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Abstract: In this paper, we have shown an electronic circuit equivalence of a mechanical system
consisting of two oscillators coupled with each other. The mechanical design has the effects of the
magnetic spring force resistance force, and the spring constant of the system is periodically varying.
We have shown that the system’s state variables, such as the displacements and the velocities, under
the effects of different forces, lead to some nonlinear behaviors, like a transition from the fixed
point attractors to the chaotic attractors through the periodic and quasi-periodic oscillations. We
have verified those numerically obtained phenomena using the analog electronic circuit of this
mechanical system.

Keywords: parametric excitation; dry-friction; magnetic spring force; electronic circuit

1. Introduction

There are a large number of physical and feigned systems, especially in the machine
industry, where we can see the effects of magnetic and electrical fields [1–4]. The dynamics
of those systems with the impact of the magnetic and electric fields show some interesting
behavior. Therefore, the researchers’ study in this area is of great interest. Moreover, when
the two systems are coupled together, and there is an influence of these fields, we can
observe some peculiar dynamical behaviors that may not happen when the systems are
uncoupled [5–8].

When the state variables shift a tiny amount from the equilibrium state, the existence
of all the forces is very similar and can be described individually. But if the displacements of
the state variables are beyond the small value from the unperturbed states, the inclusion of
forces, specifically the character of nonlinearity and cooperative effects, are evident. That’s
why, the mechanical oscillating systems [9–11] having springs, dash-pot, or impact [12–14],
and magnetic interactions [6] show some fascinating phenomena. The neodymium mag-
netic systems have a wide range of applications in the field of mechanical engineerings,
such as in vibration energy harvester [15,16], special textile machines [17], magnetic impact
damper [16], etc.

Sometimes, mechanical systems are tough to implement under continuous parameter
variations. But, the electronic circuits are straightforward to work out as a natural system
when there are variations of parameters. In electronic circuits, the components are readily
available, and we can get a wide range of parameters values, like the value of resistances,
capacitors, inductors, etc. [18]. So, in the last few decades, people have been developing
electronic equivalence of the mechanical systems to ease the experimental observations of
the dynamics of the equivalent mechanical systems.

An electric analog of friction in mechanical systems has been shown by H.H. Skilling [19].
Berthet et al. [20] showed the electronic analog of the parametric instabilities in mechanical
systems. Jezierski showed different dynamics of the electronic analog of a mechanical system
used for the robotic dynamics [21]. Apart from that, a lot of works have been done regarding
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various aspects of the equivalence of electrical and mechanical systems [22–25]. Xu et al. [26]
have shown that the dry-friction force can be implemented by using two antiparallel diodes
in the circuit. Seth and Banerjee have shown the equivalent circuit of one degree of freedom
mechanical impacting system and have obtained the shape of the chaos at grazing for different
stiffness values of the mechanical impacting system [18].

Although many works have already been shown regarding the equivalence of the
electrical and mechanical systems, the mechanical systems under different forces and
coupling schemes are not yet conducted in a more general way in an electronic circuit.
For example, although the two antiparallel diodes can be used to implement dry-friction
in the electronic circuit, the diodes have limitations, like the limitations of the maximum
voltage and maximum current. So, we can not use this system widely in any experiments.
In this work, we have shown how, in another way, using op-amps and the multipliers, this
dry-friction term and different forces can be implemented.

So, in this paper, we have shown the electronic circuit equivalence of a coupled
mechanical system having different forces, like magnetic, resistive, etc., and verified the
numerical predictions using the equivalent electronic circuit.

Thus, the paper is organized as follows. The following section contains the description
of the schematic mechanical system. In Section 3, we have formulated the mathematical
model of the system. The numerical results from the non-dimensional equations of the
mechanical system have been shown in Section 4. In Section 5, an equivalent circuit of
the coupled mechanical oscillator has been constructed. Section 6 shows the experimental
results that validate the numerical predictions, and the last section is the conclusions.

2. System Description

In this paper, we have considered a two-degree-of-freedom mechanical system con-
sisting of two mechanical oscillators having mass, spring, and damper, coupled with each
other [4]. The displacements and the velocities of the two masses are considered as the
system’s state variables. The four state variables make the system four dimensional. The
schematic representation of the system is shown in the Figure 1.

Figure 1. The Schematic representation of a system composed of two oscillators connected with
periodically variable stiffness. (Color online).

The mechanical system consists of two masses m1 and m2, connected with a rectangular
shaft. When an external excitation is applied, the shaft rotates with an angular frequency
ω in the counterclockwise direction. As the shaft is rectangular in size and is rotating,
the spring constants of the coupled system also vary periodically. While applying the
external excitation in the system, the two masses m1 and m2 move back and forth on
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the hard surfaces. This movement is done by the real rolling bearings attached with the
masses [27]. The resistance force FRi(ẋi) of the system is composed of two functions, one is
viscous damping Ci ẋi and another one is the force due to the dry friction. x1 and x2 are the
displacements of the two masses m1 and m2 from the equilibrium positions. The inclusion
of the four pairs of magnets with the identical polarities in the system creates the repulsive
magnetic force FSi(xi), where i = 1, 2, acting on the two masses. Each pair of magnets have
been placed at a fixed distance δ. In our work, we keep varying the angular frequency ω
of the system, keeping the remaining parameters fixed and observing the state variables’
dynamics under varying ω parameter conditions.

3. Mathematical Model
3.1. Dimensional Equations of the System

If we take all the components of the considered system to be ideal, the system can be
described by a set of second order coupled ODEs, given by:

m1 ẍ1 + FR1(ẋ1) + FS1(x1) + KC(t)(x1 − x2) = 0 (1)

and,
m2 ẍ2 + FR2(ẋ2) + FS2(x2) + KC(t)(x2 − x1) = 0 (2)

where,

1 FRi(ẋi) = Ci ẋi +
Ti ẋi

(ẋ2
i +ε2)

1
2

; i = 1, 2. FRi(ẋi) is the resistance force of the bearings and

the term 1

(ẋ2
i +ε2)

1
2

is the smooth approximation of the function sign(ẋi).

2 FSi(xi) is the force due to the magnetic spring.

FSi(xi) = FM(δ− xi)− FM(δ + xi) = FMO

[
1

{1+d1(δ−xi)}4 − 1
{1+d1(δ+xi)}4

]
; i = 1, 2. The

idea of the above formula is considered by the two assumptions: (i) the repulsive force
between two magnets is defined by the simplest expression of the inverse square law,
where the dipole expression has been considered. (ii) when xi = δ, the first term of the
FSi(ẋi) expression becomes the unity, when xi = −δ, the second term becomes unity,
and the expression FSi(ẋi) becomes negative value.

3 The stiffness coupling of the considered system, KC(t) =
(

K1+K2
2

)
+
(

K1−K2
2

)
cos(2ωet).

It varies periodically having the linear frequency, f = 2 · ωe
2π , where ωe is the angular

frequency of oscillation.

The Equations (1) and (2) are the expressions in the dimensional form. Those equations
will be useful to explain the system’s dynamics experimentally. For the numerical works,
we have transformed those equations into non-dimensional forms. The development of the
equations is given below.

3.2. Non-Dimensional Equations of the System

In order to transform the Equations (1) and (2) from the dimensional to the non-
dimensional, we have introduced non-dimensional time as τ = 2π fnt. So, in the case of
non-dimensional equations, the derivative has been done with respect to τ, where fn is the

natural linear frequency of oscillation of the considered system, fn = ωn
2π , and ωn =

√
K1
m1

.
Now, we introduce the expression of the non-dimensional frequency as, ωnd = ωe

ωn
.

The non-dimensional state-variables as yi =
xi
δ ; i = 1, 2.

ẋi =
dxi
dt = dxi

dτ ·
dτ
dt = ωnδẏi; similarly, ẍi = ω2

nδÿi.
So, from Equation (1),
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m1ω2
nδÿ1 + C1ωnδẏ1 +

T1ωnδẏ1

ωnδ

{
ẏ2

1 +
(

ε
ωnδ

)2
} 1

2
+ FMO

[
1

{1 + d1(δ− δy1)}4 −
1

{1 + d1(δ + δy1)}4

]

+ K1δ

{(
1 + K2

K1

2

)
+

(
1− K2

K1

2

)}
cos(2ωndτ) · (y1 − y2) = 0

(3)

Dividing both sides by m1ω2
nδ, we obtain

ÿ1 +
C1

m1ωn
ẏ1 +

T1
m1ω2

nδ
ẏ1

ωnδ
(
ẏ2

1 + a2
1
) 1

2
+

FMO

m1ω2
nδ

[
1

{1 + d1δ(1− y1)}4 −
1

{1 + d1δ(1 + y1)}4

]

+

(
K1δ

m1ω2
nδ

)
·
(

1 + β

2

){
1 +

(
1− β

1 + β

)}
cos(2ωndτ) · (y1 − y2) = 0

From the above equation, we can write,

ÿ1 + 2ζ1ẏ1 +
t1ẏ1

ωnδ
(
ẏ2

1 + a2
1
) 1

2
+ b1

[
1

{1 + D1(δ1 − y1)}4 −
1

{1 + D1(δ1 + y1)}4

]

+ δ

(
1 + β

2

){
1 +

(
1− β

1 + β

)}
cos(2ωndτ) · (y1 − y2) = 0

(4)

where, ζ1 = C1
2m1ωn

, t1 = T1
m1ω2

nδ
, a1 = ε

ωnδ , b1 = FMO
K1δ , D1 = d1δ, β = K2

K1
, and δ1 = 1.

The Equation (4) is the non-dimensional form of the Equation (1).
Similarly, from the Equation (2), we get the non-dimensional form as

ÿ2 + 2ζ2ẏ2 +
t2ẏ2

ωnδ
(
ẏ2

2 + a2
1
) 1

2
+ b2

[ 1
{1 + D1(δ1 − y2)}4 −

1
{1 + D1(δ1 + y2)}4

]

+ µ

(
1 + β

2

){
1 +

(
1− β

1 + β

)}
cos(2ωndτ) · (y2 − y1) = 0

(5)

where, ζ2 = C2
2m2ωn

, t2 = T2
m2ω2

nδ
, µ = m1

m2
, and b2 = b1µ.

4. Numerical Results
4.1. Behavior of the Dry-Friction and Resistance Force Terms

Figure 2 shows the evolution of the non-dimensional dry-friction terms (as written
in the Equations (4) and (5)) with the variations of the non-dimensional velocities of the
two masses m1 and m2 respectively. From the Figure 2a, it can be said that when the
non-dimensional velocity (ẏ1) has the negative values, the dry-friction value reaches to
a negative constant value, i.e., −0.2413. This is the value of the negative t1. When the
non-dimensional velocity has the positive values, the non-dimensional dry-friction term
reaches the 0.2413 value, equal to the value of t1. Those values are well agreed with the
definition of a dry-friction in mechanical systems. In the case of the Figure 2b, the same
agreement holds for the evolution of the non-dimensional dry-friction term with the non-
dimensional velocity (ẏ2) of the mass m2. The dry-friction term reaches a constant value
of −0.288 and 0.288 when the non-dimensional velocity, ẏ2, has the negative and positive
values, respectively.
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Figure 2. Evolution of the Dry-Friction terms with varying the (a) state-variable ẏ1 of the first
oscillator and (b) state-variable ẏ2 of the second oscillator, respectively. In each figure, the x-axis is
the non-dimensional velocities (i.e., state-variables ẏ1 and ẏ2) and the y-axis is the non-dimensional
dry-friction terms. The parameter values are: a1 = 5.8548× 10−3, (a) ζ1 = 0.0868, (b) ζ2 = 0.1036.
(Color online).

Figure 3 depicts the evolution of the resistance force terms fR1(ẏ1) and fR2(ẏ2) of
the two oscillators with the variation of the velocities ẏ1 and ẏ2, respectively. From the
Equations (4) and (5), we can say that the resistance force terms consist of two functions,
one is linear damping, and another is the dry-friction term. So, when the velocity values
continuously increase in a negative direction, the resistance force terms have linearly
increasing slopes from the constant values in the negative direction along the y-axis with
the negative directional variation of the velocities. The constant value is due to the dry-
friction term, and the negative slope is due to the linear damping term. A similar thing
happens when the velocity state variables are continuously increased in positive directions.
The Figure 3a,b confirm the behavior of the resistance force terms, fR1(ẏ1) and fR2(ẏ2) with
the variations of the velocity state-variables ẏ1 and ẏ2 respectively.
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(ẏ

1
)

(a)

-1 -0.5 0 0.5 1

ẏ2
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Figure 3. Plots of the resistance force terms fR1(ẏ1) and fR2(ẏ2) corresponding to the (a) state-variable
ẏ1 and (b) state-variable ẏ2, respectively. In each figure, the x-axis is the non-dimensional velocities
(i.e., state-variables ẏ1 and ẏ2) and the y-axis is the non-dimensional force due to the resistance term.
The parameter values are: a1 = 5.8548× 10−3, (a) ζ1 = 0.0868, (b) ζ2 = 0.1036. (Color Online).

4.2. Behavior of Magnetic Spring Force Term

The non-dimensional magnetic spring force term can be expressed as-

fSi(yi) = bi

[ 1
{1 + D1(δ1 − yi)}4 −

1
{1 + D1(δ1 + yi)}4

]
(6)

where, {i = 1, 2}.
If we plot fS1(y1) and fS2(y2) with the variation of the non-dimensional displacements

y1 and y2, we obtain the Figure 4. Please note that, we have increased the non-dimensional
displacements from −δ1 to +δ1 along the x-axis. The magnetic spring force value varies
exponentially both in positive and negative directions of yi, although at the neighborhood
of 0, the curves of fS1(y1) and fS2(y2) are almost flat, parallel to the x-axis.



Appl. Sci. 2022, 12, 2024 6 of 20

-1 -0.5 0 0.5 1

y1

-50

0

50

f
S
1
(y

1
)

(a)

-1 -0.5 0 0.5 1

y2

-60

-40

-20

0

20

40

60

f
S
2
(y

2
)

(b)

Figure 4. Plots of the magnetic spring force terms fS1(y1) and fS2(y2) with the variation of the
(a) state-variable y1 and (b) state-variable y2, respectively. In each of the figures, the x-axis is the
non-dimensional displacements (i.e., state-variables y1 and y2) and the y-axis is the non-dimensional
magnetic spring force terms. The parameter values are: D1 = 1.5, δ1 = 1, (a) b1 = 45.7143, (b)
b2 = 54.5737. (Color Online).

The expression of the Equation (6) is complicated to implement in any physical system,
like in an electronic circuit. So, we consider other functions that will yield the exact
behaviors, but the expression is more straightforward.

fS1(y1) = s1y1 + s2y3
1 (7)

and,
fS2(y2) = s3y2 + s4y3

2 (8)

Now, if we compare the Equations (7) and (8) with the Equation (6), we can obtain the
constant values of s1, s2, s3, and s4 as 5.476, 40.0594, 6.7078, and 47.6527 respectively.

The black curves in the Figure 5 show the function plot of the Equations (7) and (8).
From the Figure 5a,b, we can say that the Equations (7) and (8) are well agreed with the
Equation (6) and provide the same kind of behaviors.
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Figure 5. Comparison the magnetic spring force terms fS1(y1) and fS2(y2) obtained from the different
expressions with the variation of the (a) state-variable y1 and (b) state-variable y2. The x-axes are the
non-dimensional displacements (i.e., state-variables y1 and y2) and the y-axes are the non-dimensional
magnetic spring force terms. The parameter values are: D1 = 1.5, δ1 = 1, (a) b1 = 45.7143, (b)
b2 = 54.5737. (Color Online).

4.3. Time-Series and Phase-Space Plots of the Considered System

Figure 6 shows the time-series waveforms of the mathematical Equations (4) and (5).
These equations characterize the dynamics of the considered mechanical system. Here, we
have varied the non-dimensional angular frequency, ωnd, keeping the remaining parameter
values fixed at ζ1 = 0.0868, ζ2 = 0.1036, t1 = 0.2413, t2 = 0.288, b1 = 45.7143, b2 = 54.5737,
a1 = 5.8548× 10−3, D1 = 1.5, β = 11.11, µ = 1.1938, δ1 = 1. We have varied the ωnd
in the range between 3.89 to 4.1. When the parameter ωnd is increased up to 3.89 from
the low value, the solutions of the state-variables, i.e., y1, y2, ẏ1, and ẏ2 give only the
zero-fixed point solutions for any initial conditions. So, we get a straight line parallel to
the time axis for each of the state-variables. Figure 6a shows the time series waveforms
of the four state variables which signify the stable fixed point solutions. When ωnd is
chosen to 4.00, the period-1 time series waveforms come to an exist for all state-variables,
which is shown in Figure 6b. When ωnd is at the value of 4.05, the state-variables show the
quasi-periodic nature in their time-series waveforms. Figure 6c shows the quasi-periodic
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time-series waveforms for four state-variables. The quasi-periodicity of the state-variables
remains when ωnd is 4.093. This is shown in Figure 6d. When ωnd is 4.098, there is a chaotic
attractor comes to an exist in the system. The corresponding time-series waveforms of the
state-variables are shown in Figure 6e.
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Figure 6. Time-Series waveforms of the considered system for different values of non-dimensional
frequency, ωnd. In each of the figure, x-axis is the non-dimensional time and the y-axis is the non-
dimensional displacements, y1 and y2, and the non-dimensional velocities, ẏ1, ẏ2. The left and the
right sides of the upper trace of each figure are the state-variables y1 and ẏ1 respectively. The left
and the right sides of the lower trace of each figure are the state-variables y2 and ẏ2 respectively.
(a) ωnd = 3.89, y1 = y2 = ẏ1 = ẏ2 = 0, i.e., fixed-point solutions, (b) ωnd = 4.00, Period-1 orbit,
(c) ωnd = 4.05, quasi-periodic orbit, (d) ωnd = 4.093, quasi-periodic orbit, (e) ωnd = 4.098, chaotic
orbit. The parameters are: ζ1 = 0.0868, ζ2 = 0.1036, t1 = 0.2413, t2 = 0.288, b1 = 45.7143,
b2 = 54.5737, a1 = 5.8548× 10−3, D1 = 1.5, β = 11.11, µ = 1.1938, δ1 = 1. The initial condition is
chosen to (0.333, 0, 0, 0) to obtain the time-series waveforms. (Color Online).

We have computed the phase spaces and the poincaré sections in the state-space
to observe the actual periodicities of the system. In that case, we can distinctly observe
different periodicities of the system while the parameter is varied. Figures 7 and 8 show
the phase-spaces and the poincaré sections of the coupled system for different values of
ωnd respectively.

Figure 7 shows different phase space trajectories of the considered coupled system for
different values of ωnd. Figure 7a shows period-1 orbit in the phase space. The single loop
confirms the period-1 in the phase space of the coupled system. When the parameter ωnd
is increased to 4.05, the system shows the quasi-periodic orbits in the phase-space diagram,
which is shown in the Figure 7b. The quasi-periodic orbit with a different shape comes into
existence in the parameter value of ωnd = 4.093, which is shown in the Figure 7c. When
ωnd = 4.098, the orbit is chaotic. The chaotic attractor is shown in the Figure 7d.
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Figure 7. The phase portraits of the considered system for different values of ωnd. x-axis is the
non-dimensional displacements y1, y2 and the y-axis is the non-dimensional velocities ẏ1, ẏ2, re-
spectively. The left and the right sides of each figure are the phase-portraits of each oscillator.
(a) ωnd = 4.00, Period-1 orbit, (b) ωnd = 4.05, quasi-periodic orbit, (c) ωnd = 4.093, quasi-periodic
orbit, (d) ωnd = 4.098, chaotic orbit. The parameters are: ζ1 = 0.0868, ζ2 = 0.1036, t1 = 0.2413,
t2 = 0.288, b1 = 45.7143, b2 = 54.5737, a1 = 5.8548× 10−3, D1 = 1.5, β = 11.11, µ = 1.1938, δ1 = 1.
The initial condition has been chosen at (0.333,0,0,0). (Color Online).

It seems that the Figure 7c,d look like the same orbits. To distinguish between the
quasi-periodicity and chaotic orbit, we have computed the poincaré sections, which are
shown in the Figure 8.
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Figure 8. Poincaré sections of the considered system for different values of ωnd. x-axis is the non-
dimensional displacements y1, y2 and the y-axis is the non-dimensional velocities ẏ1, ẏ2, respectively.
The left (blue color) and the right (red color) sides of each figure are the poincaré sections of each
oscillator. (a) ωnd = 4.00, Period-1 orbit, (b) ωnd = 4.05, quasi-periodic orbit, (c) ωnd = 4.093,
quasi-periodic orbit, (d) ωnd = 4.098, chaotic orbit. The parameters are: ζ1 = 0.0868, ζ2 = 0.1036,
t1 = 0.2413, t2 = 0.288, b1 = 45.7143, b2 = 54.5737, a1 = 5.8548× 10−3, D1 = 1.5, β = 11.11,
µ = 1.1938, δ1 = 1. The initial condition is chosen to (0.333, 0, 0, 0). (Color Online).

The poincaré sections for different values of ωnd are shown in the Figure 8. As the
system is a non-autonomous dynamical system, we need to observe the evolution of the
state variables with the synchronism of the external periodic signal’s frequency. As the
value of the frequency is 2 f , we shall observe the periodicity of the orbits in the interval of
T
2 . When the parameter value ωnd is 4.00, the orbit is periodic. The dots in the Figure 8a
confirm the period-1 of the coupled system. Please note that the two dots in the sampled
state-space confirm the system’s symmetric nature. If we replace y1 and y2 by −y1 and −y2
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in the Equations (4) and (5), we obtain the same expressions of the differential equations.
It confirms the symmetricity of the equations of the coupled system. When ωnd is 4.05,
the system shows the quasi-periodic orbits. The single loop in the sampled state-space
confirms the quasi-periodic nature of the system in that parameter range. When ωnd is
increased more, at the value of 4.093, the quasi-periodicity nature of the system exists. The
poincaré section of the orbit in the phase space confirms this. In the Figure 8c, we can
find that there are loops in the sampled state space. When ωnd is 4.098, the orbit becomes
chaotic. The corresponding poincaré section diagram is shown in the Figure 8d. Although
it looks like loops in the sampled state space, the fuzzy dots in each loop make the orbit
chaotic in the phase space.

When we vary the parameter ωnd from the low value to a higher value, we obtain
different trajectories in the state space. To observe the whole dynamics of the system under
the variation of the parameter value ωnd, we now compute the bifurcation diagram. It is
required to calculate the Lyapunov Exponents [28] and 0–1 test [29] to validate the existence
of different dynamical behaviors in the system, such as different periodic orbits, quasi-
periodic orbits, and chaotic orbits. We have computed maximal Lyapunov Exponents [30]
only here to show all the periodicities, including chaos in the system in the parameter space.

4.4. Bifurcation Diagrams and the Corresponding Maximal Lyapunov Exponent

Figure 9a,b depict the numerically obtained bifurcation diagrams of the state-variables
y1 and y2, respectively. The corresponding maximal Lyapunov exponent of the system
is shown in Figure 9c. The Lyapunov exponent corresponding to the forcing phase was
ignored here, since it is always equal to zero. During this calculation we have used the
classical algorithm [30], where the re-normalization period was assumed to be equal to
period of external excitation. For each value of the excitation angular frequency, the
exponent was computed over time equal to 1000 normalization periods, after ignoring
100 initial excitation periods of transient motion.. We have chosen the bifurcation parameter
value ωnd in the range between 3.89 and 4.12. When the parameter value is increased up
to 3.905 from a low value, we get only the fixed point attractor at y∗i = 0. When ωnd is
varied more in the positive direction, the fixed point becomes unstable, and a period-1 orbit
emerges by a supercritical Hopf bifurcation. While ωnd is increased more, the period-1
orbit persists up to the parameter value 4.023. The corresponding Lyapunov exponent is
the negative value, which is shown in the Figure 9c. At the point of 4.023, a Neimark-Sacker
bifurcation occurs, and the period-1 orbit loses its stability, and a quasi-periodic trajectory
emerges. The maximal Lyapunov exponent reaches zero value at the bifurcation point 4.023.
The quasi-periodicity of the system persists up to the parameter value 4.09. If one can
notice carefully in the bifurcation diagram, there is a small chaotic window in-between
the quasi-periodic orbit region in the parameter space between 4.05 to 4.09. The value of
the ωnd corresponding to the chaotic regime is 4.074. The maximal Lyapunov exponent
shows the positive value where the system shows chaos. When the ωnd value is increased
further from 4.09, there is also a range of chaotic attractors with small periodic windows.
The periodic window occurs at 4.094. The fixed point solution starts to exist from the
value of ωnd = 4.10. So, there is an interplay between quasi-periodicity and the chaotic
orbits and chaotic orbits with periodic windows in the state variables in the bifurcation
diagram. Due to the symmetric nature, the system has two bifurcation diagrams—one in
the positive y-axis and another in the negative y-axis. We have chosen the initial condition
as [0.333, 0, 0, 0].
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Figure 9. The bifurcation diagrams of the state variables y1 and y2, and the corresponding maximal
lyapunov exponent of the system. (a) Bifurcation Diagram of y1: The x-axis is the non-dimensional
parameter ωnd and the y-axis is the sampled value of y1, (b) Bifurcation Diagram of y2: The x-axis
is the non-dimensional parameter ωnd and the y-axis is the sampled value of y2, (c) The maximum
lyapunov exponent: The x-axis is the non-dimensional parameter ωnd and the y-axis is the lyapunov
exponent. The parameters are: ζ1 = 0.0868, ζ2 = 0.1036, t1 = 0.2413, t2 = 0.288, b1 = 45.7143,
b2 = 54.5737, a1 = 5.8548× 10−3, D1 = 1.5, β = 11.11, µ = 1.1938, δ1 = 1. The initial condition is
considered as (0.333, 0, 0, 0). (Color Online).

4.5. Co-Existence of Two Attractors

Figure 10 shows all possible attractors in the bifurcation diagrams of the system when
the state variable is y1. The zero-fixed point exists because of the presence of the dry friction
term. For the periodic orbit, the initial condition is chosen at (0.333, 0, 0, 0). The periodic
orbits, along with the quasi-periodic and chaotic attractors, are shown in the figure by
green color. The red line shows the co-existence of the zero-fixed point attractor for the
initial condition at (0, 0, 0, 0).
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Figure 10. Co-existing attractors in the bifurcation diagram of y1: The x-axis is the non-dimensional
parameter ωnd and the y-axis is the sampled value of y1. The parameters are: ζ1 = 0.0868, ζ2 = 0.1036,
t1 = 0.2413, t2 = 0.288, b1 = 45.7143, b2 = 54.5737, a1 = 5.8548× 10−3, D1 = 1.5, β = 11.11,
µ = 1.1938, δ1 = 1. (Color Online).

5. Equivalent Circuit of the Coupled Mechanical Oscillators

In order to validate the numerically predicted results, an equivalent circuit diagram
of the coupled mechanical system is developed. To achieve this, we split the two-second
order differential Equations (4) and (5) by two pairs of the first-order differential equations,
which are shown below.

ẏ1 = z1 (9a)

ż1 = −
[

fR1(z1) + fS1(y1) + β1(τ)
]

(9b)

ẏ2 = z2 (10a)

ż2 = −
[

fR2(z2) + fS2(y2) + β2(τ)
]

(10b)

where,

1. fRi(zi) = fLDi(zi) + fDFi(zi) = 2ζizi +
tizi

(z2
i +a2

1)
1
2

; i = 1, 2. fRi(zi) is the non-dimensional

resistance force of the bearings. fLDi(zi) is the linear damping force, and fDFi(zi) is
the force due to the dry-friction. The values of ζ1, ζ2, t1, t2 and a1 are 0.0868, 0.1036,
0.2413, 0.2880, and 5.8548× 10−3 respectively.

2. fSi(yi) = bi

[
1

{1+D1(δ1−yi)}4 − 1
{1+D1(δ1+yi)}4

]
; i = 1, 2., fSi(yi) is the non-dimensional

force due to the magnetic spring. The values of b1, b2, D1, and δ1 are 45.7143, 54.5737,
1.5, and 1 respectively. To reduce the complexity of the equations, we have chosen the
most straightforward expressions of the non-dimensional force due to the magnetic
spring, which are in the Equations (7) and (8).

3. The non-dimensional stiffness couplings of the considered system, β1(τ) =
[(

1+β
2

)
+(

1−β
2

)
cos(2ωndτ)

]
(y1 − y2) and β2(τ) = µ

[(
1+β

2

)
+
(

1−β
2

)
cos(2ωndτ)

]
(y2 − y1).

The parameter values are β = 11.11, µ = 1.1938. The non-dimensional angular
frequency, ωnd, will have to be varied in order to obtain the bifurcation diagram.

In order to draw the circuit diagram, the Equations (9) and (10) can be written as

CRẏ1 = −
(R

R

)
(−z1) (11a)

CRż1 = −
(R

R

)[
fR1(z1) + fS1(y1) + β1(τ)

]
(11b)
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CRẏ2 = −
(R

R

)
(−z2) (12a)

CRż2 = −
(R

R

)[
fR2(z2) + fS2(y2) + β2(τ)

]
(12b)

First we have drawn the circuit diagrams of each of the components fRi(zi), fSi(yi),
β1(τ), and β2(τ).

5.1. Equivalent Circuit Diagram of the Dry-Friction Term fDFi(zi)

The Figure 11 depicts the equivalent circuit diagram of the force due to the dry-friction
fDF1(z1) of the first oscillator. z1 is the applied input voltage. In order to obtain the
expression of fDF1(z1), which is, fDF1(z1) =

t1z1

(z2
1+a2

1)
1
2

, using analog circuit components, we

first make the square of z1. The multiplier M1 does this operation. So, the voltage V15 in
the Figure 11 is z2

1. After that, the voltage V15 is added with q1 (i.e., a2
1) using an inverting

adder, OA1. So the output of OA1 is the −
(
z2

1 + a2
1
)
. As, the output is negative, we now

use a unity gain inverting op-amp OA2 to get the expression
(
z2

1 + a2
1
)
.

Figure 11. The equivalent circuit diagram of the force due to the dry-friction fDF1(z1). The resistance
values are: R104 = R105 = R106 = R1 = R2 = R3 = R4 = 100 kΩ, k = 0.2413. OA1 to OA4 are the Op-Amps,
M1 to M3 are the multipliers, q1 is the dc voltage source with the value of a2

1. K is the gain of a
proportional block. (Color Online).

As the denominator of the second term of the expression of fR1(z1), is the square
root of

(
z2

1 + a2
1
)
, we use the op-amp OA3 to make the square-root of the output voltage

of OA2, which is VOA2. For that, we have connected the OA2 op-amp’s output with the
non-inverting input terminal of OA3. The output of the OA3 op-amp, VOA3 is connected to
the inverting input of the OA3 op-amp through a multiplier M2. The output of M2 is the
square of the output voltage of the op-amp OA3, i.e., V2

OA3. Due to the virtual connection
concept of the two input terminals of an ideal op-amp, we can write, V2

OA3 = VOA2. Hence,

VOA3 =
√

VOA2 =
√(

z2
1 + a2

1
)
.

To get the numerator of the second term of fR1(z1), we have passed z1 through a
proportional block of gain 0.2413 to achieve 0.2413z1 at the output of the proportional block.

The op-amp OA4 is used to make the ratio of the two signals. The output voltage
of the proportional block is directly connected to the non-inverting input of the op-amp
OA4. We have used the multiplier M3 to multiply the output of the op-amp OA4, i.e.,
VOA4 with the VOA3. So, the output of the multiplier M3 is VOA3 ·VOA4. This is connected
to the inverting input of the op-amp OA4. Due to the virtual connection concept of an
ideal op-amp, we can say that 0.2413z1 = VOA3 · VOA4, which makes VOA4 = 0.2413z1

VOA3
. So,

the output of the op-amp OA4 provides the expression of the force due to the dry-friction,
which is fDF1(z1) = VOA4 = 0.2413z1√

(z2
1+a2

1)
.
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Similarly, using the same logic, we have constructed the equivalent circuit diagram
of the non-dimensional dry-friction force term of the second oscillator. For the second
mechanical oscillator, the gain of the proportional block is chosen as K = 0.2880. The circuit
diagram is shown in the Figure 12. The output voltage of the op-amp OA8 provides the
expression of FDF2(z2).

Figure 12. The equivalent circuit diagram of the force due to the dry-friction fDF2(z2). The resistance
values are: R119 = R120 = R121 = R9 = R11 = R3 = R1 = 100 kΩ, k = 0.2413. OA4 to OA8 are the four
Op-Amps, M4, M5, and M6 are the three multipliers, q1 is the dc voltage source with the value of a2

1.
K is the gain of a proportional block. (Color Online).

5.2. Equivalent Circuit Diagram of the Magnetic Spring Force Term fSi(yi)

Figure 13 expresses the equivalent circuit diagram of the non-dimensional magnetic
spring force term fS1(y1) of the first oscillator. From the expression of fS1(y1) in the
Equation (7), we can write the equivalent circuit equation as-

fS1(y1) = −
( R

R4

)
(−y1)−

( R
R3

)
(−y1 · y2

1) (13)

where, R
R4

= s1, R
R3

= s2, y1 and −y1 are the state-variables.

Figure 13. The equivalent circuit diagram of the force due to the magnetic spring fS1(y1). The
resistance values are: R3 = 2.50 kΩ, R4 = 18.26 kΩ, R = 100 kΩ. OA9 is the Op-Amp, M7 and M8 are
the two multipliers. (Color Online).

The Equation (13) is implemented in the Figure 13. First, the input y1 is squared
using a multiplier M7. Then the output of the multiplier M7 is multiplied with −y1 using
another multiplier M8 to achieve −y3

1 at the output. We have added −y3
1 and −y1 using an

inverting adder to obtain the expression of magnetic spring force term fS1(y1).
Similarly, using the same idea, we can make the circuit (as shown in the Figure 14) for

the expression fS2(y2). In that case, R
R11

= s3, R
R12

= s4, y2 and −y2 are the state-variables
used as the input.
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Figure 14. The equivalent circuit diagram of the force due to the magnetic spring fS2(y2). The
resistance values are: R11 = 14.91 kΩ, R12 = 2.1 kΩ, R = 100 kΩ. OA10 is the Op-Amp, M9 and M10
are the two multipliers. (Color Online).

5.3. Equivalent Circuit Diagram of βi(τ)

From the Equation (9b), we can re-write the expression of the non-dimensional stiffness

coupling of the first oscillator as β1(τ) =
[(

β+1
2

)
−
(

β−1
2

)
cos(2ωndτ)

]
(y1 − y2).

If we insert the value of the β = 11.11, we get, β1(τ) = (6.055− 5.055 cos(2ωndτ))
(y1 − y2).

Similarly, from the Equation (10b), considering the value of µ as 1.1938, we get,
β2(τ) = (7.2284− 6.0346 cos(2ωndτ))(y2 − y1).

The Figure 15 is the corresponding circuit diagram of the term β1(τ). From the
expression of β1(τ), first we implement the (−5.055 cos(2ωndτ)) term.

Figure 15. The equivalent circuit diagram of the non-dimensional spring force term β1(τ). The
resistance values are: R = R9 = R10 = R11 = R13 = R12 = R19 = R20R21 = 100 kΩ. The capacitor
C = 1 nF. OA11, OA12, OA13, and OA14 are the four Op-Amps, M11 is the multiplier. Vin is
the sine wave originating from a function generator. VDC is a dc voltage source of value 6.055 V.
(Color Online).

In the Figure 15, Vin is a sine wave having an amplitude and frequency V and f ,
respectively. So, Vin can be expresses as, Vin = V sin(2π f t). We pass this sine wave
through a differentiator op-amp OA11. The output the differentiator will be Vext =
−2πV f cos(2π f t), which is equivalent to the expression (−5.055 cos(2ωndτ)). So, −2πV f
= −5.055, which gives,

V =
5.055
2π f

(14)

As, as the non-dimensional time can be expressed as, τ = t
CR , we can write, 2ωndτ = 2π f t,

which yields,

f =
ωnd
πCR

(15)

The output of the op-amp OA11, Vext, is added with a dc voltage, VDC (having the
value 6.055) using an inverting adder op-amp OA12. The expression of the output becomes
−VDC − Vext. This output will be in phase with Vext after passing through a unity gain
inverting op-amp OA13. So, the output of OA13 becomes (6.055− 5.055 cos(2ωndτ)).
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The op-amp OA14 adds the two inputs −y1 and y2 and gives the output in the form of
(y1 − y2). The multiplier M11 multiplies the output of the two op-amps OA13 and OA14,
and creates β1(τ) as an output.

In order to make the equivalent circuit of the term β2(τ), we have chosen the same
approach. The only difference from β1(τ) is that, an extra µ term is multiplied with the
β1(τ) term, and the sign of the two inputs are interchanged, i.e., y1 and−y2. The expression
of the amplitude of the input ac sine wave will be,

V =
6.0346
2π f

(16)

The expression of the linear frequency f will remain the same as calculated in the
Equation (15). The circuit diagram is shown in Figure 16.

Figure 16. The equivalent circuit diagram of the non-dimensional spring force term β2(τ). The
resistance values are: R = R84 = R85 = R83 = R86 = R87 = R88 = R89 = R90 = 100 kΩ. The capacitor
C = 1 nF. OA15, OA16, OA17, and OA18 are the four Op-Amps, M12 is the multiplier. Vin1 is the sine
wave. VDC1 is a dc voltage source of value 7.2284 V. (Color Online).

Up to this, we have explained the electronic circuit analog of the forces due to the
dry-friction, magnetic spring, and the non-dimensional springs, respectively of the coupled
system. Now, we shall explain the main circuit diagram using the Equations (11) and (12).

Figure 17 depicts the equivalent circuit diagram of the considered coupled mechanical
oscillators. The outputs of the op-amps OA20, OA24, OA26, OA30 are the four state-
variables of the system, y1, z1, y2, and z2, respectively. DF1, DF2 are the boxes of the
non-dimensional dry-friction force terms of the two oscillators. The circuits contained
in the DF1 and DF2 are shown in the Figures 11 and 12, respectively. Beta1(Tau) and
Beta2(Tau) are the boxes containing the non-dimensional spring force terms of the two
oscillators. The circuits inside the boxes are shown in the Figures 15 and 16, respectively.

OA19, OA20, M13, M14, and OA23 constitute the non-dimensional magnetic spring
force term of the first mechanical oscillator which has been shown in detail in the Figure 13.
Similarly, OA25, OA26, M15, M16, and OA29 constitute the non-dimensional magnetic
spring force term of the second mechanical oscillator, which has also been shown in detail
in the Figure 14.

The output voltage of the op-amp OA22 and OA28 are the forces due to the resistance.
The values of the resistances R30 and R73 constitute the values of 2ζ1 and 2ζ2, respectively.

We have done the simulation of the circuit shown in Figure 16, using the PSIM 2.9
software. To simulate the circuit, we have chosen the time step value as 10−6 s, total time
5 s and have plotted the last 2 s only. We can perform this experiment in an actual electronic
regime. Still, as already we have considered all the practical circuit components in the
PSIM simulation, we think that this simulation will more or less support the experimental
observations in the actual system.
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Figure 17. The analog circuit diagram of the considered mechanical system. The resistance values are:
R = R1 = R2 = R3 = R4 = R5 = R6 = R16 = R22 = R23 = R24 = R25 = R68 = R69 = R71 = R72 =

R74 = R81 = R82 = R91 = R92 = R93 = 100 kΩ, R30 = 576.04 kΩ, R73 = 482.62 kΩ, R14 = 2.50 kΩ,
R15 = 18.26 kΩ, R75 = 2.1 kΩ, R76 = 14.91 kΩ. The capacitor values: C = C1 = C3 = C8 = 1 nF.
‘OA’—series are the op-amps with different operations, M13–M16 are the multipliers. The initial
capacitor voltage of C1 is chosen at 0.333 V, and the remaining capacitor initial voltages are kept at
zero voltage. (Color Online).

In the next section, we have shown different time-series and phase-portraits by varying
the parameter f , the linear frequency of the two ac signals used in the non-dimensional
spring force term equivalent circuit. We have kept the other parameters fixed.

6. Results Obtained from Simulating the Circuit

In case of numerical results, we mainly observed the dynamical behaviors of the
considered system under varying parameter, ωnd. In the case of electronic circuit imple-
mentation, we have observed the phase portraits for different ωnd. From the Equation (15),
we can say that the linear frequency f of the applied sine wave is dependent on the non-
dimensional angular frequency ωnd of the considered mechanical system. So, to validate
the numerical predictions using the electronic circuit set-up, we have varied f to obtain
different ωnd.

When, ωnd = 3.89, from the Equation (15), the expression of the linear frequency f is
12.382 kHz, where C = 1 nF, and R = 100 kΩ. Figure 18 shows the time-series waveforms of
the four state-variables of the analog electronic circuit of the considered coupled mechanical
system. The waveforms are straight lines parallel to the x-axis, implying that the circuit
has a zero-fixed point solution. We observed the same time-series waveforms in the case of
numerical simulation as shown in the Figure 6a. The zero fixed point exists for any initial
conditions. The corresponding amplitudes of the applied ac sine waves of the first and
second oscillators equivalent circuits are 0.6497 V and 0.7756 V, respectively. The voltages
have been calculated using the Equations (14) and (16).

When ωnd = 4.00, the Figure 19 shows the corresponding phase space diagrams of
the circuit shown in the Figure 17. From the Equation (15), f = 12.732 kHz. The single
loop in the phase space confirms that the orbit is periodic of an order 1. The same thing we
predicted in the numerical result in the Figure 7a. Using the Equations (14) and (16), we
can calculate the values of the amplitudes of the applied ac sine waves. The amplitudes
of Vin and Vin1 for the first and second oscillators are 0.6319 V and 0.7543 V, respectively.
Please note that we have chosen the initial condition as (0.333, 0, 0, 0). Suppose we choose
the initial condition as (0, 0, 0, 0). In that case, we obtain the zero fixed point trajectories for
all the state variables, which confirm that the system has a co-existence of two attractors,
one is a zero fixed point attractor, and another one is a period-1 orbit. The same agreement
is shown in the numerically obtained bifurcation diagram in the Figure 10, where one
can see that the two attractors coexist in the bifurcation diagrams. The red color is the
fixed point attractor for the initial conditions (0, 0, 0, 0), and the green color is the different
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periodic orbits depending upon the different ωnd values. For the electronic circuit, the
initial condition values have been chosen as the initial capacitor voltages in the circuit, as
shown in the Figure 17.

Figure 18. Time-series waveforms of the four state-variables obtained from the circuit simulation for
ωnd = 3.89. For each figure, x-axis is the time in sec and the y-axis is the values of y1, y2, z1, and
z2, respectively in V. (a) Time-series waveform of z1, (b) Time-series waveform of y2, (c) Time-series
waveform of y1, and (d) Time-series waveform of z2. The frequency of the sine wave generator is
12.382 kHz. The initial condition has been chosen at (0.333,0,0,0) to obtain the time-series waveforms.
(Color Online).

Figure 19. Phase-space diagrams of the circuit when f = 12.732 kHz. The corresponding value of ωnd

is 4.00. (a) x-axis is the voltage of y1 in V and y-axis is the voltage of z1 in V, (b) x-axis is the voltage
of y2 in V and y-axis is the voltage of z2 in V. The initial condition has been chosen at (0.333, 0, 0, 0) to
obtain the phase portraits. (Color Online).

When ωnd is 4.05, the corresponding value of the linear frequency f is calculated using
Equation (15) as 12.892 kHz. The phase space diagram of the equivalent circuit is shown in
Figure 20. The amplitudes of the two sine waves Vin and Vin1, used at the circuit diagrams
Figures 15 and 16 are 0.6241 V and 0.7450 V, respectively. The phase portraits obtained
from the circuit diagram agree with the numerical prediction of the phase space diagrams
for ωnd = 4.05 as shown in the Figure 7b. The orbit is quasi-periodic in nature which is
confirmed from the Figure 8b. Here also, the initial condition is (0.333, 0, 0, 0). If we change
the initial condition (0, 0, 0, 0), we only observe the zero fixed-point solutions.

Figure 20. Phase-space diagrams of the circuit when f = 12.892 kHz. The corresponding ωnd = 4.05.
(a) x-axis is the voltage of y1 in V and y-axis is the voltage of z1, (b) x-axis is the voltage of y2 in V
and y-axis is the voltage of z2 in V. The initial condition has been chosen at (0.333,0,0,0) to obtain the
phase portraits. (Color Online).
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When ωnd is equal to the value 4.098, the corresponding linear frequency f of the
circuit is 13.044 kHz. The phase portraits of the circuit at this frequency are shown in
the Figure 21. The phase portraits are chaotic in nature. The numerical phase portraits
which we obtained in the Figure 7d are the same as the phase portraits obtained from the
circuit diagram. Please note that the amplitudes Vin and Vin1 of the ac sine waves for the
oscillator 1 and oscillator 2 are 0.6168 V and 0.7363 V, respectively. The coexisting attractors
are validated in this case also.

Figure 21. Phase-space diagrams of the circuit when f = 13.044 kHz. The corresponding ωnd = 4.098.
(a) x-axis is the voltage of y1 in V and y-axis is the voltage of z1 in V, (b) x-axis is the voltage of y2 in
V and y-axis is the voltage of z2 in V. The initial condition has been chosen at (0.333,0,0,0) to obtain
the phase portraits. (Color Online).

So, the circuit in the Figure 17 can be used as an equivalent electronic circuit of the
considered mechanical system. The waveforms and the phase portraits of the circuit
validate the numerical predictions of the system. If one can notice carefully, the phase
portraits obtained from the numerical simulation and obtained from the circuit have
different scaling values, although the shapes are the same. These things have happened
because the differential equations are non-dimensionalized, and the circuits equations are
dimensional. Also, the parameter values of the two cases are nearly equal, not the same.
But the periodicities of the phase space trajectories are the same.

7. Conclusions

This paper shows the electronic circuit equivalence of coupled mechanical oscillators
subjected to the influence of resistance magnetic spring forces. We have calculated the
non-dimensional equations of the considered system. The numerical results obtained from
these equations show some typical dynamics, such as the transitions from a fixed point to
the periodic, quasiperiodic, and chaotic orbits, while varying the bifurcation parameter in
one direction. We have constructed the electronic circuits of the force due to the dry-friction,
magnetic spring force, and parametrically excited spring constant force. These circuits
are straightforward and more convenient to use in future works. We have validated the
numerical results by showing the time-series and phase-space diagrams of the equivalent
analog circuit of the system.

We may perform the actual experiment in the breadboard, but the circuit diagram
in the PSIM software is well demonstrated. We have chosen the op-amps, multipliers,
etc., to design the circuit. So, the circuit diagram simulated in software supports the
actual experiment.
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4. Kudra, G.; Witkowski, K.; Seth, S.; Polczyński, K.; Awrejcewicz, J. Parametric Vibrations of a System of Oscillators Con-

nected with Periodically Variable Stiffness. In Proceedings of the DSTA-2021 Conference Books–Abstracts (16th International
Conference: Dynamical Systems Theory and Applications DSTA 2021 ABSTRACTS), Łódź, Poland, 16–19 December 2021;
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