
����������
�������

Citation: Lee, E.-B.; Choi, J.-H.; Ku,

S.-K.; Choi, B.-R.; Jang, H.-H.; Kim,

H.-W.; Lee, J.-S.; Lee, S.-H. Plebeian

Sage (Salvia plebeia R. Br) Extract

Ameliorates Inflammation and

Cartilage Degradation in Surgically

Induced Osteoarthritis Rats. Appl. Sci.

2022, 12, 2030. https://doi.org/

10.3390/app12042030

Academic Editor:

Alessandra Durazzo

Received: 3 November 2021

Accepted: 10 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Plebeian Sage (Salvia plebeia R. Br) Extract Ameliorates
Inflammation and Cartilage Degradation in Surgically Induced
Osteoarthritis Rats
Eun-Byeol Lee 1,† , Ji-Hye Choi 1,† , Sae-Kwang Ku 2 , Beom-Rak Choi 3, Hwan-Hee Jang 1 ,
Heon-Woong Kim 1, Jeong-Sang Lee 4 and Sung-Hyen Lee 1,*

1 National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Jeonbuk, Korea;
dmsqufdl1029@naver.com (E.-B.L.); jyyye@naver.com (J.-H.C.); rapture19@korea.kr (H.-H.J.);
ksharrier@korea.kr (H.-W.K.)

2 College of Korean Medicine, Daegu Haany University, Daegu 38610, Kyungbuk, Korea; gucci200@hanmail.net
3 Nutracore Co., Ltd., Yeongtong, Suwon 16229, Gyeonggi, Korea; brchoi@nutracore.co.kr
4 Department of Functional Foods and Biotechnology, Jeonju University, Jeonju 55069, Jeonbuk, Korea;

jslee11@jj.ac.kr
* Correspondence: lshin@korea.kr; Tel.: +82-63-238-3681; Fax: +82-63-238-3843
† The authors equally contributed to this work.

Abstract: Osteoarthritis (OA), the most prevalent articular disease with the clinical syndrome of
joint pain accompanied by varying degrees of functional limitation, reduces the quality of elderly
life. In this study, the effects of Plebeian sage extract (PS) on anti-inflammatory and anti-articular
cartilage degradation activities were evaluated in rats with surgically induced OA. PS supplement for
12 weeks significantly decreased Mankin scores, including inflammatory cell numbers, and improved
surface cartilage damage and mean femur and tibia articular cartilage (AC) thicknesses in OA rats.
PS diminished IL-1β, IL-6, TNF-α, MMP-2, MMP-3, and MMP-9, as well as lipocalin-2 levels in
serum or cartilage, which were increased due to OA. The results suggested that PS decreased joint
inflammation and loss of articular cartilage by suppressing provocative responses and synovial tissue
decimation in the OA model. Thus, PS may be used as a novel potential therapeutic regime for OA in
the elderly.

Keywords: Saliva plebeian; osteoarthritis; articular cartilage; inflammation; cytokine; MMPs

1. Introduction

Osteoarthritis (OA) is the most prevalent articular disease in the elderly [1]. The
process is characterized by changes in the structure and function of the articulation, mainly
due to a degenerative process that takes place in the articular cartilage [2,3]. OA is the most
common clinical syndrome of joint pain accompanied by varying degrees of functional
limitation that reduces the quality of elderly life [4]. Subchondral bone remodeling and a
meniscal damage occur in OA, which is a whole joint disorder, affecting all joint tissues that
communicate at the cellular level by releasing and responding to inflammatory mediators.
Inflammation and fibrosis present in synovial membrane and in the infrapatellar fat pad
(IFP) [5,6]. Synovial inflammation acts as a trigger for several symptoms of OA via the
release of soluble factors that, while increasing and perpetuating cartilage damage, are
used as biomarkers [7,8]. Inflammation may act as a contributing factor in perpetuating
cartilage degradation by promoting destruction and impairing the ability of repair [9].

IL-1β and TNF-α induce other proinflammatory cytokines, such as IL-6, IL-17, and
IL-18, and chemokines. Many of these factors synergize with one or another in promot-
ing chondrocyte catabolic responses. The activation of stress- and inflammation-induced
signaling, transcriptional, and posttranscriptional events may cause phenotypic shift, apop-
tosis, and aberrant expression of inflammation-related genes, including catabolic genes [3].
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Nuclear factor kappaB (NF-kB) proteins constitute a family of transcription factors that
are stimulated by pro-inflammatory cytokines, chemokines, stress-related factors, and
extracellular matrix (ECM) degradation products. The activated NF-kB molecules trigger
the expression of an array of genes, which induce destruction of the articular joint, leading
to OA onset and progression [10]. These include nitric oxide synthase (NOS)-2, cyclooxyge-
nase (COX)-2, and several matrix metalloproteinases (MMPs) [9,10]. Lipocalin-2 induced by
pro-inflammatory factors in joint tissues forms covalent complexes with MMP-9 [11], and
its circulating levels are elevated in aged individuals [12,13]. Increased levels of Lipocalin-2
have been found in OA SF and OA cartilage [14,15]. It has been reported that Lipocalin-2
contributes to the OA pathologies and other OA risk factors [16].

Loss of articular cartilage components, mainly ECM, which leads to tissue destruction
and hypocellularity, and eventually results in loss of joint function, was found in the OA
patients [9,10,17]. There is no cure for OA and no effective treatment to stop its progression.
Current pharmacologic treatments, such as analgesics and non-steroidal anti-inflammatory
drugs, may improve the pain and offer some relief, but they do not affect the progression
of the disease. Further, the chronic intake of these drugs may result in severe adverse
events [18]. Glucosamine and chondroitin sulfate have been shown to delay OA knee
progression in several clinical trials [19,20]. The effectiveness of some products that are
considered nutraceuticals has been widely reviewed in the literature [21,22]. The results
present that nutrients, vitamins, antioxidants, and other natural components in the normal
diet can affect the progression of the disease [23,24]. Many in vitro studies indicate the
efficacy of specific nutrients in cartilage metabolism and their involvement in OA [25–27].
Dipsacus asperoides and Mollugo pentaphylla L. (Molluginaceae) extracts showed potent
anti-inflammatory activities and protected cartilage in an OA rat model [28,29]. However,
in vivo or rigorous clinical studies that evaluate the efficacy of these compounds in OA
models are still missing. The influence of nutrients and diets on the metabolism of cartilage
and OA could represent a long-term coadjuvant alternative in the management of OA. The
studies show that the diets might be potential candidates for therapeutic OA treatment.
Thus, our focus is to find safe and effective nutraceuticals that can control inflammation,
cartilage metabolism, and OA progression.

Plebeian sage (Salvia plebeia R. Br) is an annual or biennial plant that grows in Korea,
China, and India. It is used as a traditional medicine to treat inflammatory diseases, includ-
ing asthma, hepatitis, and hemorrhoids [30]. Pharmacological investigations have revealed
that leaf extract of Plebeian sage (PS) has anti-oxidative [30,31], anti-inflammatory [30,32],
anti-asthma [32], and anti-arthritis effects [33]. The active components of Plebeian sage
comprise flavonoids [34] and phenolic acid [35], which are known for their antioxidant
and anti-inflammatory effects. The homoplantaginin, which is the main flavonoid from
Plebeian sage, is known to have inhibitory effects on inflammation by controlling nitric
oxide generation [36]. In the previous study, Plebeian sage extracted with 95% v/v EtOH
at 70 ◦C inhibited inflammatory response in a mice model of arthritis [33]. However, 50%
v/v EtOH or less concentration of EtOH and 50 ◦C or lower temperature are preferred as
an extracting condition for the clinical trial. Health food producers prefer the condition
because of its lower producing price and higher safety compared to the other condition.
Thus, we have extracted Plebeian sage with 50% v/v EtOH at room temperature and have
evaluated its effect in the osteoarthritis model. It is hypothesized that appropriate treatment
of PS inhibits surgically induced OA due to its anti-inflammatory and articular cartilage
(AC) preserving effects. The objective of this study is to verify the anti-osteoarthritis effects
of PS in rats with surgically induced OA.
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2. Materials and Methods
2.1. Plant Material and Its Flavonoids Contents
2.1.1. Sample Preparation

Plebeian sage leaves were obtained from the natural population in a farm in the Paju
area of the Gyeonggi-do (South Korea) and were authenticated by the National Institute of
Agricultural Sciences. After a multiple-step cleaning process and drying, 300 g of Plebeian
sage leaves were extracted twice with 10 times volume of 50% v/v ethanol and distilled
water at room temperature for 24 h. The extracts of PS were filtered through No. 6 filter
paper (Advantec Co., Tokyo, Japan) and were concentrated by sequential use of a rotary
evaporator (EYELA N-1000, Riakikai Co., Ltd., Tokyo, Japan) at 30 ◦C. Then, they were
frozen and lyophilized (PVTFD 10R, Ilsin Lab, Yangju, Korea). The final lyophilized extract
(11% yield) was stored at −70 until required for experimental use.

2.1.2. Analyzing Flavonoids Contents in Plebeian Sage and Its Extract

Flavone and flavanone amounts of Plebeian sage leaf and its extract (PS) were mea-
sured as major flavonoids compounds. Reference standards of nepetin 7-O-glucoside
(nepitrin), hispidulin 7-O-glucoside (homoplantaninin) and hispidulin were purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA). Luteolin 7-O-glucoside (cynaroside) and
6-methoxyluteolin (internal standard) were obtained from Extrasynthese (Genay Cedex,
France). In addition, methanol, acetonitrile and water (Optima® LC/MS grade) were
supplied from Fisher Scientific (Pittsburgh, PA, USA) and formic acid from Junsei Chemical
(Tokyo, Japan). By UPLC-DAD-QToF/MS analysis, the flavone and flavanone derivatives
of common sage were identified and quantified using an UPLC system equipped with a
diode array detector (DAD) (ACQUITY UPLCTM system, Waters Co., Milford, MA, USA)
and a QToF/MS (Xevo G2-S QToF, Waters MS Technologies, Manchester, UK). In addi-
tion, both main column (CORTECS UPLC T3 C18, 2.1 × 150 mm, 1.6 µm, Waters Co.)
and pre-column (CORTECS UPLC T3 VanGuardTM, 2.1 × 50 mm, 1.6 µm, Waters Co.)
were used to separate flavonoid derivatives. The analysis was conducted at a flow rate
of 0.3 mL/min and detection wavelength of 210–400 nm (representative wavelengths of
350 and 280 nm for flavone and flavanone derivatives, respectively). According to mobile
phase A (0.5% formic acid in water) and B (0.5% formic acid in acetonitrile), the elution
gradient profiles (total 40 min) were detailed as 25% B (20 min), 50% B (25 min), 90% B
(30 min), 90% B (32 min), 5% B (34 min) and 5% B (40 min). Mass spectra were simul-
taneously scanned in the range of 200–1200 m/z in positive ionization mode using an
electrospray ionization (+ESI) source, and the parameters used were: capillary voltage
3.5 kV, sampling cone voltage 40 V, source temperature 120 ◦C, desolvation temperature
500 ◦C, and desolvation N2 gas flow 1050 L/h.

2.2. Animal Experiments
2.2.1. Surgically Induced Osteoarthritis Rat Model

OA rats, surgically induced by anterior cruciate ligament transected and partial me-
dial meniscectomy, have been generally used to observe the anti-OA effects of various
candidates [22,37]. Forty SPF male Sprague–Dawley (SD) rats (9 weeks old, body weight
(BW) 321 ± 36 g) composed of normal and OA model were purchased from the Orient
Bio (Sungnam, Korea). Except for the 8 rats as the sham control group (CON), the other
32 rats were used as the OA model. The OA rats confirmed as OA model with data sheets
showing increased knee thickness following surgical operation compared to the Sham rats
were purchased from the company. Target was left knee joint, including femur and tibia
articular cartilages and synovial membranes (SM). Surgery to induce OA was performed
in 32 rats [22,37,38]. The normal control group of rats underwent a sham operation in
which a similar incision in the joint capsule have been made but anterior cruciate ligament
transection and partial medial meniscectomy had not been performed.
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2.2.2. Animals Husbandry and Experiment Protocols

After 1 week of an adaptation period following purchase from the company, 10-week-old
Sham and OA rats were randomly divided into CON and 4 OA groups (n = 8/group), re-
spectively. Two animals per polycarbonate cage were housed at 22 ± 2 ◦C and
50–55% humidity in a facility under a 12 h light–dark cycle with free access to a stan-
dard pellet diet and water. Experimental doses and duration for this animal study were
considered from previous experiments [22,28–30]. The PS was dissolved in distilled water
(DW) and fed to rats by 1 mL at 100 (PS1) or 300 mg/kg BW (PS2) every day for 12 weeks.
An equal volume of DW used for the melting sample was treated for the sham normal con-
trol (CON), negative control (NC), and positive control (PC). PC group was subcutaneously
injected with 500 µL of diclofenac sodium salt (C14H10Cl2NNaO2, Sigma) at 2 mg/kg BW
in sterilized saline into the dorsal skin with a 26 G needle [22]. After 12 weeks of treatments,
the rats were anesthetized using CO2 gas. All experimental protocols and procedures
were approved by the Small Animal Care and Use Committee of the National Institute of
Agricultural Sciences (NAS-201804). Body weight and diet intake were measured every
week. Experimental design to evaluate in vivo anti-osteoarthritis effect of PS is shown
in Figure 1.
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Figure 1. Experimental design for the animal study.

• Group 1: CON (normal control, sham, distilled water (DW)) (n = 8);
• Group 2: NC (negative control, osteoarthritis (OA), DW) (n = 8);
• Group 3: PC (positive control, OA, DW, diclofenac sodium salt 2 mg/kg BW) (n = 8);
• Group 4: PS1 (OA, low dose of PS 100 mg/kg BW) (n = 8);
• Group 5: PS2 (OA, high dose of PS 300 mg/kg BW) (n = 8).

2.2.3. Histological Process

One part in each knee joint, longitudinal section; one synovial cavity, including
femur and tibia AC, and SM/IFP histological field in each sectioned knee joint were used
(4 or 5 samples/group). All individual knee joint samples were decalcified in decalcifying
solution (24.4% formic acid and 0.5 N sodium hydroxide) for 5 days. The mixed decalcifying
solution was changed once per day. Each knee joint was longitudinally trimmed on part in
each knee joint, including both femur and tibia AC with SM, and then embedded in paraffin
using an automated tissue processor (Shandon Citadel 2000, Thermo Scientific, Waltham,
MA, USA) and embedding center (Shandon Histostar), and 3–4 µm thick serial two section
blocks were prepared using an automated microtome (RM2255, Leica Biosystems, Nussloch,
Germany) in each paraffin block. Representative sections were stained with H&E for
general histopathology and Safranin O (SO) for AC chondrocytes according to established
methods [37,38]. Histological sections were prepared for all samples, and the histological
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profiles were interpreted under a light microscope (Model Eclipse 80i, Nikon, Tokyo, Japan)
as blinds to group distribution during this analysis.

2.2.4. Histomorphometrical Analysis

The entire histological evaluation was performed by the same pathologist. Mean femur
and tibia AC and SM epithelial thicknesses (µm) were measured as histomorphometrical
analyses on prepared longitudinally trimmed samples, using a computer-based automated
image analyzer (iSolution FL ver 9.1, IMTi-solution Inc., Vancouver, British Columbia,
Canada), with mean numbers of inflammatory cells infiltrated on the SM (cells/mm2)
according to previously established methods [22,37]. The histological fields observed in
this inspection were selected around the central region of synovial cavity on the knee
joint histological specimen. More than five histological fields in each knee joint section
were considered to calculate each mean histomorphometrical value. To observe more
detailed histopathological changes, the femur and tibia AC injuries found in the knees were
evaluated and recorded using the Mankin scoring systems (Table 1) using Safranin O stain.
In this system, the higher the score, the higher the level of OA (Semiquantitative scores;
Max = 12).

Table 1. Variable scores of the Mankin scoring systems.

Surface Condition Hypocellularity Clone Formations Stain Intensity for Safranin O

0 = normal 0 = normal 0 = normal 0 = normal
1 = irregular 1 = small decrease 1 = occasional duos 1 = small decrease

2 = fibrillation in color 2 = duos or trios in color
vacuoles 2 = large decrease in color 3 = multiple 2 = large decrease in color

3 = blisters anderosion 3 = no color nested cells 3 = no color

2.2.5. Measuring Serum Cytokines, MMPs, and Lipocalin-2 Levels

Approximately 5 mL of whole blood was collected from the vena cava at euthanization,
and the serum was separated by centrifugation at 2000 rpm for 15 min. Serum concen-
trations of TNF-α, IL-1β, IL-6, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, and
lipocalin-2 were measured using sandwich enzyme-linked immunosorbent assays (ELISAs).
TNF-α (ab46070, Abcam, Cambridge, UK), IL-1β (ab100768, Abcam), IL-6 (ab119548, Ab-
cam), IFN-γ (ab46107, Abcam), MMP-2 (ab213910, Abcam), MMP-3 (LS-F5516, LSBio,
Seattle, WA, USA), MMP-7 (LS-F5514, LSBio), MMP-8 (ab100779, Abcam), MMP-9 (LS-
F32423, LSBio), MMP-13 (ab221839, Abcam), and lipocalin-2 (ab119602, Abcam) for rats
were used in this measurement. The assays were performed according to the manufac-
turer’s instructions, and the absorbance of the contents of each well was measured at
450 nm using a microplate reader (Molecular Devices, Silicon Valley, CA, USA).

2.2.6. Measuring mRNA Expressions of Cytokines and MMPs in the Cartilage of OA Rats

RNA was isolated from the cartilages with synovial membrane of intact or surgically
induced OA rats using the RNeasy Mini Plus Kit (74106, Qiagen, Valencia, CA, USA). One-
step quantitative polymerase chain reaction (qPCR) was carried out using Quantifast SYBR
Green RT-PCR kit (204156, Qiagen) by a one-step cycler. Amplification was performed
according to the conditions using the BioRad CFX-96 real-time system (BioRad, Hercules,
CA, USA). All results were normalized to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) expression. The primer information (Qiagen) used for qPCR is shown in Table 2.
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Table 2. Primer information for gene expression in qPCR experiment.

Gene Symbol Catalog Number Detected Transcript(s) Amplicon Length

GAPDH QT00199633 NM_017008 149 bp
IL-6 QT00182896 NM_012589 128 bp
IL-18 QT02459506 XM_001070641 105 bp

MMP-2 QT00996254 NM_031054 103 bp
MMP-3 QT00189308 NM_133523 82 bp
MMP-9 QT00178290 NM_031055 149 bp

2.3. Statistical Analysis

All data are expressed as mean ± SEM. One-way ANOVA (one-way analysis of
variance) was performed using Statistical Package for the Social Sciences (SPSS ver. 24, IBM
Corp, Armonk, NY, USA). NC group was compared to the CON group by Student’s t test,
and a Duncan’s multiple-range test was conducted to determine significant differences
among the groups. Significant difference was considered at p < 0.05.

3. Results
3.1. Characterization of Flavonoids in Plebeian Sage and Its Extract

Plebeian sage leaf contains 77.8 mg of flavonoids, and its extract (PS) contains 365.5 mg
flavonoids per each dry matter (g). Six representative compounds consisting of flavone (5)
and flavanone (1) derivatives were tentatively identified from the leaf and PS through posi-
tive ionized mass fragmentation using UPLC-DAD-QToF/MS analysis (Table 3). The cur-
rent positive ionized pattern of these compounds provides additional sodium (Na+, m/z 23)
and potassium (K+, m/z 39) adduct ions with basic protonated molecules [M+H]+ that can
help to determine the parent ion. The conjugations with glucose moiety (162 Da) were the
7-OH position of their corresponding aglycones ([M+H-glucose]+) such as
6-hydroxyluteolin (m/z 303), 5,7,3′,4′-tetrahydroxy-6-methoxyflavanone (m/z 319), luteolin
(m/z 287), nepetin (m/z 317) and hispidulin (m/z 301).

Table 3. Characterization of isolated flavone and flavanone derivatives from Plebeian sage leaf and
its extract (PS).

Compounds
ESI(+)-QToF/MS

Fragmentation of [M+H]+ (m/z)
Contents (mg/g Dry Matters)

Leaf PS

6-hydorxyluteolin 7-O-glucoside 487, 465, 303 13.5 ± 0.4 65.9 ± 4.6
5,7,3′,4′-tetrahydroxy-6-methoxyflavanone

7-O-glucoside (naasanone) 503, 481, 319 9.4 ± 0.2 53.4 ± 1.3

luteolin 7-O-glucoside (cynaroside) 471, 449, 287 11.3 ± 0.4 62.8 ± 1.3
nepetin 7-O-glucoside (nepitrin) 501, 479, 317 23.5 ± 0.6 78.3 ± 1.9

hispidulin 7-O-glucoside (homoplantaginin) 485, 463, 301 19.5 ± 0.4 104.8 ± 2.4
hispidulin 339, 323, 301 0.6 ± 0.1 1.3 ± 0.1

Total 77.8 ± 1.9 365.5 ± 9.1

All samples analyzed in positive ESI-ionization mode (m/z [M+H]+) of ToF-MS; [M+Na]+ and [M+K]+ adducts are
presented. Bold font indicates parent ion ([M+H]+) of flavonoid structures. Each content calculated as means ± SD
(n = 3) using internal standard (6-methoxyluteolin).

Among these glycosides (mg/g dry matter of leaf), 6-hydorxyluteolin 7-O-glucoside
(13.5 g), cymaroside (11.3 g), nepitrin (23.5 g) and homoplantaginin (19.5 g) were found as
major constituents. Especially, 5,7,3′,4′-tetrahydroxy-6-methoxyflavanone 7-O-glucoside is
a new flavanone glycoside (naasanone, 9.4 g). In the PS, most flavonoids increased by more
than three times compared to those in the Plebeian sage leaf. PS contains 6-hydorxyluteolin
7-O-glucoside (65.9 g), naasanone (53.4 g), cymaroside (62.8 g), nepitrin (78.3 g) and
homoplantaginin (104.8 g) as major constituents of flavonoids.
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3.2. Animal Experiments
3.2.1. Effects of Treatment with PS on Body Weight and Food Efficiency Ratio

At the beginning of this experiment, there was no significant difference in body weight
among all groups of the sham and OA rats. Body weight, body weight gain, and food
intake were similar in all experimental groups (Table 4).

Table 4. Effects of PS on the final body weight, body weight gain, and food intake in the surgically
induced OA rats.

Groups
Body Weight (g) Weight Gain

(g)
Food Intake

(g/rat)0 Week 12th Week

CON 374.6 (6.1 NS) 615.6 (17.7 NS) 241.0 (16.4 NS) 1560.0 (38.5 NS)
NC 371.1 (10.7) 610.8 (10.8) 239.7 (9.8) 1594.7 (44.3)
PC 379.7 (5.4) 613.2 (15.0) 233.6 (15.0) 1534.1 (6.4)
PS1 374.8 (14.8) 622.3 (18.2) 247.5 (14.0) 1566.1 (58.3)
PS2 369.7 (7.2) 620.5 (19.4) 250.9 (12.4) 1544.0 (84.5)

CON: normal sham control; NC: negative control; PC: positive control, which was subcutaneously injected with
diclofenac sodium salt at 2 mg/kg BW in sterilized saline into the dorsal skin; PS1: PS at 100 mg/kg BW; PS2:
PS at 300 mg/kg BW. The data were presented as the mean ± S.E. (n = 4~5/group). NS Mean values are not
significantly different (p < 0.05) among groups by Duncan’s multiple range test.

3.2.2. Effects of PS on the Articular Surface Lining Cartilage with SM on the Knee Joint
Tissues in OA Rats

The representative general H&E stained histopathological profiles of knee joint tissues
are shown in Figure 2. This figure shows that PS affected histopathological profiles of knee
joint tissues in rats with surgically induced OA compared to those of the NC group. As
shown in the NC group (Figure 2b), significant decreases in the femur and tibia AC thickness
and increases on the SM epithelial thicknesses and inflammatory cell numbers infiltrated
around the SM as compared to those of the normal CON group (Figure 2a) were found,
suggesting classic OA histopathological lesions in the NC group. However, Figure 2d,e
showed that PS1 and PS2 significantly increased the femur and tibia AC thickness while
they decreased the SM epithelial thicknesses and inflammatory cell numbers in a dose-
dependent manner.

Table 5 shows the histomorphometrical results on the articular surface lining cartilage
and synovial membrane. Mean femur AC thickness in OA control NC group was reduced
to 40.6% as compared with that of the normal CON group, but the value was improved
as 209.7%, 220.2%, and 233.9% in PC, PS1, and PS2 groups compared to that of the NC
group, respectively. Mean tibia AC thickness in NC was also changed at 43.8% as compared
with that of the CON group, but the level increased to 199.2%, 176.5%, and 213.3% in PC,
PS1, and PS2 groups compared to that of the NC group, respectively. Mean SM epithelial
thicknesses of the knee joints in the NC group increased to 309.9% as compared with that
of the CON group, but the value decreased to 52.2%, 49.8%, and 44.6% in the PC, PS1, and
PS2 groups, respectively, as compared with that of the NC group. In the NC group, mean
numbers of inflammatory cells infiltrated around SM of the knee joints increased by 400.0%
as compared with that of the CON group, but the level changed as 48.8%, 35.2%, and 25.9%
in the PC, PS1, and PS2 groups, respectively, compared with that of the NC group (Table 5).
Thus, PS significantly improved histomorphometrical values of the articular surface lining
cartilage and synovial membrane, and the effectiveness was similar or higher than that of
the PC group treated with diclofenac sodium salt.

3.2.3. Effects of PS on the Mankin Score of the Knee Joint Tissues

SO-stained histopathology of knee joint tissues in OA rats are shown in Figure 3. In
the NC group, significant surface cartilage damages and increased clone formations in
both femur and tibia AC were detected. However, PS improved surface cartilage condition
and decreased clone formations that affected the histopathological characteristics of the
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joints and synovial tissues of the knee joint tissues in the rats with surgically induced OA
compared to those of the NC.
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Figure 2. The effects of PS on H&E-stained histopathological profiles of knee joint tissues in rats
with surgically induced OA (40×). (a) CON: normal sham control; (b) NC: negative control; (c) PC:
positive control, rats treated with diclofenac sodium salt at 2 mg/kg BW in sterilized saline into
the dorsal skin; (d) PS1: PS at 100 mg/kg BW; (e) PS2: PS at 300 mg/kg BW. Gp: growth plate; EP:
epithelium; scale bars = 160 µm.

Table 5. The effects of PS on histomorphometrical values of the articular surface lining cartilage and
synovial membrane of the knee joint tissues in the OA rats.

Groups
Articular Surface Lining Cartilage Synovial Membrane

Femur Thickness (µm) Tibia Thickness (µm) Mean Epithelial
Thickness (µm)

Mean Inflammatory
Cells (Cells/mm2)

CON 430.0 (39.5 a) 467.2 (49.3 a) 8.1 (0.2 b) 41.5 (31.7 c)
NC 174.4 (25.7 ***,b) 204.8 (19.8 ***,b) 25.1 (0.6 ***,a) 166.0 (15.9 ***,a)
PC 365.7 (47.9 a) 408.0 (28.3 a) 13.1 (2.8 b) 81.0 (10.7 b)
PS1 384.0 (57.8 a) 361.5 (33.4 a) 12.5 (2.4 b) 58.5 (3.1 bc)
PS2 408.0 (53.5 a) 437.0 (30.9 a) 11.2 (2.0 b) 43.0 (3.3 c)

CON: normal sham control; NC: negative control; PC: positive control; PS1: PS at 100 mg/kg BW; PS2: PS at
300 mg/kg BW. The data were analyzed by one-way ANOVA using SPSS software and presents as the mean ± S.E.
(n = 4~5/group). NC group is significantly different from the CON group at *** p < 0.001 by Student’s t test.
a–c Mean values with different letters are significantly different (p < 0.05) among groups by Duncan’s multiple
range test.
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Figure 3. The effects of PS- on SO-stained histopathological characteristics of joints and synovial
tissues of knee joint tissues in surgically induced OA rats (40×). (a) CON: normal sham control;
(b) NC: negative control; (c) PC: positive control, rats treated with diclofenac sodium salt at 2mg/kg
BW in sterilized saline into the dorsal skin; (d) PS1: PS at 100 mg/kg BW/day; (e) PS2: PS at
300 mg/kg BW/day. Gp; growth plate, EP; epithelium, scale bars = 160 µm.

In Table 6, the OA control (NC) showed marked increases in surface cartilage damages
and decreases in chondrocytes, clone formations, and Safranin O stain intensities on both
femur and tibia AC. Consequently, significant (p < 0.01) increases in the Mankin scores were
detected in the NC group as compared with those in the normal CON group. However,
the Mankin scores of femoral and tibial AC were lower in PS groups than those of the
NC group, in a dose-dependent manner. Totalized Mankin score of the knee joints in OA
control NC group was changed by 864.0% as compared with that of the intact control CON
group, but they were reduced as 50.9%, 48.6%, and 23.1% in PC, PS1, and PS2 groups,
respectively, as compared with that of the NC group.

Table 6. The effects of PS on histomorphometrical data obtained by the Mankin scoring systems on
the knee joint tissues of OA rats.

Groups Surface Condition
(Max = 3)

Hypocellularity
(Max = 3)

Clones
(Max = 3)

Stain Intensity
(Max = 3)

Totalized Final Score
(Max =12)

CON 0.50 (0.29 c) 0.25 (0.25 cd) 0.00 (0.00 c) 0.50 (0.29 c) 1.25 (0.48 c)
NC 2.80 (0.00 ***,a) 2.40 (0.29 ***,a) 3.00 (0.00 ***,a) 2.60 (0.25 ***,a) 10.80 (0.48 ***,a)
PC 1.25 (0.25 bc) 1.25 (0.25 b) 1.25 (0.48 b) 1.75 (0.25 ab) 5.50 (0.96 b)
PS1 1.75 (0.48 b) 1.00 (0.41 bc) 1.25 (0.25 b) 1.25 (0.48 bc) 5.25 (1.25 b)
PS2 1.00 (0.00 bc) 0.00 (0.00 d) 0.50 (0.29 c) 1.00 (0.00 bc) 2.50 (0.29 c)

CON: normal sham control; NC: negative control; PC: positive control, which was subcutaneously injected with
diclofenac sodium salt at 2 mg/kg BW in sterilized saline into the dorsal skin; PS1: PS at 100 mg/kg BW; PS2: PS
at 300 mg/kg BW. The data are presented as the mean ± S.E. (n = 4~5/group). NC group is significantly different
from the CON group at *** p < 0.001 by Student’s t test. a–d Mean values with different letters are significantly
different (p < 0.05) among groups by Duncan’s multiple range test.
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3.2.4. Effects of PS on Serum Inflammatory Cytokines Levels

The results indicate that there was a clear increase in the levels of IL-1β, IL-6, and TNF-
α in the surgically induced OA, NC group (p < 0.01) compared to the CON group (Figure 4).
However, daily treatment with PS at a dose of 100 or 300 mg/kg BW significantly decreased
the release of IL-1β, IL-6, and TNF-α into the serum (p < 0.05 or p < 0.01) compared to those
of the NC group. PS group showed significantly reduced serum IL-1β level compared
to the NC group. Furthermore, the IL-1β level of the PS group was reduced over 34%
compared to that of the PC group, without significant differences between the groups. In
the PS groups, serum IL-6 levels also significantly decreased compared to the NC group,
and the effect was compared to the PC group. The serum IFN-γ levels tend to decrease in
the PC and PS groups, although there was no significant difference found (2.4~2.6 pg/mL).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 17 
 

(Figure 4). However, daily treatment with PS at a dose of 100 or 300 mg/kg BW signifi-

cantly decreased the release of IL-1β, IL-6, and TNF-α into the serum (p < 0.05 or p < 0.01) 

compared to those of the NC group. PS group showed significantly reduced serum IL-1β 

level compared to the NC group. Furthermore, the IL-1β level of the PS group was re-

duced over 34% compared to that of the PC group, without significant differences be-

tween the groups. In the PS groups, serum IL-6 levels also significantly decreased com-

pared to the NC group, and the effect was compared to the PC group. The serum IFN-γ 

levels tend to decrease in the PC and PS groups, although there was no significant differ-

ence found (2.4~2.6 pg/mL). 

  
(a) (b) 

  
(c) (d) 

Figure 4. Effects of PS on serum inflammatory cytokine (a) IL-1β, (b) IL-6, (c) TNF-α, and (d) IFN-

γ levels in OA rats. CON: normal sham control; NC: negative control; PC: positive control; PS1: PS 

at 100 mg/kg BW; PS2: PS at 300 mg/kg BW. The data are presented as the mean ± SE (n = 

4~5/group). NC group was significantly different from the CON group at * p < 0.05, *** p < 0.001 by 

Student’s t test. NS Not significantly different among groups. a,b Mean values with different letters 

are significantly different (p < 0.05) among groups by Duncan’s multiple range test. 

3.2.5. Effects of PS on Serum MMPs Levels 

Serum MMPs (MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13), and lipocalin-2 

levels were evaluated in the OA rats and are presented in Figure 5. The serum MMP-2, 

MMP-7, MMP-8, MMP-9, MMP-13, and lipocalin-2 levels were higher in the OA NC group 

compared with those in the normal CON group. MMP-2 level decreased in the PS groups, 

showing a dose-dependent manner, and a significant difference was found in the PS2 

group compared to the NC group (Figure 5a). Serum MMP-3 level increased in the OA 

experimental animals compared to the CON group, and the levels were lower in the PS 

groups (p > 0.05), although there was no significant difference among the experimental 

animals. Serum MMP-7 and 8 levels were higher in the OA animals compared to those of 

the normal CON group. However, the values decreased in the PC and PS groups. PS low-

ered the serum MMP-7 level in a dose-dependent manner. PS’s effect on the MMP-8 was 

comparable to the diclofenac sodium salt, which was used as a positive control. Serum 

MMP-9 and 13 values increased in the OA rats compared with the CON group. However, 

Figure 4. Effects of PS on serum inflammatory cytokine (a) IL-1β, (b) IL-6, (c) TNF-α, and (d) IFN-γ
levels in OA rats. CON: normal sham control; NC: negative control; PC: positive control; PS1: PS at
100 mg/kg BW; PS2: PS at 300 mg/kg BW. The data are presented as the mean ± SE (n = 4~5/group).
NC group was significantly different from the CON group at * p < 0.05, *** p < 0.001 by Student’s t test.
NS Not significantly different among groups. a,b Mean values with different letters are significantly
different (p < 0.05) among groups by Duncan’s multiple range test.

3.2.5. Effects of PS on Serum MMPs Levels

Serum MMPs (MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13), and lipocalin-2
levels were evaluated in the OA rats and are presented in Figure 5. The serum MMP-2,
MMP-7, MMP-8, MMP-9, MMP-13, and lipocalin-2 levels were higher in the OA NC group
compared with those in the normal CON group. MMP-2 level decreased in the PS groups,
showing a dose-dependent manner, and a significant difference was found in the PS2
group compared to the NC group (Figure 5a). Serum MMP-3 level increased in the OA
experimental animals compared to the CON group, and the levels were lower in the PS
groups (p > 0.05), although there was no significant difference among the experimental
animals. Serum MMP-7 and 8 levels were higher in the OA animals compared to those
of the normal CON group. However, the values decreased in the PC and PS groups. PS
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lowered the serum MMP-7 level in a dose-dependent manner. PS’s effect on the MMP-8
was comparable to the diclofenac sodium salt, which was used as a positive control. Serum
MMP-9 and 13 values increased in the OA rats compared with the CON group. However,
the values significantly decreased in the PC and PS groups compared to the NC group. The
lipocalin-2 level, which was increased in the OA rats, was lowered by PS. Moreover, MMP-2,
MMP-7, and lipocalin-2 levels more effectively decreased in the groups administered with
PS at 300 mg/kg (p < 0.01) than in the PC group as a positive control. Generally, PS affected
the serum MMPs and lipocalin-2 levels and MMP-2, 7, and lipocalin-2 levels decreased in a
dose-dependent manner.
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Figure 5. Effects of PS on serum MMPs (a) MMP-2, (b) MMP-3, (c) MMP-7, (d) MMP-8, (e) MMP-9,
(f) MMP-13, and (g) lipocalin-2 levels in OA rats. CON: normal sham control; NC: negative control;
PC: positive control; PS1: PS at 100 mg/kg BW; PS2: PS at 300 mg/kg BW. The data are presented as
the mean ± SE (n = 4~5/group). NC group was significantly different from CON group at * p < 0.05,
** p < 0.01 by Student’s t test. NS Not significantly different among groups. a,b Mean values with
different letters are significantly different (p < 0.05) among groups by Duncan’s multiple range test.
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3.2.6. Effects of PS on mRNA Expressions of Cytokines IL-6 and IL-18 in Cartilage

Figure 6 shows higher levels of IL-6 and IL-18 in the cartilage with synovial membrane
of the NC group (p < 0.01) compared to the normal CON group. However, daily treatment
with PS at a dose of 100 or 300 mg/kg decreased the release of IL-6 and IL-18 expression in
the cartilage. The significant difference was found in the IL-6 and IL-18 (p < 0.01 or p < 0.001)
compared to the NC group. The mRNA expression level of cytokine IL-6 was comparable
to the diclofenac sodium salt for the PC group. Furthermore, the mRNA expression level of
cytokine IL-18 was significantly and effectively reduced in the PS group versus the NC and
PC groups.

3.2.7. Effects of PS on MMPs Expression in Cartilage with Synovial Membrane

The expression levels of MMP-2, MMP-3, and MMP-9 in the cartilage with synovial
membrane of OA rats are shown in Figure 7. They were significantly higher in the NC
group compared with those of the CON group. PC and PS groups decreased the expression
levels of MMP-2, MMP-3, and MMP-9 in cartilage. PS2 treatment effectively affected the
MMP expression levels of OA rats and showed a similar or higher effect than the diclofenac
sodium salt used for the PC group.
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Figure 6. Effects of PS on cytokines expression in the cartilage with synovial membrane of OA rats.
(a) IL-6 and (b) IL-18. Data are expressed as the mean ± SE (n = 4/group). CON: normal sham
control; NC: negative control; PC: positive control; PS1: PS at 100 mg/kg BW; PS2: PS at 300 mg/kg
BW. NC group was significantly different from the CON group at *** p < 0.001 by Student’s t test.
a–c Mean values with different letters are significantly different (p < 0.05) among groups by Duncan’s
multiple range test.
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groups by Duncan’s multiple range test.

4. Discussion

The primary approach in the clinical treatment of OA involves the use of nonsteroidal
anti-inflammatory drugs (NSAIDs), analgesics, and hyaluronan, which allow for symp-
tomatic relief but provide no apparent disease-modifying effects [3]. In some instances,
NSAIDs may even have deleterious effects, as they inhibit the synthesis of proteoglycan,
which plays a crucial role in maintaining the functions of the cartilage. Therefore, there is a
critical need to develop alternative agents that can prevent the destruction of cartilage or
stimulate their proper repair [6,8].

OA is the most prevalent articular disease in the elderly [1] and is characterized by
loss of articular cartilage components, leading to tissue destruction and hypocellularity,
eventually resulting in loss of joint function [19,27]. Alternative agents that can prevent the
destruction of cartilage or stimulate its proper repair are needed [6] due to the deleterious
effects of NSAIDs [3]. In this study, anti-arthritis effects were evaluated from PS with
high anti-oxidative [30] and anti-inflammatory effects [32]. The active components of
PS comprise flavonoids and phenolic acid [34,35]. These materials are known to have
antioxidant and anti-inflammatory effects, and the inflammation may be controlled by
reducing nitric oxide generation [39].

Mankin’s 12-point histopathological grading system of cartilage deterioration is based
on cartilage surface damage, the number of chondrocytes, and Safranin O staining. In
this study, normal cartilage was scored as 0 in the control CON group; the most severe
case of cartilage deterioration had a high score of 10.8 in the NC group (Table 5) as shown
in the previous report [22]. OA control rats (NC) showed marked increases in surface
cartilage damage, decreases in chondrocytes, and clone formations on both femur and
tibia AC when compared with those of normal control rats (CON). In addition, NC also
showed significant decreases in the mean femur and tibia AC thicknesses, and increases in
SM epithelial thicknesses and inflammatory cell numbers infiltrated around the SM/IFP
as compared to those of the CON, suggesting classic OA histopathological lesions. In-
flammation and fibrosis presented in SM/IFP. However, these histopathological surgically
induced histopathological OA lesions were obviously and most significantly inhibited by
PC and PS treatments in a dose-dependent manner. PS2 showed more favorable inhibitory
effects than those of the commercial reference (PC), and PS1 was comparable to the anti-OA
effects of PC (Figure 3, Table 5). In the previous trial using a mixture of dried pomegranate
concentrate powder, eucommiae cortex, and achyranthis radix, this improved the decreases
in AC thickness and the number of chondrocytes detected in OA rats [22]. OA is the most
common clinical syndrome of joint pain accompanied by varying degrees of functional
limitation [4]. PS inhibited the inflammatory response in human rheumatoid synovial
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fibroblasts and a murine model of arthritis [33]. Thus, effects of PS on joint pain in a rat
model of surgically induced OA and comparisons of the mechanisms in different arthritis
models should be measured in future studies [40].

OA is a debilitating disease that affects the AC and subchondral bone, and inflam-
mation is closely involved in all steps of OA progression [39]. The inflammatory factors
TNF-α, IL-1β, and IL-6 contribute to OA progression [41]. OA-induced rabbits exhibited
significant decreases in AC thickness of the femur and tibia. It is also reported that the
number of chondrocytes significantly increased synovial IL-1β, IL-6, and TNF-α levels
and significantly increased numbers of femoral and tibial subchondral IL-1β and TNF-
α-immunolabeled cells [42]. In this trial, treatment of PS favorably inhibited surgically
induced OA through anti-inflammatory and AC preserving effects (Figure 3). The inflam-
matory cytokine (IL-1β IL-6, TNF-α) levels increased in the NC group versus those of the
normal control CON group. Conversely, these OA-induced symptoms of inflammation
were significantly inhibited by 12 weeks of supplement with PS (100 and 300 mg/kg body
weight). PS decreased the release of IL-1β, IL-6, and TNF-α into the serum of OA rats.
These findings represent reliable evidence that PS has favorable anti-inflammatory effects
on surgically induced OA rats, and these results are consistent with the report showing
a strong correlation between low inflammatory levels and anti-osteoarthritis effects in
animals supplemented with functional foods [22,25].

MMPs are involved in the degradation of the ECM [42], although their expression
can be suppressed by metalloproteinase inhibitors [43]. The MMPs are reliable predictors
of cartilage loss during the development of OA [44], and their increase has been reported
in the synovium and chondrocytes of surgically induced OA models [45]. Lipocalin-2
is believed to play a significant functional role in OA cartilage [46] as a biomarker for
cartilage degradation in arthritic disease [47], although Choi and Chun suggested that its
upregulation in osteoarthritic cartilage is not necessary for cartilage destruction in mice [16].
In this study, we found that PS decreased serum MMP-2, MMP-7, MMP-9, MMP-13, and
lipocalin-2 levels when administered at a dose of 100 or 300 mg/kg (p < 0.05) compared
with those of the NC group. After treating the rats with PC, weak effects on the serum
MMP-2, -3, -7, -8, and lipocalin-2 levels of OA rats were observed (p > 0.05). It is interesting
that PS improved the biomarkers such as MMP-2, -7, and lipocalin-2 in a dose-dependent
manner and was more effective than diclofenac sodium salt for the PC group. Furthermore,
not only Plebeian sage extracted with 95% v/v EtOH at 70 ◦C [33] but also Plebeian sage
extracted with 50% v/v EtOH at room temperature effectively inhibited osteoarthritis.
This is a great news to customers and health food producers with its low producing price
and higher safety. Thus, the PS used in this study may be used widely for osteoarthritis
treatment with lower prices and improved safety.

iNOS is induced by pro-inflammatory cytokines and is involved in high levels of NO
production during the inflammatory process [48,49]. NF-κB proteins constitute a family
of transcription factors stimulated by pro-inflammatory cytokines, chemokines, stress-
related factors, and ECM degradation products. The activated NF-κB molecules trigger the
expression of genes that induce destruction of the articular joint [10]. The activation of stress-
and inflammation-induced signaling, transcriptional, and posttranscriptional events may
cause a phenotypic shift, apoptosis, and aberrant expression of inflammation-related genes,
including catabolic genes [25]. These include nitric oxide synthase (NOS)-2, cyclooxygenase
(COX)-2, and several matrix metalloproteinases (MMPs) [26,45]. In this study, we evaluated
whether PS could ameliorate inflammation and cartilage degradation in surgically induced
osteoarthritis rats. Extended evaluation should be performed by measuring joint pain of
experimental animals and by studying chondrocytes and synoviocytes to verify its effects
on controlling pro-inflammatory cytokines, chemokines, and stress-related factors.
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5. Conclusions

The present investigation demonstrates that PS significantly improved surface cartilage
damage, Mankin scores, mean femur and tibia AC thicknesses, and inflammatory cell
numbers in rats with surgically induced OA. PS significantly decreased serum inflammatory
cytokines and MMPs levels, which were elevated due to OA. Thus, it is posited that PS may
be used as a novel potential therapeutic regime for various OA and may reduce the risk of
cartilage loss and disease progression in the elderly with OA. Further detailed molecular
mechanism studies are recommended to verify our findings.
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