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Abstract: This paper presents a new IndRNN-based deep attention model, termed DA-IndRNN,
for skeleton-based action recognition to effectively model the fact that different joints are usually
of different degrees of importance to different action categories. The model consists of (a) a deep
IndRNN as the main classification network to overcome the limitation of a shallow RNN network
in order to obtain deeper and longer features, and (b) a deep attention network with multiple fully
connected layers to estimate reliable attention weights. To train the DA-IndRNN, a new triplet
loss function is proposed to guide the learning of the attention among different action categories.
Specifically, this triplet loss enforces intra-class attention distances to be smaller than inter-class
attention distances and at the same time to allow multiple attention weight patterns to exist for
the same class. The proposed DA-IndRNN can be trained end-to-end. Experiments on the widely
used datasets, including the NTU RGB + D dataset and UOW Large-Scale Combined (LSC) Dataset,
have demonstrated that the proposed method can achieve better and stable performance than the
state-of-the-art attention models.

Keywords: skeleton-based action recognition; IndRNN; RNN; attention model

1. Introduction

Human action recognition has received increasing interest in the past due to its wide
range of applications in video analytics, robotics, health monitoring, and autonomous
driving. The success of deep learning in computer vision has driven the development of
many deep models [1–9] for action recognition. Among these models, recurrent neural
network (RNN) [10–16] is one of the popular ones because of its capability of modeling
sequential data. Recently, RNNs are further augmented with attention models [17,18]
to explicitly model the observation that discriminative information presents in different
body parts at different time steps. Noticeable improvement in performance has been
attained [19,20].

This paper is concerned with two fundamental and challenging issues in an attention-
based RNN for action recognition from skeleton data, where the attention weights are
associated with joints of the skeletons. First, the state-of-the-art attention models, such as
those presented in [19,20], lack proper regularization on attention weights. The attention
weights would be sufficiently different for different actions, and they can be similar with
small differences for same actions to accommodate different performing styles. For example,
the joints of legs in action “kicking” would have higher attention weights than other joints,
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as would the joints of arms in action “boxing”. Therefore, the attention on joints for different
actions is different, that is, the attention weights between two skeleton samples of “kicking”
should be more similar than the attention weights between a skeleton sample of “kicking”
and a skeleton sample of “boxing”. This makes it possible to regularize attention weights
for different action categories. In addition, multiple sets of joints may be discriminative
for different samples of a same class of actions. For example, one subject may perform the
“hand waving” with their left hand while another one may perform it with their right hand.
Therefore, while similarities exist in the attention weights for one action class, there may
also be differences, which should also be considered in the attention regularization in order
to achieve robust recognition.

Second, the general principle that the deeper the network, the better in extracting
discriminative features is hardly implementable using a conventional RNN, such as the
Vanilla RNN and long short-term memory (LSTM), due to the notorious gradient vanishing
and exploding problems [21]. Attention model-based RNNs for action recognition usually
only include one or two fully connected layers to obtain an attention model and one or two
LSTM layers for the classification as in [19,20]. Such shallow networks are hardly able to
explore the long-range dependency both temporally and spatially and a deep (e.g., multiple
layers) RNN is expected to improve the performance as observed in [14]. In addition,
one fully connected layer in estimating the attention weight tends to trap the end-to-end
training to a local optimum as shown in the experiments. Such a local optimum issue
cannot be resolved by the double stochastic attention regularization [18], which aims to
encourage the model to pay equal attention to every joint over a sequence of skeletons.

To address these two issues, this paper proposes the following:

• A new deep attention model in which the IndRNN model [14] is adopted to build up
a deep RNN for classification, and multiple fully connected layers are employed to
estimate the attention weights for each joint at each time step. An ablation study has
shown that the proposed deep attention architecture provides much more stable and
better performance than the shallow counterparts.

• A new triplet loss function to regulate the attention among different action categories.
This triplet loss function is further extended with a sample to class distance to enforce
the intra-class attention distances to be no larger than the inter-class distances and at
the same time to allow different sets of attention weights within the same class.

Experimental results have shown that the proposed deep attention architecture and
the new loss function improves significantly the performance of classification and that
the attention model learned is much more stable compared with the traditional attention
models [19,20]. In addition, the double stochastic attention regularization [18] is no longer
required to train the network.

The rest of the paper is organized as follows. The related work on the skeleton-based
action recognition and the attention models are reviewed in Section 2. The proposed
model is explained in Section 3, and the experimental results and analysis are presented in
Section 4. Finally, the conclusion is drawn in Section 5.

2. Background

A large number of skeleton-based action recognition methods have been proposed in
the literature. Among them, many methods employ the deep learning models, including
both the convolutional neural networks (CNN) and the recurrent neural networks (RNN).
CNN-based methods [22–26] usually summarizes the information from all frames into one
image and then apply CNN for classification on this single image. On the contrary, RNN-
based methods [19,20,27–31] sequentially process the frames and classify the sequences
after all the frames are given. For the CNN-based methods, in [32], joint distance maps are
developed to capture the spatial–temporal information. In [33], skeleton optical spectra
images are designed to map the skeleton sequence into a single image. Similar ideas of
mapping the sequence information into one frame have also been explored in [34,35].
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Since the method proposed in this paper is an RNN-based model, we mostly discuss
the related RNN-based methods here. Most of the existing RNN-based methods employ
the long short-term memory network (LSTM), which can better maintain the long-term
memory. On top of the original LSTM models, many models have been developed to take
advantage of the specific features of skeletons. Considering that body joints move together
in groups, in [27], a hierarchical recurrent neural network was proposed where different
parts of the body are first processed with different RNNs and then concatenated together
for the whole body action. Similarly, in [29], a part-aware LSTM model was proposed where
the LSTM cell is split into different parts for different groups of joints of the body in order
to explore the joint groups. Since some skeleton data may be noisy, a trust gate is further
added in the LSTM model in [30]. In [36], the co-occurrence of joints is explored by adding
a fully connected layer before LSTM to learn joint connections. There are also methods
exploring other types of features in the skeleton data. In [31], instead of processing the
joint coordinates, a geometric feature was proposed for skeletons to explore the geometric
relationships between different joints. In [28], a differential gating scheme was proposed
for LSTM, which emphasizes the change in information gain caused by the salient motions
between different frames. These methods consider and process all joints equally at all
time steps for all actions, which is against the intuition that different joints may contribute
differently to the classification of actions.

RNN-based methods are recently augmented by the incorporation of attention mod-
els [17,18,37,38] to explicitly model the observation that, for different actions, different
joints may show different degrees of importance in classification. In [19], an attention
model was proposed to assign different weights to different joints at different time steps.
An additional temporal weight is assigned to the features obtained at different time steps
for the final classification. Since no ground truth is available for the attention model, the at-
tention weights are often treated as latent variables and trained by the final classification
objective. The doubly stochastic attention regularization [18] is most widely used to en-
courage the model to pay equal attention to every joint over the sequence in order to avoid
attention weights only being assigned to one or two joints. In [20], the attention model
was also used where the global context over the whole sequence is employed to obtain the
attention weights. These attention models are similar to those used in the image-based
action recognition [18], where no direct loss is applied to regulate the attention weights
other than the doubly stochastic attention regularization, and they often fail to meet the
requirement on similar and multiple intra-class attention weights and different inter-class
attention weights.

The most recent independent recurrent neural network (IndRNN) [14,39] provides an
effective solution to the gradient vanishing and exploding problem in training a multiple-
layer RNN, which allows deep networks to be constructed and to learn long-term depen-
dency. Specifically, preliminary experiments using multiple layers of the basic IndRNN
have shown that better performance than LSTM-based networks on the skeleton-based ac-
tion recognition can be attained. Therefore, IndRNNs are adopted in this paper to construct
a deep attention network for action recognition, and a new regularization is developed
to train the network. In addition to RNNs, there are also methods exploring temporal
convolution and graph convolution for temporal processing such as [40,41], which are not
further discussed here.

3. Proposed Method
3.1. IndRNN-Based Deep Attention Model

In this paper, the independently recurrent neural network (IndRNN) [14] is used as a
basic RNN component to construct a deep RNN for classification to leverage IndRNN’s
capability of learning deeper and longer features than LSTM. It follows

ht = σ(Wxt + u� ht−1 + b) (1)
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where xt ∈ RM and ht ∈ RN are the input and hidden state at time step t, respectively.
W ∈ RN×M, u ∈ RN , and b ∈ RN are the weight for the current input, the weight for
the recurrent input, and the bias of the neurons. � represents the Hadamard product
(element-wise multiplication). σ is an element-wise activation function of the neurons,
which is the ReLU (rectified linear unit) in this paper, and N is the number of neurons in this
IndRNN layer. Each neuron in one layer is independent from the others, and connection
between neurons is achieved by stacking two or more layers of IndRNNs as presented later.

Figure 1a shows the framework of the IndRNN-based deep attention model for
skeleton-based action recognition. It consists of a main classification network and an
attention network. The main classification network is composed of several IndRNN layers,
and batch normalization layers are inserted after each IndRNN layer (ignored in Figure 1a
for simplicity). Residual connections are also used to further facilitate the gradient prop-
agation across layers, and each residual block consists of two IndRNN layers. A fully
connected layer (FC layer) is added at the final time step for classification (also ignored in
Figure 1a for simplicity). Due to the use of hidden states at each time step to obtain the
attention model, the statistics for the batch normalization is estimated for each time step,
while the parameters for the affine mapping is shared over time.
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Figure 1. The framework of the spatial IndRNN-based attention models for skeleton-based action
recognition. (a) The attention network obtains the attention based on the last hidded state and the
current input. The main classification network is a deep residual IndRNN network where each
residual block contains two IndRNN layers. (b) Illustration of the attention network used to process
the input and the last hidden state from IndRNN.

The attention for each time step (st) is obtained using an attention network based on
the current input and the hidden state of the last IndRNN layer at the previous time step.
Unlike the conventional attention network that consists of only one FC layer, a multiple-
layer network is proposed as the attention network. It avoids the issue that the conventional
one-layer attention network cannot robustly estimate attention, leading to the attention
being mainly placed on joints with larger movements. Specifically, since the hidden state
of the last IndRNN layer captures the high-level information after going through several
IndRNN layers, a few FC layers are first used to extract efficient features of the input
skeleton before concatenating it with the hidden state of IndRNN. Figure 1b illustrates
the attention network, where residual networks are used with residual connections across
every two FC layers. The residual network used to extract the features of the input skeleton,
referred to as feature extractor, consists of 5 FC layers, while the residual network used to
process the concatenated features, referred to as attention estimator, consists of 4 FC layers.
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Details on the architecture will be further explained in Section 4. A softmax function over
all the joints is added at the end to produce the attention weights.

The input to the IndRNN net is x′t = (x′t,1, x′t,2, . . . , x′t,K) with x′t,i = st,i · xt,i where xt,i
and st,i represent the feature and attention weight of the i-th joint. Cross-entropy loss is
used as the classification objective. Conventionally, the doubly stochastic attention regular-
ization [18,19] would be used to regularize the attention weights. However, the proposed
deep attention model can be trained robustly without this regularization term and thus is
not employed in the training probably because of the deeper networks for classification
and attention estimation. To address the first issue discussed in the introduction, a new
loss function, referred to as Triplet Attention Loss, is developed to guide the learning of
attention weights.

3.2. Triplet Attention Loss

It is known that different joints can be of different degrees of importance to different
action classes. Therefore, the attention weights for different joints are different for different
action classes. For example, “Kicking” mostly focuses on the leg, while “Punching” mostly
focuses on the hand. Accordingly, the attention weights assigned to the informative joints
are supposed to be larger than others, and the attention weights for samples from one class
are supposed to be more similar than those from different classes. However, this cannot
be achieved in the current attention model framework learned completely by the final
objective without any direct constraints on the attention model.

To address the above problem, a new triplet loss function is proposed to guide the
learning of the attention weights in addition to the final classification objective. This new
loss function enforces the intra-class attention distance to be smaller than the inter-class
attention distance. As mentioned before, for skeleton-based attention models, the attention
weights are assigned to the joints and the mapping between attention and joints is fixed.
Therefore, for different samples in the same class and different classes, the attention distance
over the joints can be calculated, and thus, the triplet loss can be implemented. The details
on the new triplet loss functions are defined as follows.

For a skeleton sample vi (anchor), let the attention weights on the sample at time step t
be sa

i,t. A sample from the same action class represents the positive sample whose attention
weights is sp

i,t, and one sample from different action classes represents the negative sample
whose attention weights by sn

i,t. The following constraint stands.

||sa
i,t − sp

i,t||
2
2 + α < ||sa

i,t − sn
i,t||22 (2)

where α is a margin that is enforced between positive and negative pairs. This constrains
the intra-class attention distance to be smaller than the inter-class attention distance by at
least α.

Accordingly, a triplet loss (Ltri,t) [42,43] for the spatial attention model in each frame
can be defined as

Ltri,t =
N

∑
i
[||sa

i,t − sp
i,t||

2
2 − ||sa

i,t − sn
i,t||22 + α]+ (3)

where N is the number of samples. When the triplet loss function is used to obtain embed-
dings for different classes [42,43], α is set to a positive value to avoid the trivial solution
that embeddings for different classes are the same. However, in the attention models for
skeleton-based action recognition, the attention weights are guided by the class classification
objective in addition to the above triplet loss. Therefore, α can be set to zero, which only
encourages the distance between the attention weights of the anchor and the positive sample
to be no larger than that between the anchor and the negative sample. This allows different
action classes to share similar attention weights.

On the other hand, since multiple sets of attention weights may exist for one action,
the above triplet loss function may reduce the number of plausible attention weights for
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one action. To overcome this issue, a new triplet loss is proposed based on a sample to class
distance, instead of the distance between the attention weights of anchor and one positive.

Figure 2 illustrates the new triplet loss. The anchor to the positive class distance is
defined as the minimum distance between the anchor and multiple positive samples,

min
m=1,2,...,M

||sa
i,t − spm

i,t ||
2
2, where M is the number of samples used in the positive class.

Through learning, the attention of the anchor sample is pushed to be closer to the at-
tention of the positive classes. In this way, the attention weights for the anchor only need
to be closer to any sample in the positive class than the negative sample, which allows for
multiple sets of attention weights for each action. This also compensates, to some extent,
the differences of attention (if there is any) due to the styles of performing the actions or
other factors.

Anchor

Positive Class

Negative

Anchor
Positive Class

Negative

Learning

Figure 2. Illustration of the new triplet loss with sample to class distance.

To reduce the computation, the positive class is represented by a few randomly selected
positive samples. Accordingly, the new triplet loss (Ltri,t) follows

Ltri,t =
N

∑
i
[ min
m=1,2,...,M

||sa
i,t − spm

i,t ||
2
2 − ||sa

i,t − sn
i,t||22 + α]+. (4)

Assuming the probability of the attention set used by the current anchor sample is
pa, the probability of at least one sample in the selected positive class samples sharing the
attention set as the current anchor sample is 1− (1− pa)M. Comparing with the probability
(pa) of drawing one random positive sample sharing the attention set, the probability is
higher with M > 1, and it is much higher when M is large.

Notice that different action samples may be not well aligned in the time domain in
practice because of the varying starting points and speeds of an action being performed.
Accordingly, the frame-by-frame distance between the anchor sample and the positive
sample could be large even if they may share similar attention weights on some key frames.
This issue has been widely studied in the literature and could be addressed with prepro-
cessing the sequences by time dynamic warping if the increased computation complexity
is affordable. In most of the training datasets for action recognition, each video sample
is a short video clip containing a single action. In the training process, each video is first
divided to T sub-sequences with the same length, and one frame is randomly selected from
each sub-sequence [29]. The attention weights can be averaged over a few frames to make
each segment roughly aligned. Since the triplet loss function is only used in training, this
processing does not affect the testing.



Appl. Sci. 2022, 12, 2006 8 of 16

In all, the final objective function used for training is as follows.

L = Lc + λ2

T

∑
t=0

Ltri,t (5)

where Lc represents the class classification loss using the typical cross-entropy loss
(−∑C

i=1 yi log ŷi, where yi and ŷi are the groundtruth label and the predicted label, re-
spectively). ∑T

t=0 Ltri,t represents the triplet loss on the attention model over time where T
is the length of the sequence.

4. Experimental Results

The proposed deep attention model has been evaluated in two widely used datasets,
i.e., the NTU RGB + D dataset [29] and UOW Large-Scale Combined (LSC) Dataset [44],
which covers a wide range of actions.

4.1. Results on NTU RGB + D Dataset

The NTU RGB + D dataset [29] is a large available action recognition dataset with
skeletons. It contains 56,880 sequences (over four million frames) of 60 action classes,
including one-person daily activities and two-person interactions. It was collected by three
Kinect v2 cameras with 17 different setups, and 40 subjects are involved in performing the
actions. Two evaluation protocols are suggested for this dataset including Cross-Subject
(CS) and Cross-View (CV) settings. In the training, 5% of the training data was reserved
as evaluation data, as suggested in [29]. Two skeletons (25 joints per skeleton) were used
as input, and if only one is present in the sample, the second was set as zero. For this
dataset, when multiple skeletons are present in the scene, the skeleton number captured by
Kinect may be changed over time, especially when the number of the skeletons is changed.
Therefore, an alignment process, by comparing the distance of all the joints between
different skeletons is first applied to keep the same number assigned to the skeleton of the
same subject. This is only performed once, as preprocessing and the processed skeleton
data were used for training and testing the network. For both training and testing, each
sequence was first divided to 20 segments of the same length, and one frame is randomly
selected from each segment [30].

The hyperparameters of the IndRNN-based deep attention model used in the ex-
periments are as follows. For the main IndRNN classification network, seven IndRNN
layers with residual connections are used, and each layer contains 512 neurons. Five and
four layers are used for extracting the features of the input skeleton and processing the
concatenated features in the attention network, respectively. The joint coordinates of two
persons (of dimension 25 ∗ 2 ∗ 3) are used as input. The training setup is similar as in [14],
where the batch size was set to 128. The Adam optimization is used with the initial learning
rate 2× 10−4 and decayed by 10 once the evaluation accuracy does not increase (with
patience 20). Dropout is applied after each layer with a dropping probability of 0.45 and
0.3 (larger than [14]) for the CS and CV settings, respectively.

The proposed triplet loss function was evaluated using the above deep attention
network. The overall performance of the proposed model in comparison with the existing
methods is shown in Table 1, where the proposed IndRNN-based deep attention model is
denoted by DA-IndRNN. It can be seen that the proposed model significantly outperformed
the traditional RNN-based methods such as [29–31] and also the very recent attention
model-based methods such as [19,20]. Moreover, it can be observed that compared with the
traditional LSTM-based attention model [19], the performance improvement under the CS
(cross-subject) setting is almost by 10 percentage points and it is higher than 7.5 percentage
points under the CV (cross-view) setting. This is mostly because the performing styles are
more diverse among different subjects than among different views of the same subject,
and the proposed model allows different styles with different attention weight patterns.
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Note that since this paper focuses on the investigation of the RNN-based skeleton action
recognition, the graph convolution-based ones [40,41] are not discussed and compared.

Table 1. Results of the skeleton-based action recognition on NTU RGB + D dataset in comparison
with the existing methods.

Method CS CV

Deep learning on Lie Group [45] 61.37% 66.95%

JTM + CNN [22] 73.40% 75.20%

Res-TCN [24] 74.30% 83.10%

SkeletonNet (CNN) [23] 75.94% 81.16%

JDM + CNN [32] 76.20% 82.30%

Clips + CNN + MTLN [25] 79.57% 84.83%

Enhanced Visualization + CNN [4] 80.03% 87.21%

ST-GCNN [46] 81.5% 88.3%

1 Layer RNN [29] 56.02% 60.24%

2 Layer RNN [29] 56.29% 64.09%

1 Layer LSTM [29] 59.14% 66.81%

2 Layer LSTM [29] 60.09% 67.29%

1 Layer PLSTM [29] 62.05% 69.40%

2 Layer PLSTM [29] 62.93% 70.27%

JL_d + RNN [31] 70.26% 82.39%

ST-LSTM + Trust Gate [30] 69.20% 77.70%

GCA-LSTM [20] 74.4% 82.8%

STA-LSTM [19] 73.40% 81.20%

IndRNN [14] 81.80% 87.97%

Proposed DA-IndRNN 83.24% 88.70%

4.1.1. Evaluation of the Deep Attention Network

It is known that the skeleton data can be noisy. Therefore, in addition to the hidden
state of the previous time step, the current input information is also used as input to obtain
the attention, as shown in Section 3.1. Moreover, we show that it is important to explore
relatively deep features to provide robust performance. Figure 3 shows comparisons among
different configurations of the feature extractor and attention estimator for the attention
network. Each figure shows the performance over 10 training processes of the corresponding
configuration of the attention network. It can be clearly seen that with only a one-FC-layer
attention estimator and without a feature extractor, the training process is likely to be
trapped to a local optimum with poor performance, as shown in Figure 3a. As the number
of layers in the attention estimator and the feature extractor increases, the training process
becomes stable and less likely to be trapped to a local optimum. For a network with a four-
FC-layer attention estimator and a five-FC-layer feature extractor, the training converges
almost monotonically with improving performance.
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(a) (b) (c)

(d) (e)

Figure 3. Performance comparison of different attention models obtained with 10 training processes
on the CS setting of the NTU RGB + D dataset [29]. (a–d) represent the attention model using a
one-FC-layer attention estimator with no feature extractor, a one-FC-layer attention estimator with a
one-FC-layer feature extractor, a two-FC-layer attention estimator with no feature extractor, and a
two-FC-layer attention estimator with a one-FC-layer feature extractor, respectively. (e) represents
the proposed deep attention model using a four-FC-layer attention estimator with a five-FC-layer
feature extractor.

4.1.2. Comparison of the DA-IndRNN against the Shallow LSTM-Based Attention Model

To demonstrate the advantage of the proposed model against a shallow LSTM-based
attention model [19], the difference between the normalized confusion matrices (%) of
the proposed model minus that of the shallow LSTM-based attention model is shown
in Figure 4a. Since the number of classes (60) is too large to show the entire difference
matrix, Figure 4b only shows part of the difference confusion matrix. The 10 rows represent
the classes with the 10 largest differences between the proposed model and the shallow
LSTM-based attention model. The columns represent the classes that are confused with
one of the classes in the rows, and the difference between the proposed model and the
shallow LSTM-based attention model is at least 2%. The positive values of the main
highlighted diagonal elements (where the true label equals the predicted label) represent
the improvement in percentage points achieved by the proposed model compared to the
shallow model for these classes. The negative values of the other elements represent that
error in percentage points reduced by the proposed model. From the figure, it can be
seen that the proposed model significantly improves the performance of these classes with
up to 29 percentage points, and it reduces the confusion among classes, especially for
classes performed with same joints but small differences, such as Class 13 (“teat up paper”)
and Class 11 (“reading”), or Class 31 (“pointing to something with finger”) and Class 32
(“taking a selfie”), both involving the movement of the hands.
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(a)

(b)

Figure 4. Illustration of the normalized confusion matrices (%) for the proposed model and its
difference with the shallow LSTM-based attention model on the NTU dataset. Note that there are
60 classes in total, which is too large to show the entire difference matrix. Therefore, only part of the
difference confusion matrix is shown. For the difference of the confusion matrix (confuse matrix of
the proposed model minus that of the shallow LSTM-based attention model), the 10 rows represent
the classes with the 10 largest differences between the proposed model and the shallow LSTM based
attention model. The columns represent the classes that are confused with one of the classes in the
rows and the difference between the proposed model and the shallow LSTM-based attention model
is at least 2%. For the confusion matrix of the proposed model, the top 10 most confused classes are
shown in the 10 rows. The columns represent the classes that are confused with one of the classes
in the rows by at least 2%. Note that for the purpose of display, the action names are simplified
without losing their meaning. Readers are referred to [29] for the full action names. (a) Difference
of the confusion matrix between the proposed model and the shallow LSTM based attention model.
(b) Confusion matrix of the proposed model.

To further show the detailed performance of the proposed model, Figure 4b shows
part of the confusion matrix of the proposed model. The top 10 most confused classes are
shown in the 10 rows. The columns represent the classes that are confused with one of the
classes in the rows by at least 2% . The values of the main highlighted diagonal elements
represent the accuracy of the proposed model, and the larger the better. The values of
other elements represent the errors, and the smaller the better. Despite the performance
improvement of the proposed model, it seems that the proposed model still suffers from
distinguishing the order of each movement. Taking Class 16 (“wear a shoe”) and Class 17
(“take off a shoe”) for example, these two classes with similar movements but different
orders cannot be classified well by the proposed model. Therefore, RNN models with
explicit considering of the orders may be needed, which will be investigated in the future.
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4.1.3. Verification of the Learned Attention

Figure 5 shows the attention on the joints of hands and feet over time for different
classes. The feet are represented by joints 15, 16, 19, and 20 (left ankle, left foot, right
ankle, and right foot), and hands include joints 7, 8, 22, 23, 11, 12, 24, and 25 (left wrist,
left hand, tip of the left hand, left thumb, right wrist, right hand, tip of the right hand,
and right thumb). The average percentages of the joints being actively focused (where
the joint attention weight is larger than 0.04 which represents the case that all 25 joints
of a skeleton are equally weighted if the second person is not attended at all) are shown.
Figure 5a shows the attention on the joints of feet over time for action “kicking something”
and action “hand waving”. It can be seen that for “kicking something”, with the progress of
the actions in time, more joints of feet are being focused, until it reaches the midpoint of the
action, and toward the end of the action, it starts to shift back to the original state. On the
other hand, for “hand waving”, the attention on the joints of feet decreases over time. This
agrees with the intuition that “kicking something” focuses on the joints of feet while “hand
waving” does not. Figure 5b shows the attention on the joints of hands over time for action
“playing with phone/tablet” and action “kicking something”. Similar behavior as Figure 5a
can be observed where attention on the joints of the hands improves for “playing with
phone/tablet”.

(a) (b)

Figure 5. Compasion of the attention on the joints of feet and hands over time for different action classes.
(a) Progress of the attention on the joints of feet over time for “hand waving” and “kicking something”.
(b) Progress of the attention on the joints of hands over time for “playing with phone/tablet” and
“kicking something”.

4.2. Results on UOW Large-Scale Combined (LSC) Dataset

The UOW LSC dataset [44] is a large dataset composed of nine publicly available
datasets including MSR Action3D Ext [47], UTKinect [48], MSR DailyActivity [49], MSR Ac-
tionPair [50], CAD120 [51], CAD60 [52], G3D [53], RGBD-HuDa [54], and UTD-MHAD [55].
There are 94 actions, from 107 subjects and 4953 samples in total. However, some samples
in some action classes do no contain skeleton modality and thus are excluded in the experi-
ment, resulting in 88 action classes and 3897 samples. Due to the nature of the LSC dataset
combined from several existing datasets, the intra-class variation is much larger than a
single dataset captured in a rather fixed environment. Moreover, the number of samples in
different action classes are highly imbalanced, ranging from over 100 samples to only four
samples in a class. The protocols developed in [44] were used for evaluation, including
random cross-subject and random cross-sample. The average recall and precision of all
classes as suggested in [44] is used for comparison. Table 2 shows the result of the proposed
model compared with the existing methods. It can be seen that better performance can be
achieved than the LSTM models [29].
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Table 2. Results on Large-Scale Combined (LSC) dataset.

Method
Cross Sample Cross Subject

Precision Recall Precision Recall

HON4D [50] 84.6% 84.1% 63.1% 59.3%

Dynamic Skeletons [56] 85.9% 85.6% 74.5% 73.7%

AGNN [57] 87.6% 88.1% 84.0% 82.0%

P-LSTM [29] 84.2% 84.9% 76.3% 74.6%

Proposed DA-IndRNN 88.7% 87.3% 80.7% 79.0%

5. Discussion

This paper proposes a new IndRNN-based deep attention model for skeleton-based
action recognition. The proposed model employs a deep network to obtain the attention
instead of just one or two layers in the conventional attention models, and a deep IndRNN
network for classification. Moreover, a new loss function is proposed based on the triplet
loss to regulate the attention model among different action categories. The new loss function
explicitly enforces the intra-class attention distance to be no larger than the inter-class
attention distance. Experiments have demonstrated that the proposed model can attain
more robust attention weights and better performance than the existing methods.

The proposed method takes the simple joint coordinates as input, and advanced
features such as the geometric features can be considered. In addition, spatial feature
extraction techniques such as the graph convolution are worth investigating with the
proposed method in the future.
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