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Abstract: The source-filter model is one of the main techniques applied to speech analysis and syn-
thesis. Recent advances in voice production by means of three-dimensional (3D) source-filter models
have overcome several limitations of classic one-dimensional techniques. Despite the development of
preliminary attempts to improve the expressiveness of 3D-generated voices, they are still far from
achieving realistic results. Towards this goal, this work analyses the contribution of both the the
vocal tract (VT) and the glottal source spectral (GSS) cues in the generation of happy and aggressive
speech through a GlottDNN-based analysis-by-synthesis methodology. Paired neutral expressive
utterances are parameterised to generate different combinations of expressive vowels, applying
the target expressive GSS and/or VT cues on the neutral vowels after transplanting the expressive
prosody on these utterances. The conducted objective tests focused on Spanish [a], [i] and [u] vowels
show that both GSS and VT cues significantly reduce the spectral distance to the expressive target.
The results from the perceptual test show that VT cues make a statistically significant contribution
in the expression of happy and aggressive emotions for [a] vowels, while the GSS contribution is
significant in [i] and [u] vowels.

Keywords: expressive speech synthesis; emotional database; speech analysis; inverse filtering; glottal
source; vocal tract; numerical voice production; GlottDNN

1. Introduction

Speech is an incredibly powerful means of communication, as it not only codifies
linguistic information, i.e., a message, but also provides paralinguistic cues about the
emotional state of the speaker [1]. Emotion is, therefore, a key element for seamless human–
computer interaction (HCI), both in the input channel, by means of emotional speech
recognition [2] and in its output, through expressive speech synthesis [3], among others. In
this context, emotions have been traditionally represented: (i) using a dimensional space,
such as the circumplex model, which is defined by arousal, valence, and dominance [4];
or, (ii) as discrete categories, such as those defined in [5] and denoted as the big six basic
emotions, namely, anger, disgust, fear, happiness, sadness, and surprise. According to these
categories, expressive speech databases are built containing spontaneous speech, elicited
speech, or acted speech [2].

In order to model the specific characteristics of spoken emotions, acoustic features can
be extracted from these databases and analysed to describe them with respect to neutral
speech [6], which is typically considered as reference of inexpressiveness. In this regard,
several studies focusing on basic emotions have found specific prosodic patterns of F0,
energy and speech rate. Angry and happy speech, for instance, present higher F0, energy
and speech rate values compared with neutral speech, while the opposite occurs with
sadness [7].
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Alternatively, the emotional content of speech can be studied by manipulating the
extracted features following an analysis-by-synthesis scheme [8], as illustrated in Figure 1.
To this aim, neutral speech utterances are analysed to extract features that are subsequently
modified according to the analysed expressive utterances to obtain resynthesised expressive
stimuli. The obtained results can be objectively and/or subjectively evaluated with respect
to the non-expressive reference and to what extent they resemble the expressive target. In
this regard, speech synthesis approaches that are based on the voice production theory are
of particular interest since they can provide valuable insights into the mechanisms involved
in the generation of emotional speech. Most of these approaches follow the so-called
source-filter model [9], which considers the speech signal to be composed of an excitation
(glottal pulses) amplified at certain frequencies through the vocal tract (formants).

reference

Neutral
speech

Analysis

target

Expressive
speech

Synthesis
Evaluation 
-objective 
-subjective

Analysis

-Natural 
-Elicited 
-Acted

speech

Figure 1. Workflow diagram of the analysis-by-synthesis approach applied to expressive speech. Neu-
tral speech utterances are analysed to extract features that are manipulated according to the analysed
expressive utterances to obtain resynthesised expressive stimuli. The results are objectively and/or
subjectively evaluated in comparison with the non-expressive reference and the expressive target.

The relevance of both the glottal source and the vocal tract in the production of expres-
sive speech has been explored in different investigations, considering a source-filter model
and following an analysis-by-synthesis scheme. In [10], the authors analysed to what extent
different phonation types contribute to the perception of emotion by resynthesising a set
of utterances using the VocalTractLab synthesizer 2.0 [11]. This articulatory-based synthe-
siser is based on a 3D vocal tract geometric model and integrates a self-oscillating model
of the vocal folds. It allows simulating the pressed-to-breathy phonation continuum by
varying the degree of glottal abduction. In that work, the authors manually controlled the
synthesiser using different gestural scores (to account for both supraglottal and laryngeal
articulation) to mimic pre-recorded sentences as well as to produce certain variations of
their phonation. The portrayed emotional utterances were resynthesised with their original
phonation type, as well as with purely breathy, modal, and pressed phonations, which were
evaluated perceptually. The obtained results showed that the recognition of fear, anger,
and neutral speech demands specific phonation types, while it mainly relies on prosodic
parameters for sadness, happiness, boredom, and disgust.

In [12], a similar study was conducted using a Klatt formant-based synthesiser with a
modified Liljencrants–Fant (LF) glottal flow model [13] as input. A set of target sentences
were copy-synthesised and subsequently resynthesised with different phonation types
(breathy, creaky, falsetto, modal, and tense) through a rule-based model that controlled the
glottal source model parameters. A forced choice perceptual test was conducted, in which
the participants were asked to assign each stimulus to either neutral, anger, joy, sadness,
frightened, or bored speech. The phonation types were distinguished by the listeners
and lead to a satisfactory emotional impression. In [14], a similar synthesis scheme was
considered to explore the interaction of voice quality and F0 contours with the listener’s
language background (Irish, English, Russian, Spanish, and Japanese) in the perception
of affect. Three types of synthetic stimuli were generated from a short Swedish utterance
spoken with modal voice: (i) stimuli varied in voice quality, (ii) modal stimuli incorporating



Appl. Sci. 2022, 12, 2055 3 of 14

affect-related F0 contours, and (iii) stimuli combining certain non-modal voice qualities with
the affect-related F0 contours from (ii). A perceptual test was conducted asking participants
to rate the stimuli on six bipolar scales defined with contrastive adjectives at each end:
indignant–apologetic, interested–bored, formal–intimate, stressed–relaxed, happy–sad, and
fearless–scared. The results suggested that stimuli incorporating non-modal voice qualities,
with or without F0 variation, were generally more effective in conveying emotions than
stimuli only varying F0.

In [15], the Rd glottal shape parameter [16] was used to control the LF model so
as to produce expressive voice along the tense–lax continuum, exploring its influence
on the perception of emotions. Moreover, the relative importance of glottal source and
vocal tract on emotional vowel perception was examined in [17] using an auto-regressive
exogenous LF model. Glottal source and vocal tract parameters were estimated from
isolated vowels [a] recorded by two professional male actors using four emotions (neutral,
joy, anger, and sadness). Besides the eight resynthesised original vowels, sixteen synthetic
vowels per speaker were obtained by combining the averaged glottal source parameters
from one emotion and the averaged vocal tract parameters from another emotion. The
synthesised vowels were perceptually evaluated using a valence–arousal model. The glottal
source was found to have a dominant role, mainly due to the predominant effect of the
prosodic features, i.e., F0, intensity, and duration. These cues were subsequently neutralised
in a second experiment using the values from the neutral vowels. As a consequence, the
relevance of the vocal tract was higher, but the resulting vowels were perceived in a similar
way to their neutral counterparts, negatively affecting the expressiveness analysis.

The aforementioned approaches have focused on the analysis and resynthesis of a
small set of isolated vowels or short utterances at most, involving typically costly manual
tuning processes when developing the analysis-and-resynthesis approach. However, recent
advances in inverse filtering have shown promising results in the automatic decomposition
of the speech signal into its glottal source and vocal tract components [18]. Among these
techniques, the glottal flow model-based vocoder allows real-time voice manipulations,
such as shifting vowel formants and modifying voice quality through the manipulation of
the glottal source model [19]. The GlottHMM approach, based on hidden Markov models,
showed good results for the analysis of expressive nuances, beyond prosodic parameters
such as F0 and rhythm [20]. More recently, GlottDNN [21] a successor of GlottHMM
based on deep neural networks, has been used to to embed the Lombard effect on regular
speech [22], obtaining good results.

The source-filter models has traditionally considered a representation of the vocal tract
in one dimension (1D) [23]. Although the 1D-based approach has been widely used in the
literature (see e.g., [11,24,25]), the simplification it entails makes it only capable of modelling
the propagation of plane waves along the vocal tract midline, thus, limiting the accuracy of
1D-based approaches up to about 4–5 kHz [26]. During the last decade, and thanks to the
significant increase in computing power, several attempts have been developed to overcome
this limitation by means of three-dimensional (3D) vocal tract models [27–29], which allow
the propagation of higher order modes [26]. This characteristic is especially relevant for
the production of vowels with a tense phonation [30]. So far, such models have been
already used for the synthesis of vowels [29], diphthongs [31] and vowel–consonant–vowel
sequences [32], including sibilants [33] that entail considering aeroacoustic sources [34],
as well as works focused on tuning the vocal tract resonances [35] to be able to simulate
effects such as the so-called singing formant [36].

In order to introduce some expressiveness in the 3D numerical synthesis of vowels with
a tense phonation, a GlottDNN-based analysis of the spectral tilt of the glottal source was
proposed in [37]. To that effect, the Rd parameter of an LF model was modified accordingly,
and the results were evaluated on isolated aggressive and happy [a] vowels. Although
that work showed interesting preliminary results, it was only focused on modelling one
parameter of the excitation. Therefore, further investigations are still necessary to be able to
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generate natural expressive utterances within a 3D-based finite element methods synthesis
scheme [38].

In order to advance in the modelling and integration of tense-expressive styles within
a speech synthesizer based on a source-filter model, this work analyses the contribution
of vocal tract (VT) and glottal source spectral (GSS) cues in the generation of happy and
aggressive speech styles. To this aim, an GlottDNN-based analysis-by-synthesis approach
is proposed and evaluated using a parallel Spanish speech corpus composed of neutral and
expressive utterances. The contributions of GSS and/or VT cues on each target emotion
are analysed through objective and perceptual tests by considering neutral utterances
transplanted with the prosody (baseline), and GSS and/or VT cues from their expressive
pairs vowels [a], [i] and [u], differentiating if they are stressed or not.

The paper is organised as follows. Section 2 presents the proposed methodology based
on the GlottDNN analysis and synthesis of expressive utterances to study the contribution
of GSS and VT cues to the generation of happy and aggressive tense emotional vowels
from neutral speech. Next, Section 3 describes the conducted experiments, whose results
are detailed and discussed in Section 4. Finally, the derived conclusions from this work, as
well as future research lines, are presented in Section 5.

2. Analysis-by-Synthesis Methodology

Figure 2 depicts the proposed GlottDNN-based analysis-by-synthesis methodology
designed to evaluate the contribution of both the vocal tract and the glottal source spectral
cues to the synthesis of expressive speech vowels. Specifically, the analysis of expressive
speech is based on the inverse filtering of a parallel speech corpus composed of utterances in
the expressive style of interest, as well as their neutral counterparts (as reference). In order
to focus exclusively on the voice quality differences between expressive and neutral speech,
the prosody from the expressive utterance (F0, duration, and energy) is transplanted into
the corresponding neutral pair. The resulting utterance is considered as the baseline in
the comparisons between the different synthesis configurations, labelled as GSSXVTY,
where X and Y denote the origin of the GSS and VT cues applied to the utterance vowels,
respectively, which can be either borrowed from the time-scaled neutral utterance (N), or
from the target expressive component (E).

The main steps of the process are described as follows. As a first step, the GlottDNN
vocoder is applied to parameterise each speech frame of the neutral–expressive utterance
pair (see Figure 2b), obtaining their fundamental frequency (F0 in Hz) and energy (EN in
dB). Moreover, the corresponding glottal source and VT cues are estimated through a quasi-
closed phase (QCP) inverse filtering approach, whose result is subsequently parameterised
using line spectral frequencies (LSF). Moreover, the harmonic-to-noise ratio (HNR) of the
glottal source estimate is also computed at the frame level (the reader is referred to [21]
for further details of this process). It is worth noting that the obtained QCP-based spectral
tilt is compensated for to minimise the presence of residual spectral cues from the glottal
source on the vocal tract estimation, following [22].

Secondly, the prosody of the neutral utterance is replaced by the one borrowed from
its expressive pair. To this aim, the neutral GlottDNN-based features (marked with ′ on
Figure 2a) are time scaled to fit the expressive target according to the temporal alignment
obtained through dynamic time warping. Next, F0N and ENN are respectively replaced
by the corresponding values from the expressive utterance, i.e., F0E and ENE. Finally,
depending on the tested combination, GSSE and/or VTE are also transplanted into the
neutral vowels.

The final step corresponds to the GlottDNN-based expressive synthesis. Following [21],
the parameters of voiced frames are inserted into a simple feed-forward deep neural
network to generate a zero-padded, two-pitch-period, glottal flow-derivative pulse, while
a white noise excitation is used for unvoiced frames. The amplitude of these excitation
signals is adjusted to fit ENE and concatenated through the classic pitch-synchronous
overlap and add algorithm [39]. Subsequently, the HNRN parameter is used to adjust the
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noise component of the excitation in the spectral domain, besides modifying its spectrum to
match the target GSSX . Finally, the excitation signal is filtered according to the considered
VTY to obtain the synthetic speech output. The GlottDNN-based pulse generation model
trained with the neutral speech corpus and HNRN are considered in the synthesis of the
expressive utterances. This is due to the fact that the designed analysis methodology only
focuses on evaluating the spectral characteristics of the glottal source, leaving the analysis
of these two features of the glottal source for future works.

vowel GSS/VT
transplantation

F0'N,
EN'N,
HNR'N
GSS'N,
VT'N

F0E, ENE,HNRNGlottDNN
analysis

F0E, ENE GlottDNN
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VTE, 
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VTN
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+
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Figure 2. Block diagram of the analysis-by-synthesis methodology designed to evaluate the contribu-
tions of vocal tract and glottal source spectral cues (VT and GSS) in the generation of voice-expressive
(EXP) vowels. M pairs of neutral and expressive utterances from a parallel speech corpus are pa-
rameterised with the GlottDNN vocoder, and aligned through dynamic time warping (DTW). Next,
the features of each neutral utterance utti

N (marked with ′) are time-scaled according to the DTW
alignment, and transplanted with the F0E and ENE of the expressive pair utti

E counterpart. The
final step is GlottDNN-based synthesis, which generates different expressive output utterances by
applying GSSX and VTY to their vowels—being X, Y either neutral (N) or expressive (E). (a) Overall
diagram of the analysis-by-synthesis methodology. (b) Details of the GlottDNN analysis.

3. Experiments

This section presents the main elements of the conducted experiments, that is, the
considered emotional speech database, the GlottDNN-based inverse filtering features, and
the objective and subjective evaluations.

The expressive data used in the experiments were extracted from a parallel emo-
tional Spanish speech database recorded by a professional female speaker (acted speech),
downsampled to 16 kHz [40], and subsequently labelled for expressive text-to-speech
speech synthesis purposes [41]. Among the five speaking styles composing the expressive
database, three of them were chosen for this work. Specifically, 1250 neutral, happy, and
aggressive paired short utterances were retrieved from the database, thus, covering modal
and tense phonation styles, respectively. These utterances—with an average of 1.2 words
per utterance—ensure a phonetic coverage of the Spanish language. Out of them, 1035 ut-
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terances were used in this work, specifically those containing at least one of the vowels [a],
[i] or [u], as they represent the three extreme vowels of the Spanish vowel triangle. As a
result, a total of 1852 paired vowels were considered in the experiments. Neutral vowels
had an F0 mean of 152 Hz, while the happy and aggressive vowels presented higher values,
of 268 Hz and 257 Hz, respectively.

Regarding the GlottDNN-based analysis-by-synthesis approach, the default settings
of the GlottDNN (https://github.com/ljuvela/GlottDNN, accessed on 25 October 2021)
were considered. That is, the GSS and the VT cues were parameterised using 10 and
30 LSF coefficients per frame, respectively, considering frames of 25 ms and 15 ms in
length for voiced and unvoiced frames, accordingly. The GlottDNN pulse generation
model was trained using the whole neutral corpus (of 2.4 h in length) following [21]. For
the GlottDNN-based synthesis stage, after transplanting the target expressive prosody in
its neutral pairs, the contributions of GSS and VT cues to the production of each target
emotion were evaluated by considering four different configurations, denoted as GSSNVTN
(the baseline configuration), GSSEVTN, GSSNVTE, and GSSEVTE (the expressive target
configuration).

The contributions of GSS and VT cues to the generation of happy and aggressive
expressive styles were evaluated through both objective measures and subjective tests. The
former was determined by computing the spectral distances between the neutral–expressive
vowel pairs, considering the expressive vowel as the target reference. To that effect, GSS and
VT cues were obtained from the neutral vowel (GSSN, VTN), and from the expressive vowel
(GSSE, VTE). Specifically, the similarity between the GSSN and the GSSE was computed
using the Itakura–Saito LPC-based spectral distance denoted as dIS(GSSN, GSSE); a metric
that was also used to compare the VT cues, that is, dIS(VTN, VTE). To that effect, the
GlottDNN parameterises GSS and VT cues as LSF vectors, at a frame level, from which
LSF vectors at the vowel level were obtained using the median to reduce coarticulation
effects. Finally, LSFs were translated into LPC to compute the Itakura–Saito distances [42].
Moreover, the similarities of each version of the [a], [i] and [u] vowels obtained from one of
the three possible configurations with respect to the expressive target configuration were
measured as the symmetrical Kullback–Leibler spectral distance [43] between their long
term average spectra (LTAS) and the corresponding one of their expressive target pairs, i.e.,
dKL(GSSXVTY, GSSEVTE). To do so, LTAS were computed as the Welch’s power spectral
estimate, considering a 15-ms Hamming window with 50% overlap and a 2048-point
FFT [30].

Finally, a multiple stimuli with hidden reference and anchor (MUSHRA) test [44]
was conducted to evaluate the contribution of GSS and VT cues to the perception of the
two target emotions through the four aforementioned synthesis configurations on the six
vowels under study (Ψ = {[a], ["a], [i], ["i], [u], ["u]}). To this end, a total of 24 words were
selected from the speech database subset containing only one vowel from the modified
set of vowels Ψ plus possibly other vowels (i.e., [e] and/or ["e] and/or [o] and/or ["o]).
In this way, for each type of vowel from Ψ four words were obtained, in which only the
respective vowel was modified in terms of GSS and/or VT cues using the aforementioned
analysis-by-synthesis methodology, while the other vowels were kept with the neutral
version of both GSS and VT. Four versions of the test were prepared, each one consisting of
13 evaluation sets (6 words per emotion plus one control point to validate the evaluator
consistency according to the Pearson correlation coefficient r). In each set, the participants
were asked to rate the perceived emotional intensity for each one of the four versions of the
word on a 0 to 100 scale. A GlottDNN-based resynthesised utterance different from those
evaluated was included in the test as an example of the target happy/aggressive emotion
to support the listener evaluation.

Twenty-five Spanish native speakers with an average age of 29.1 took one of the four
versions of the online test using headphones and the Web Audio Evaluation Tool [45].
Among them, 56.0% of the participants had experience in playing and/or producing music,
32.0% in audio software/hardware design, and the 40.0% in audio or speech research.

https://github.com/ljuvela/GlottDNN
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According to the results of the control sets, the responses of nine participants were discarded
since they presented significant criteria inconsistencies (i.e., with r < 0.5).

In order to determine if the differences between the evaluated configurations were
statistically significant, the Wilcoxon signed-rank test [46] was applied to both the objective
and subjective results. The obtained p-values were corrected according to the Holm–
Bonferroni method.

4. Results and Discussion

This section presents the results obtained from both the objective comparisons and the
conducted subjective evaluation.

4.1. Objective Results

Figure 3 depicts the distributions of the Itakura–Saito spectral distances of GSSN and
VTN with respect to GSSE and VTE, respectively. When analysing unstressed and stressed
vowels (first two boxplots), it can be observed that GSS differences are higher for happy
than for aggressive, while the opposite occurs with the VT cues. Moreover, stressed vowels
present higher differences than the unstressed ones.
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Figure 3. Boxplots of the Itakura–Saito distances from GSSN to GSSE (first column) and from VTN

to VTE (second column), for happy (first row) and aggressive (second row) vowels. Dotted lines
represent the mean of the distributions, and whiskers are set to 5th and 95th percentiles.

If we consider the vowels, higher GSS differences are observed on [i] + ["i], while
[a] + ["a] present the lower ones. In between we find [u] + ["u], whose differences are
halfway through the other vowels for aggressive speech, and closer to [a] + ["a] for happy.
VT differences are higher for [u] + ["u], then for [i] + ["i], and finally for [a] + ["a].

Regarding the effect of the stress, GSS distances are higher for stressed vowels than
for the unstressed ones in both expressive configurations. Similarly, VT distances for ["a]
are higher than [a]. Conversely, VT distances for ["i] and ["u] are lower than [i] and [u],
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respectively. The stress increases the VT differences for ["a], while ["i] and ["u] present lower
differences with respect to their unstressed counterparts.

Figure 4 depicts the distributions of the spectral Kullback–Leibler distances from the
vowels synthesised with the different configurations to the target GSSEVTE. According
to the Wilcoxon test results, all the differences between configurations are statistically
significant except for the GSSNVTN–GSSEVTN pair on happy [i] vowels and GSSEVTN–
GSSNVTE on aggressive [u] vowels. Therefore, it can be observed that both GSS and VT
cues make a relevant contribution to the generation of happy and aggressive vowels except
in the aforementioned cases.
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Figure 4. Boxplots of the Kullback–Leibler distances from the analysed configurations to the target
configuration (GSSEVTE) for happy and aggressive vowels. Dotted lines represent the mean of
the distributions, and whiskers are set to the 5th and 95th percentiles. The differences between
configurations are statistically significant (p < 0.01) except those marked with * (p < 0.05) and ns (no
significant).

4.2. Perceptual Evaluation Results

Figure 5 depicts the results obtained from the MUSHRA test. First, results of grouped
unstressed and stressed vowels (vow and ’vow) are analysed (i.e., the first two groups of
boxplots). The baseline configuration (with expressive prosody, GSSN and VTN) obtains
the lowest perceived emotional intensity (median score of 47 and 52 for happy unstressed
and stressed vowels, respectively, and 54 and 52 for the aggressive ones).

On the one hand, the incorporation of GSSE significantly increases the perceived emo-
tional intensity of happy unstressed and stressed vowels by 6.4% and 11.5%, respectively
(moving from 47 to 50 and from 52 to 58 points in the MUSHRA scale). Regarding the
aggressive emotion, the contribution of GSSE is only significant for the stressed vowels,
with an 19.2% increase (from 52 to 62). On the other hand, the sole contribution of the VTE
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with respect to the baseline is only significant for the aggressive stressed vowels, increasing
the perceived emotion by 23.1% (from 52 to 64).
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Figure 5. Results of the MUSHRA perceptual test. Boxplots depict the perceived emotion intensity
scores reported by the participants. The dotted lines represent the mean of the distributions, and
whiskers are set to 5th and 95th percentiles. The statistically significant differences are marked with
** (p < 0.01) and * (p < 0.05).

The best results are achieved when both GSSE and VTE are considered in the synthesis
stage. The increase with respect to the baseline for unstressed and stressed happy vowels is
29.8% (from 47 to 61) and 23.1% (from 52 to 64), respectively, and 18.5% (from 54 to 64) and
32.78% (from 52 to 69) for the aggressive ones.

With regard to the vowels, the contribution of GSSE is significant for [i] + ["i] and
[u] + ["u]. In the latter, the increase is 4.2% (from 48 to 50) and 12.5% (from 56 to 63) for
happy and aggressive speech, respectively. The higher differences are found in [i] + ["i], with
increases of 22.4% (from 49 to 60) and 26.0% (from 50 to 63). Conversely, the contribution
of VTE is significant for happy and aggressive [a] + ["a], with increases of 25% (from 52 to
65) and 21.4% (from 56 to 68), respectively.

4.3. Discussion

Several aspects of the results obtained from the objective and subjective evaluations
may be the subject of discussion. On the one hand, when only GSSE is considered in
the generation of the expressive vowel, the spectral distance to the target is significantly
reduced for all the vowels and emotions except happy [i] (see Figure 4). However, according



Appl. Sci. 2022, 12, 2055 10 of 14

to the results of the perceptual test (see Figure 5), the GSS contribution is only significant on
vowels [i] + ["i] and [u] + ["u]. This could be explained by looking at the differences between
GSSN and GSSE (see left part of Figure 3), which are more pronounced for these vowels,
especially for the aggressive ones.

On the other hand, considering only VTE significantly reduces the spectral distances
to the target in all the cases, as can be seen in Figure 4. Nevertheless, from the perceptual
point of view, such differences are only significant for vowels [a] + ["a]. As Figure 3 shows,
these are exactly the vowels which present the largest differences between VTN and VTE.

The aforementioned differences between vowels can be also analysed by looking at
the averaged spectra of the happy and aggressive vowels (see Figures 6 and 7, respectively).
It can be observed how GSS differences are more pronounced for [i] + ["i] and [u] + ["u] than
for [a] + ["a] vowels. Conversely, VT spectral differences are particularly relevant in vowels
[a] + ["a], where a clear shift of the first two formants can be observed.

[a]

GSS spectra VT spectra

['a]

[i]

['i]

[u]

0.5 1 2 4 8
Freq [kHz]

['u]

GSSN
GSSE

2 4 6 8
Freq [kHz]

VTN
VTE

LTAS

2 4 6 8
Freq [kHz]

GSSNVTN
GSSEVTN

GSSNVTE
GSSEVTE

Figure 6. Averaged spectra of the analysed configurations for the happy emotion. The first and the
second column show the spectra obtained from the mean vectors of glottal source spectra and vocal
tract, respectively, for the neutral (GSSN, VTN) and expressive (GSSE, VTE) configurations. The third
column depicts the mean LTAS of the samples synthesised with the considered combinations of GSS
and VT.

Although this work bears some resemblance to [17], there are several differences that
should be pointed out. In order to study the relevance of GSS and VT cues in resembling
the target emotion, the contribution of prosody was minimised. To this end, the synthesised
utterances were transplanted with the prosody of their expressive pairs instead of using
the neutral prosody, as in [17], biasing the obtained results significantly. On the other hand,
short utterances were used instead of isolated vowels. This has allowed us to study vowels
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in their phonetic context, and to ask for the perceived emotional intensity instead of using
the arousal–valence space, as done in [17].

[a]

GSS spectra VT spectra

['a]

[i]

['i]

[u]

0.5 1 2 4 8
Freq [kHz]

['u]

GSSN
GSSE

2 4 6 8
Freq [kHz]

VTN
VTE

LTAS

2 4 6 8
Freq [kHz]

GSSNVTN
GSSEVTN

GSSNVTE
GSSEVTE

Figure 7. Averaged spectra of the analysed configurations for the aggressive emotion. The first and
the second column show the spectra obtained from the mean vectors of glottal source spectra and
vocal tract, respectively, for the neutral (GSSN, VTN) and expressive (GSSE, VTE) configurations. The
third column depicts the mean LTAS of the samples synthesised with the considered combinations of
GSS and VT.

The present work has focused on two expressive speaking styles characterised by
a tense phonation, using happy and aggressive acted speech. Further work could be
done to extend the study to other acted speaking styles (e.g., sad acted speech, with more
relaxed phonation types) as well as expressive speech obtained in other different conditions
(e.g., real or elicited speech). Another aspect that should be addressed in future studies
is the inverse filtering process. High-pitched female speech and closed vowels (with low
F1) represent a challenge to this process [47]. In this regard, future advances in inverse
filtering methods could be considered in order to improve the precision of the GSS and VT
cue estimations.

Finally, as previously mentioned, the inclusion of expressive nuances in numerical
voice production is still an open issue. In [37], the authors attempted to add some expres-
siveness to a 3D numerical synthesis of the vowel [a] based on the finite element method
(FEM) by modifying the Rd parameter of a LF glottal flow model. In that research important
simplifications were assumed, that is, the GSS was parameterised using a single scalar value
to represent its spectral tilt, and the comparisons between styles were based on the mean
differences of this spectral tilt value. Moreover, it is worth mentioning that no modifications
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of the VT were considered. After analysing the contributions of both GSS and VT cues,
we envision the integration of these results within the 3D FEM-based numerical synthesis
workflow by introducing the observed changes in the glottal flow waveform together with
the proper variations of the realistic 3D vocal tract geometry [48].

5. Conclusions

This work has analysed the contribution of the GSS and VT cues to the generation
of happy and aggressive emotional vowels by means of GlottDNN-based analysis-by-
synthesis methodology, considering a parallel neutral-expressive speech database. The
experiments have considered the Spanish [a], [i] and [u] vowels from aggressive, happy, and
neutral paired utterances. Results from the objective evaluation show that both GSS and
VT cues have a statistically significant contribution to convey these tense voice emotions
when compared with the baseline reference (with expressive prosody, GSSN and VTN).
The subjective evaluations show that VT cues significantly affect the perceived emotion of
vowels [a] + ["a], while GSS cues have a significant effect on the vowels [i] + ["i] and [u] + ["u],
especially on the former.

Future work will focus on developing further analyses to validate the obtained results
on other phonemes and will also consider other expressive speaking styles and/or phona-
tion types, such as the ones present in sadness. Furthermore, we also plan to input the
obtained results within our 3D-based numerical synthesizer by introducing the observed
relevant variations of both the glottal source and the vocal tract to improve the current
naturalness of the happy and aggressive speaking styles generated.
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GSS Glottal Source Spectra
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