can be diagnosed and signal
reconstruction can be carried out within 0.2 s by using the proposed scheme.

The method proposed in this paper can complete the FTC of sensor fault in a very short
time, and is not too complicated, and has strong engineering feasibility and application
value. At the same time, this method is also suitable for general turbofan engine fault-
tolerant control. But there are still many areas that need to be further studied. For example,
when two faulty sensors appear in the same group, only accurate signal reconstruction can
be carried out, but the location of the faulty sensor cannot be diagnosed. And in addition
to the acceleration process of the VCE, the FTC of the mode switching process should be
paid more attention to. In this paper, only the fault-tolerant design of the sensor is carried
out, and there may also be actuator fault, component fault and other forms. Therefore, the
FTC problem of VCE needs more and more in-depth research.
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