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Abstract: No-reference image quality assessment is one of the most demanding areas of image
analysis for many applications where the results of the analysis should be strongly correlated with
the quality of an input image and the corresponding reference image is unavailable. One of the
examples might be remote sensing since the transmission of such obtained images often requires
the use of lossy compression and they are often distorted, e.g., by the presence of noise and blur.
Since the practical usefulness of acquired and/or preprocessed images is directly related to their
quality, there is a need for the development of reliable and adequate no-reference metrics that do
not need any reference images. As the performance and universality of many existing metrics are
quite limited, one of the possible solutions is the design and application of combined metrics. Several
possible approaches to their composition have been previously proposed and successfully used for
full-reference metrics. In the paper, three possible approaches to the development and optimization
of no-reference combined metrics are investigated and verified for the dataset of images containing
distortions typical for remote sensing. The proposed approach leads to good results, significantly
improving the correlation of the obtained results with subjective quality scores.

Keywords: image quality assessment; visual quality metrics; neural networks; combined metrics

1. Introduction

Modern remote sensing (RS) systems produce an enormous number of images that are
later used for many valuable applications such as ecological monitoring, agriculture, and
urban planning [1–3]. It is often supposed that all RS images are of high quality. However,
this is not so due to many reasons. Noise and other distortions can be present in acquired
data due to the RS sensor principle of operation such as speckle in radar images [4], wave
absorption in specific bands as in junk channels of hyperspectral data [5], bad conditions of
imaging [6], and imaging or communication system failures [7].

Then, an important task is to estimate an image quality for an original (acquired)
image or a processed (e.g., filtered) image [6,8–11]. There are practical situations when
full-reference metrics [12,13] can be employed for this purpose [8]. This happens when
there is an image that can be considered as “pristine” (reference) and, after processing (e.g.,
lossy compression), one has the corresponding distorted image that should be compared
to the reference one using a certain quality metric where both traditional (such as Mean
Square Error—MSE or Peak Signal-to-Noise Ratio—PSNR) or visual quality (e.g., Structural
Similarity—SSIM [14,15]) metrics can be applied.

Nevertheless, one can often meet situations where full-reference metrics cannot be
used since reference images are unavailable. Then, there are two options: either to try
predicting the values of trustworthy full-reference metrics or apply no-reference or reduced-
reference ones. Examples of the first option are given in the papers [16,17], where trained
neural networks (NNs) are applied to characterize the quality of images, including the
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quality of synthetic aperture radar (SAR) images, by predicting the values of different
image quality metrics. Such an approach is based on the known fact that full-reference
metrics characterize the quality of distorted images better than no-reference ones where
accuracy is usually described in terms of conventional or rank correlation of a metric and
Mean Opinion Score (MOS) for databases of distorted images [12]. However, the values of
full-reference metrics are anyway predicted with errors and the already proposed solutions
are not universal.

Because of this, an alternative option is often used, i.e., to apply no-reference (NR)
metrics [18–23]. NR metrics designed earlier (e.g., [19,20]) have mainly addressed particular
types of distortions such as blur, noise, and blockiness caused by lossy JPEG compression
with application to optical images. Being applied to a wide set of possible distortions such
as in the database TID2013, such NR metrics fail to provide good results [24]. Even for
the best metrics, such as IL-NIQE [25] and NIQE [26], the values of Spearman Rank Order
Correlation Coefficient (SROCC) between the metric and Mean Opinion Score values do
not exceed 0.5 for the database TID2013 [27], although SROCC values are larger for simpler
databases as LIVE [28].

On the contrary, with the development of modern technologies and machine learning-
based approaches, image quality assessment (IQA) methods have become more complicated
and powerful. Support vector machines, neural networks, and other approaches [18,22–24]
have been employed to improve the performance of NR metrics used for IQA for conven-
tional (grayscale and color) images as well as RS images [17,22,23].

The authors of [18] have designed an efficient classifier of distortion types based on
support vector machine (SVM) and a set of input features. They have tested it for several
available databases. However, they have considered a limited set of three distortion types.
Analysis of the 21 NR metrics for Quickbird RS images has been carried out in [22], where
the edge intensity metric has been recommended for practical use. However, the study
has been performed for only three types of distortions (average filtering, Gaussian white
noise, and linear motion degradation). In [23], multiple statistics features sensitive to image
quality have been extracted from hyperspectral images and used for the IQA. A particular
application of hyperspectral data restoration and super-resolution has been studied.

One way of improvement of metrics performance has been found expedient recently–
to design and optimize the so-called combined metrics [11,24,29,30]. The term “combined”
means that several “elementary” (quite simple) metrics are calculated sequentially or in
parallel, and then united (combined) in a certain manner. In this way, particular drawbacks
and weaknesses of elementary metrics can be eliminated while their positive features can be
sufficiently enforced with a synergetic effect. Combining or aggregation can be performed
in different ways: using “robust” processing with the preliminary fitting of metric to MOS
dependencies [24], by simple calculation of a weighted sum or product of elementary
metrics [29,30], or employing a trained NN. Although some promising results have been
obtained in [24], the analysis for particular types of distortions typical for RS images has
not been presented. The appropriateness of such an approach has also been confirmed
for video quality assessment by the successful development of the Video Multi-method
Assessment Fusion (VMAF) metric by Netflix, validated by RealNetworks [31].

In all cases, one needs certain databases or their parts to carry out training or to employ
optimization of the combined metrics as well as to verify the results. Unfortunately, there
are no special commonly accepted databases for RS images with MOS determined for them.
There are several reasons behind this. First, there are RS images of different nature (optical,
infrared, and radar) and characteristics (noise type and intensity, number of channels, and
spatial resolution). Second, while it is possible (although not easy) to attract quite many
people to evaluate the quality of standard color images, it is considerably more difficult to
find enough qualified experts to assess the quality of RS images.

In [11], a slightly “artificial” way out has been found since a subset of images from the
database TID2013 [27] has been selected, having distortions of type and intensity inherent
for three-channel RS images. Using these selected images (subsets Noise and Actual in
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TID2013), we have trained the NNs that used different numbers of elementary full-reference
metrics as NN inputs. As the result, we have obtained the SROCC of about 0.965 for the
best structures and configurations of the NN-based metrics for the subset Noise + Actual
(NA). Keeping in mind these results, we have decided to carry out a similar attempt and
study for NR IQA metrics. Thus, the main novelty of this paper consists in the design
of general-purpose combined NR metrics using NN and weighted sum/product-based
approaches of elementary metric aggregation with application to distortions typical for
three-channel RS images.

The paper structure is as follows: in Section 2 the TID2013 database, NR metrics, earlier
results, and the applied methodology are discussed, Section 3 focuses on the presentation
of experimental results with their analysis. A brief discussion is given in Section 4.

2. Materials and Methods
2.1. Overview of the TID2013 Dataset and Earlier Results in the Combined Metric Design

To design and verify a new metric, one needs a database or several databases that
contain images of a needed type corrupted by distortions with type and intensity inherent
for images under interest. Besides, these databases should provide MOS or Differential
Mean Opinion Score (DMOS) values for all images. In this sense, there are some problems
in the design and verification of visual quality metrics for RS images. First, there is
a very limited number of available databases of RS images, and they have a limited
number of distortion types and/or are intended for other purposes [32,33]. Second, remote
sensing images of a certain type can be intended for a particular purpose, therefore IQA
results can be in improper agreement with this purpose and criteria used. For example,
it is currently not fully clear how traditional criteria used in lossy compression relate to
criteria characterizing object detection, classification, and segmentation of compressed
images. Third, even if RS images have three components, there are several variants of
their visualization as RGB color images. If the number of components is larger than three,
there are numerous ways to represent RS data in pseudo-colors and then a correspondence
between the assessed quality of visualized images and real values of RS data is not clear.

Because of this, similarly to [11], the analysis is restricted to three-channel RS images
assuming that they are represented as RGB color images. Consideration of more complex
cases of more channels (components) of RS images is out of the scope of this paper.

Recall that the synthesis and analysis of the full-reference and no-reference quality
metrics for RS images using the database TID2013 has already been carried out [11]. The
reasons for this may be summarized as follows:

• The TID2013 dataset contains 25 reference images and images with 24 types and
5 levels of distortions where many distortion types take place in the practice of re-
mote sensing;

• These types of distortions are concentrated in two subsets, namely Noise and Actual,
that can be processed and analyzed separately (see the details below);

• MOS values have been obtained for all distorted images in TID2013 including the
aforementioned subsets where a larger number of participants (volunteers) have been
attracted to experiments (this is important since MOS has to be estimated accurately
enough to minimize the negative influence of possible inaccuracy on the SROCC
calculation and comparison of metrics performance).

The whole TID2013 dataset contains the following types of distortions: Additive
Gaussian noise (#1), Additive noise in color components (#2), Spatially correlated noise (#3),
Masked noise (#4), High-frequency noise (#5), Impulse noise (#6), Quantization noise (#7),
Gaussian blur (#8), Image denoising (#9), JPEG compression (#10), JPEG2000 compression
(#11), JPEG transmission errors (#12), JPEG2000 transmission errors (#13), Non-eccentricity
pattern noise (#14), Local block-wise distortions of different intensity (#15), Mean shift
(intensity shift) (#16), Contrast change (#17), Change of color saturation (#18), Multiplicative
Gaussian noise (#19), Comfort noise (#20), Lossy compression of noisy images (#21), Image
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color quantization with dither (#22), Chromatic aberrations (#23), and Sparse sampling and
reconstruction (#24).

The distortions ##14, 15, 16, 18, 22, and 23 are atypical for RS applications, other types
can be met in multichannel imaging. In this sense, two subsets attract special attention.
The subset Noise deals with images having the following types of distortions: Additive
Gaussian noise (#1), Additive noise in color components (#2), Spatially correlated noise
(#3), Masked noise (#4), High-frequency noise (#5), Impulse noise (#6), Quantization noise
(#7), Gaussian blur (#8), Image denoising (#9), Multiplicative Gaussian noise (#19), and
Lossy compression of noisy images (#21). Another subset (Actual) contains images with
aforementioned distortions ##1, 3, 4, 5, 6, 8, 9, 19, and 21, as well as #10 (JPEG compression)
and #11 (JPEG2000 compression). Some examples of when these types of distortion might
happen in remote sensing are discussed in our earlier paper [11]. Thus, being united, the
two subsets can represent a variety of distortions typical for remote sensing.

It is worth noting here that some other types of distortions may also be present in
RS images. For example, there may be multiple distortions such as blur + noise or blur +
blockiness. However, currently, the analysis is restricted by the availability of the databases
and appropriate subsets.

Previous experiments with the design of the combined FR and NR metrics [11,24,29,30]
show the following:

• SROCC for a given metric, elementary or combined, depends not only on a metric
but also on the database whereas for databases with a smaller number and/or more
typical distortions SROCC is usually considerably higher (because of this, the metric
performance for the old LIVE database is commonly much better than for the other,
more complicated, databases);

• SROCC values for metrics for such subsets of TID2013 as Noise or Actual are usually
larger than for the entire database;

• Combined metrics, especially NN-based, can provide better results than the best
elementary metric; meanwhile, for a given number of elementary metrics N, it does
not mean that the best N elementary metrics have to be combined to produce the
best NN-based metrics; the elementary metrics being complementary to each other
constitute the best solutions.

Here it is worth recalling that there are three main types of combining elementary metrics:

• CM = R(EMfMOS(n), n = 1, . . . , N), where R means a robust operator (e.g., a sample
median or α-trimmed mean) applied to a set of elementary metrics after fitting to MOS
(EMfMOS), N is the number of elementary metrics which is usually quite small (e.g.,
equal to 5); the advantage is that the method is simple; the drawback is that metric to
MOS fitting is needed;

• CM = WSUM(EM(n), n = 1, . . . , N) or CM = WPROD(EM(n), n = 1, . . . , N) where
WSUM and WPROD denote the weighted sum or weighted product of N elementary
metrics with weights optimized to provide the highest correlation with subjective
scores for a given dataset; the advantages are that good results may be obtained for a
relatively small number of elementary metrics and their combining is very simple and
fitting (in general) is not needed; the drawback is that the obtained combined metrics
are usually less efficient than the NN-based ones;

• CM = NN(EM(n), n = 1, . . . , N) where NN() means that a neural network is applied to
a set of input parameters where elementary metrics (without fitting) serve as inputs;
the advantage is that the obtained metrics are usually the most efficient; the drawback
is that there are several questions to be answered at the stage of metric design.

Because of the mentioned advantages and drawbacks, this paper concentrates on
the two latter approaches to the design of combined metrics. In both cases, the provided
performance depends upon many factors. The main two of them are the number of
elementary metrics and the choice of the used elementary metrics. A general tendency is
that a larger number of elementary metrics leads to better performance but only to a certain
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limit. For the combined metrics presented as a weighted sum or product [29,30], it is often
enough to have less than 8–10 metrics since a further increase of N does not lead to sufficient
benefits in performance, making the combined metric more complicated. The same holds
for NN-based metrics [11] where usually it is enough to apply 20–30 elementary metrics
instead of 40–50 elementary metrics used as inputs. In this case, the Lasso method [34]
allows restricting a set of elementary metrics to be employed [11] with simplifying the
design and the final structure of the obtained NN-based combined metric.

An important role is also played by the optimization and training methods. For
example, in [24] only a very limited number of weights was allowed in the design of
product (multiplicative) type of combined metrics. However, an optimization procedure
that should allow avoiding to get into local extrema is important as well. It is worth
noting that for the NN-based combined metrics, it is practically impossible to use the
convolutional NNs which are very popular nowadays [35]. The main reason is a limited
number of distorted images to be used in training and verification. Additionally, a division
of images into smaller patches and data augmentation cannot be conducted due to the
availability of MOS values obtained only for whole images. Thus, simpler structures
of the NNs have to be applied. However, even in this case, there is a wide variety of
possible variants.

2.2. Brief Overview of the No-Reference Image Quality Assessment Methods

The no-reference objective IQA metrics are particularly interesting for many applica-
tions where “pristine” reference images without any distortions are unavailable. However,
due to the lack of possibility of comparisons of the distorted images with them, each NR
method should not only determine the amount and/or type of distortions in the way as
highly correlated with their subjective perception as possible. Typically, such methods
should also be able to detect the presence of some types of distortions without the knowl-
edge of the original reference image. These requirements cause much lower universality
of the NR metrics in comparison to the full-reference IQA methods as well as their signif-
icantly lower correlation with subjective quality evaluation results available in the IQA
datasets, such as LIVE or TID2013. Therefore, many various general-purpose or more
specialized NR metrics have been proposed by various researchers, and some of them are
briefly presented below.

Some of the most widely known NR metrics for natural images, currently imple-
mented i.a. in MATLAB environment are Naturalness Image Quality Evaluator (NIQE) [26],
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [36], and Perception-
based Image Quality Evaluator (PIQE) [37]. The first one is based on the measurement
of the distances between the image features utilizing the natural scene statistics (NSS)
for the assessed image and the same features obtained from an image database during
model training with the use of a multivariate Gaussian model. Its extension, known as
IL-NIQE [25], utilizes such models calculated for each image patch and the overall quality
score is obtained by average pooling. Another, relatively well-known NR metric based
on the NSS is the Blind Image Quality Index (BIQI) [38], being a two-step framework
composed of 5 sub-indexes sensitive to distortion types present in the LIVE database,
utilizing wavelet decomposition, generalized Gaussian distribution (GGD) and a classifier
based on the support vector machine (SVM). The BLIINDS-2 [39] metric utilizes the NSS
model of the discrete cosine transform (DCT) coefficients a simple Bayesian inference
approach for quality prediction, whereas Distortion Identification-based Image Verity and
Integrity Evaluation (DIIVINE) [40] does not use any distortion-specific models to extend
its universality.

An interesting general-purpose NR objective metric, known as the COdebook Repre-
sentation for No-reference Image Assessment (CORNIA), has been proposed by Ye et al. [41]
utilizing unsupervised feature learning. Instead of the handcrafted features, raw-image-
patches extracted from a set of unlabeled images have been used as local descriptors. Xue
et al. [42] have proposed a quality-aware clustering (QAC) method to learn a set of cen-
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troids for each quality level without the necessity of using the images scored by a human
in learning.

Some examples of more specialized metrics, e.g., for sharpness evaluation might be
ARISM [43] based on the autoregressive model parameters, Cumulative Probability of
Blur Detection (CPBDM) [20], JNBM [19] based on the idea of just noticeable blur (JNB),
or the blur metric proposed by Crété-Roffet et al. [44]. Some other examples may be the
wavelet-based Fast Image SHarpness (FISH) [45] metric, as well as Perceptual Sharpness
Index (PSI) [46]. A specialized metric designed to measure blocking effects and relative
blur is known as WNJE [47], and an exemplary metric designed for blur assessment based
on discrete orthogonal moments is known as BIBLE [48].

The use of High Order Statistics Aggregation (HOSA) has been proposed by Xu et al. [49],
whereas Min et al. proposed the BPRI metric [50] based on the use of pseudo-reference image,
consisting of three sub-indexes: PSS blockiness measure, LSSs sharpness measure, and
LSSn noisiness measure. An interesting hybrid NR metric, called SISBLIM, designed also
for evaluation of multiply distorted images, has been proposed by Gu et al. [51] in four
versions (SISBLIM_SM, SISBLIM_SFB, SISBLIM_WM, and SISBLIM_WFB).

Since the topic of the paper is related to the methods of an efficient combination of
existing metrics, a more detailed description of some other NR metrics used in experi-
ments may be found in respective papers referred for each metric in Table 1, presenting
their performance.

2.3. The Design of the No-Reference Combined Metrics for RS Images

Improvement of no-reference metrics is a demanding topic of research. Robust and
stable results still pose a challenge and are required for many tasks. One of the most
effective approaches to increase their performance is the combination of elementary metrics.
The design of the NR combined metrics that would reflect the distortions met in RS images
is based on the “Noise and Actual” (NA) subset from the TID2013 database, concerning
13 selected types of distortions listed in Section 2.1. This subset contains 1625 images out of
3000 present in the whole database (it is still more than included in some other commonly
used datasets, such as LIVE or CSIQ [52]). Considering the combination based on the
weighted product, the generalized formula of the combined metric may be presented as:

CM =
N

∏
i=1

Qwi
i , (1)

assuming the elementary metrics Qi. The application of the second investigated approach
utilizing the weighted sum expressed as:

CM+ =
N

∑
i=1

(
ai Qwi

i
)
, (2)

with additional weights ai, increasing the flexibility of the designed combined metric,
makes it possible to increase its correlation with subjective scores. Such an approach to
metrics’ combination, applied previously for full-reference metrics, has led to encouraging
results [30]. In both cases, the values of all parameters (weights) for the selected set
of elementary metrics are obtained as the results of optimization using the direct search
method based on the Nelder–Mead simplex. For this purpose, MATLAB fminsearch function
may be effectively used.

The experiments have been started by the calculation of the SROCC values of el-
ementary metrics for the NA subset. As shown in Table 1, the best accuracy of visual
quality estimation for the NA subset is provided by IL-NIQE [25], which value reaches
0.72 by SROCC. Due to the relatively small number of possible combinations, each pair of
metrics has been subject to both types of combinations, according to Equations (1) and (2)
with optimization of parameters using the SROCC as the criterion. The further choice of
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elementary metrics for the combination using three or more of them has been based on the
correlation of their subset: the five best combinations of two metrics have been selected as
the basis and the third metric has been combined with them (all metrics have been checked
and weights have been optimized). Then five best combinations of three metrics have been
selected and each of the other elementary metrics has been checked as the potential fourth
element, and so on. The reason for the choice of the five best combinations for each N is
caused by the observation in previous experiments with full-reference metrics applied to
multiply distorted images [30]. In some cases, the second or third “best” combination of N
elementary metrics has led to better results in combination with the (N + 1)-th metric.

Table 1. The absolute SROCC values obtained for the NR elementary metrics (the three best results
are marked with bold font).

Metric
SROCC

Metric
SROCC

NA Subset Whole
TID2013 NA Subset Whole

TID2013

ARISM [43] 0.0736 0.1449 IL-NIQE [25] 0.7221 0.4921
ARISMC [43] 0.0520 0.1380 JNBM [19] 0.1632 0.1412

BIBLE [48] 0.3331 0.2812 LPC_SI [53] 0.3196 0.3233
BIQI [38] 0.4999 0.4050 LPSI [54] 0.4695 0.3949

BLIINDS-2 [39] 0.4834 0.3946 MLV [55] 0.1755 0.2013
Blur Metric [44] 0.0393 0.0075 MSGF_PR [56] 0.3085 0.2437

BPRI [50] 0.2849 0.2289 NIQE [26] 0.4451 0.3132
PSS [50] 0.3334 0.0218 PIQE [37] 0.2473 0.1364
LSSs [50] 0.0880 0.1138 NIQMC [57] 0.1141 0.1129
LSSn [50] 0.1936 0.1675 NJQA [58] 0.0233 0.0997

BRISQUE [36] 0.4952 0.3673 NMC [59] 0.0485 0.0542
C-DIIVINE [60] 0.4773 0.3734 NR_PWN [21] 0.0259 0.0163
CORNIA [41] 0.4735 0.4352 OG-IQA [61] 0.3874 0.2761
CPBDM [20] 0.0948 0.1115 PSI [46] 0.1677 0.0940

DESIQUE [62] 0.1236 0.0691 QAC [42] 0.5034 0.3723
DIIVINE [40] 0.4456 0.3438 SDQI [63] 0.2254 0.2244

dipIQ [64] 0.2532 0.1395 DIQU [65] 0.2950 0.2401
FISH [45] 0.0219 0.0524 TCLT [66] 0.3151 0.2331

FISH_BB [45] 0.1551 0.1450 GM_LOG [67] 0.1556 0.1089
SISBLIM_SM [51] 0.4787 0.3178 HOSA [49] 0.5690 0.4705
SISBLIM_SFB [51] 0.4276 0.3363 SMETRIC [68] 0.0157 0.0969
SISBLIM_WM [51] 0.3992 0.2392 SSEQ [69] 0.4659 0.3410
SISBLIM_WFB [51] 0.3789 0.2929 WNJE [47] 0.3967 0.3018

An important element in the design of the combined metrics is also the calculation
time. To verify the possible limitations some experiments have been conducted calculating
some elementary metrics using the Intel i7 10gen laptop processor. Although the execution
time of many metrics is below 1 s, it is worth mentioning some of the “slowest” algorithms,
namely BLIINDS2 (nearly 16 s), NJQA (over 8 s), IL-NIQE (over 6 s), ARISM/ARISMc
(about 5 s), OG-IQA (over 4 s), or CORNIA (nearly 3 s). Nevertheless, since the processing
time may vary, the precise measurement results have not been presented, limiting this
thread to the indication of the most computationally demanding metrics verified using an
exemplary computer for comparison purposes. The graphical illustration of the differences
is presented in Figure 1 in logarithmic scale with respect to the fastest metric.
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2.4. The Design of the Combined Metrics Based on Neural Networks

One of the main results obtained in earlier papers [11,24,70] concerning the use of
neural networks is the confirmation of their high efficiency for the optimization of full-
reference combined metrics. As the result of multiple parameters optimization, combined
metrics based on neural networks provide several benefits. For a given image database
they usually outperform any single elementary metric, and it is enough to use a simple
NN model with several layers to achieve that result. Therefore, this stage is characterized
by high computational performance, and the duration of computations is determined
primarily by the slowest metric (in the case of parallel computations). In this paper, an
approach tested previously on full-reference metrics has been applied to no-reference
metrics and verified experimentally for the NA subset and the whole TID2013 database.
Some preliminary results may also be found in [24], although only general-purpose metrics
have been designed, demonstrating quite limited universality, given the results obtained
for different considered datasets.

Since the use of more complex deep learning models [71,72] may not always be
applicable for different image processing tasks, due to its limitations on the structure and
size of the trained model and its computational complexity, the experiments are focused on
the application of simpler NN models. Taking into account the distortions characteristic
for RS images, some additional NR metrics, not considered previously in [24], have been
included in calculations, increasing the possibilities of their choice and optimization.

Since the accuracy values of even the best NR metric (IL-NIQE) are quite low, a
remarkable improvement may be expected using the combined NN metric, potentially
better than using both approaches considered above (weighted product and weighted
sum). Nevertheless, it would be difficult to directly compare the obtained combined metric
with the results presented in [24], since the target datasets for the NN differ significantly.
However, based on the results for 11 metrics and the fact that the NA subset has been
included as a part of previous experiments, the expected improvement should reach the
SROCC values at least 0.75–0.8 for a comparable number of metrics.

When designing and training a neural network, it is necessary to take into account
some conditions that significantly affect its efficiency:

Input and output data of the neural network.

• The values of the visual quality metrics are used as inputs. The NN result should
be an indicator corresponding to the human visual system (HVS). Therefore, the
target data are the MOS estimates of the test image databases and the accuracy of the
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approximation of the NN result to the MOS estimates determines its effectiveness. For
the training and validation phases, the datasets are randomly subdivided into 70%
and 30% subsets, respectively;

• The number of the applied metrics.
• One of the design goals is to keep computational complexity possibly low, so a smaller

number of metrics is preferable. To analyze the influence of the number of input
metrics on the overall efficiency, neural networks with different numbers up to over
40 metrics are considered;

• The choice of the applied metrics.
• Based on the research results for the reference metrics of visual quality in [11], the

regression analysis approach using the Lasso method is quite effective. This method
allows us to reduce the complexity of the network by assigning zero weights for
non-essential features (elementary metrics in our case). By using different thresholds,
we can define the “cut-off” levels for each of the possible metrics, thereby determining
their importance in the resulting composite metric. It should be noted that a simple
linear model is used here, and the selection of results will be approximate. Therefore,
it is recommended to validate and carry out single replacements as needed;

• Type of the neural network.
• As the results in [72] have shown, the use of more complex modifications with non-

linear dependencies between layers as compared to feed-forward networks leads to
longer training but may lead to a noteworthy increase in the accuracy of the designed
metric. At the same time, the results obtained for the best types—cascade and Elman
networks—gave comparable efficiency. Therefore, in the paper, the feed-forward and
cascade-forward neural networks are analyzed.

The Lasso algorithm has an important feature that should be taken into account during
the calculations. It performs a sequential optimization of the weights, so its result depends
on the starting point of reference. In the context of neural networks, this means that the
order of the metrics in the input data is essential. Therefore, the training procedure was
carried out in two stages.

At the first stage, 100 sequences have been randomly generated from the considered
metrics. For the initial configuration, from 5 input metrics, neural networks have been
calculated assuming the use of both types of neural networks and a different number of
layers and neurons (20 training rounds with a randomly subdivided test set). As shown in
previously obtained results [11], the efficiency is enhanced with an increase in the number
of metrics, and for the maximum size (all metrics) the influence of Lasso is minimized.
Therefore, the minimum set of input data is the most informative. It should be noted that
the presence of only 3 input data vectors (elementary metrics) does not allow to ensure the
optimal choice of metrics (SROCC < 0.7), and more accurate results have been obtained
when searching for 5 metrics (SROCC > 0.8). Depending on the configuration and the type
of the neural network (feed-forward or cascade-forward), the difference in the SROCC
value can reach 0.04 for a smaller number of inputs. In this case, the advantages over
the elementary metrics can be provided by both of them, however, more often by the
cascade-forward networks, used also in the resulting network.

At the second stage, for each type of neural network, several configurations are
considered to select the optimal structure, similarly to [11]: from 1 to 5 hidden layers, with
an equal or evenly decreasing number of neurons in each layer. Similarly, it has been
previously determined that the appropriate selection of suitable NN activation functions
eliminates the need for preliminary data linearization. The use of a higher number of
neurons does not provide significantly better results. They are very similar for each
number of layers and mostly dependent on the used datasets, therefore the decision to
use 5 layers has been made. As activation function in hidden layers, we used tansig that
allows normalizing the infinitive range of values to the limited range [−1;1] and the linear
one for the last layer. After Lasso’s calculations, the combinations of metrics shown in
Table 2 are considered (NNZ means the number of non-zero values). Another advantage



Appl. Sci. 2022, 12, 1986 10 of 19

of the application of Lasso is that the use of even the smallest thresholds eliminates the
weakest metrics.

Table 2. The combinations of metrics considered in the NN-based experiments (with the lists of
metrics presented only when less than 10 metrics have been applied).

## Pre-Processing Rule Number of Metrics List of Metrics

1 All metrics 42 -
2 Using Lasso (NNZ > 20) 37 -
3 Using Lasso (NNZ > 30) 35 -
4 Using Lasso (NNZ > 40) 32 -
5 Using Lasso (NNZ > 50) 27 -
6 Using Lasso (NNZ > 60) 19 -
7 Using Lasso (NNZ > 63) 15 -

8 Using Lasso (NNZ > 68) 10 CORNIA, HOSA, LPSI, MSGF, TCLT, IL-NIQE, QAC, SISBLIM_SM,
SISBLIM_SFB, DESIQUE,

9 Using Lasso (NNZ > 70) 8 CORNIA, QAC, HOSA, LPSI, TCLT, SISBLIM_SFB, NIQMC, IL-NIQE
10 Using Lasso (NNZ > 75) 5 CORNIA, QAC, HOSA, LPSI, IL-NIQE
11 Using Lasso (NNZ > 80) 3 CORNIA, LPSI, IL-NIQE
12 Custom set 1 5 CORNIA, LPSI, HOSA, QAC, IL-NIQE
13 Custom set 2 5 SISBLIM_SM, HOSA, QAC, IL-NIQE, BRISQUE

Since there are some other databases for which it is possible to check the performance of
the optimized combined metrics, such an analysis has been performed for the combination
of 5 and 10 elementary metrics. To verify the universality of the proposed approach, it
has been checked for widely known LIVE database [28] (for all types of distortions), for
several subsets of distortions that can be formed for TID2013, as well as for several subsets
for the KADID-10k database [73] that contain distortions typical for the RS applications.
For comparison, the elementary metrics used as inputs of the combined NN metric have
been taken.

3. Results

The results of the optimization of the pairs of elementary metrics confirm the validity
of the proposed approach since a significant increase of the SROCC may be observed for the
best combinations in comparison to IL-NIQE shown in Table 1. The best five combinations
for the NA subset are presented in Table 3 together with the absolute values of the KROCC
and PLCC values, although Spearman’s correlation has been assumed as the objective
function during the optimization. Similar results obtained for the whole TID2013 database
are shown in Table 4. Due to very low values of the Pearson’s correlation (below 0.1)
for some metrics, their precise values have not been presented. The results provided in
Tables 3 and 4 illustrate some interesting properties of the combined metrics. Firstly, all five
“best” combinations for the NA subset contain the IL-NIQE metric, however, the situation
for the whole TID2013 database is a bit different, particularly for the CM+

2 family of metrics.
Secondly, the elementary metrics combined with IL-NIQE are not the “best” among the
elementary metrics listed in Table 1. It confirms that the combination of various types of
metrics leads to better performance the use of those based on similar assumptions.

Starting from the combinations listed in Tables 3 and 4, the respective CM3. and CM+
3

families of the combined metrics have been optimized, as well as similar combinations
of more elementary metrics. The obtained “best” combinations for the NA subset are
presented in Table 5. As it may be observed for the combinations of five elementary metrics
three of them are the same for both types of combined metrics whereas two of them are
different. After a further increase of the number of elementary metrics (N > 5) there are no
significant improvements in the performance, however, it leads to noticeably higher com-
putational complexity. Table 6 illustrates the best results obtained using the combinations
of 3 to 5 elementary metrics using formulas (1) and (2), for the whole TID2013 database.
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Table 3. Performance of the five best combinations of two NR elementary metrics (N = 2) for the NA
subset assuming the use of the weighted product (CM2) and weighted sum (CM+

2 ).

Metric SROCC KROCC PLCC

CM2 (ARISM, IL-NIQE) 0.7528 0.5540 0.7165
CM2 (WNJE, IL-NIQE) 0.7526 0.5580 0.6868

CM2 (ARISMC, IL-NIQE) 0.7489 0.5491 0.7131
CM2 (LPSI, IL-NIQE) 0.7345 0.5379 <0.1

CM2 (HOSA, IL-NIQE) 0.7332 0.5364 0.6974

CM+
2 (ARISMC, IL-NIQE) 0.7682 0.5690 0.7378

CM+
2 (ARISM, IL-NIQE) 0.7678 0.5691 0.7388

CM+
2 (WNJE, IL-NIQE) 0.7542 0.5600 0.7655

CM+
2 (CORNIA, IL-NIQE) 0.7502 0.5541 0.6090

CM+
2 (HOSA, IL-NIQE) 0.7433 0.5456 0.5156

Table 4. Performance of the five best combinations of two NR elementary metrics (N = 2) for the
whole TID2013 dataset assuming the use of the weighted product (CM2) and weighted sum (CM+

2 ).

Metric SROCC KROCC PLCC

CM2 (LPCSI, IL-NIQE) 0.5352 0.3783 0.0553
CM2 (HOSA, IL-NIQE) 0.5255 0.3732 0.4040
CM2 (TCLT, IL-NIQE) 0.5225 0.3690 0.1829
CM2 (WNJE, IL-NIQE) 0.5191 0.3728 0.3092
CM2 (HOSA, LPCSI) 0.5154 0.3615 <0.1

CM+
2 (PSI, CORNIA) 0.5631 0.3978 0.4922

CM+
2 (PSI, IL-NIQE) 0.5571 0.3955 <0.1

CM+
2 (HOSA, IL-NIQE) 0.5425 0.3877 <0.1

CM+
2 (SISBLIM_WM, IL-NIQE) 0.5384 0.3804 <0.1

CM+
2 (CORNIA, Blur Metric) 0.5372 0.3801 <0.1

Table 5. Performance of the best combinations of NR elementary metrics (N > 2) for the NA subset
assuming the use of the weighted product (CM) and weighted sum (CM+).

Metric SROCC KROCC PLCC

CM3 (ARISM, IL-NIQE, BIBLE) 0.7839 0.5856 0.2993
CM4 (ARISM, IL-NIQE, BIBLE, WNJE) 0.8056 0.6129 0.2769

CM5 (ARISMC, IL-NIQE, BIBLE, WNJE, GM_LOG) 0.8132 0.6243 0.5847

CM+
3 (ARISMC, IL-NIQE, CORNIA) 0.8089 0.6122 0.7024

CM+
4 (ARISMC, IL-NIQE, CORNIA, WNJE) 0.8315 0.6406 0.7922

CM+
5 (ARISMC, IL-NIQE, CORNIA, WNJE, QAC) 0.8406 0.6522 0.8320

Table 6. Performance of the best combinations of NR elementary metrics (N > 2) for the whole
TID2013 database assuming the use of the weighted product (CM) and weighted sum (CM+).

Metric SROCC KROCC PLCC

CM3 (IL-NIQE, HOSA, TCLT) 0.5765 0.4140 <0.1
CM4 (IL-NIQE, LPCSI, TCLT, WNJE) 0.5995 0.4305 <0.1

CM5 (IL-NIQE, HOSA, TCLT, LPCSI, WNJE) 0.6235 0.4521 <0.1

CM+
3 (PSI, LPCSI, CORNIA) 0.5967 0.4252 <0.1

CM+
4 (PSI, LPCSI, IL-NIQE, BIBLE) 0.6274 0.4492 0.1301

CM+
5 (HOSA, LPCSI, IL-NIQE, OG_IQA, WNJE) 0.6442 0.4648 0.5052



Appl. Sci. 2022, 12, 1986 12 of 19

The results obtained for neural networks with 5, 10, and 15 inputs selected by the
Lasso algorithm are shown in Table 7. In its description 1 L–4 L denote the number of
hidden layers, whereas “equal” and “half” stand for the number of neurons. The number
of neurons in the first hidden layer was equal to the number of elementary metrics. There
were two variants for determining the number(s) of neurons in the next hidden layers. The
first option was to set the same number(s) of neurons whilst the second was to reduce the
number of neurons approximately twice in each next hidden layer.

Table 7. Results of the cascade NN obtained for the NA subset using the 5, 10, and 15 input metrics
(1 L–4 L denote the number of hidden layers, “equal” and “half” are the number of neurons; the best
SROCC and PLCC correlations are marked with bold fonts).

## NN Neurons
5 Metrics 10 Metrics 15 Metrics

SROCC PLCC SROCC PLCC SROCC PLCC

1 1 L 0.8173 0.8483 0.8768 0.8889 0.8991 0.9106
2 2 L, equal 0.8114 0.8409 0.8813 0.8906 0.8996 0.9122
3 3 L, equal 0.8171 0.8475 0.8811 0.8932 0.9190 0.9268
4 4 L, equal 0.8199 0.8512 0.8730 0.8856 0.9118 0.9221
5 2 L, half 0.8208 0.8527 0.8787 0.8932 0.9060 0.9146
6 3 L, half 0.8155 0.8411 0.8797 0.8946 0.9057 0.9168
7 4 L, half 0.8107 0.8362 0.8739 0.8914 0.9051 0.9155

A graphical illustration of the obtained performance for some of the “best” combina-
tions is presented on the scatter plots shown in Figure 2 and discussed in Section 4.

The dependence of the accuracy of the neural network (considered as the SROCC
values calculated for the NA subset) on the number of input metrics is shown in Figure 3.
For different configurations of networks, fairly similar results have been obtained. For
this task, the most critical factors are the list of the used metrics, their number, whereas
the specific network configuration is less crucial. In terms of the totality of all stages of
networks training, it can be noted that a single-layer network does not always provide the
necessary computing capacity, and the use of 4 hidden layers does not lead to a visible
advantage. Hence, a stable result with a low complexity cascade network is ensured when
2–3 hidden layers are used and, basically, with an equal number of neurons in the layers.

The results of the verification of the universality of the proposed NN-based metric
are presented in Table 8. The results obtained for the whole LIVE database are not the
best. The NN-based metric is better than some elementary metrics and worse than other
ones, however, the obtained SROCC for this database is considered large enough. It should
be noted here that some elementary metrics have been obtained just for a limited set
of distortion types present in the LIVE database and this explains the aforementioned
observations. For different subsets of the TID2013, the results for the designed NN-based
metric are either the best or close to the best.

For the subsets of the KADID-10k database, the data for 5 and 10 metrics have been
considered separately. This database contains the following groups of distortions [73]: blurs
(##1–3), color distortions (##4–8), compression (##9–10), noise (##11–15), brightness change
(##16–18), spatial distortions (##19–23), over-sharpening (#24), and contrast change (#25).

For 5 metrics, the results for the NN-based metrics are close to the best elementary
metric whereas different elementary metrics are the best for different subsets. It confirms
the observation of the benefits achieved for the combination of the elementary metrics that
are not the best themselves but somehow complementary, utilizing various “nature” of
image data (different features, data representation, transforms, etc.) and based on different
assumptions. To illustrate the idea of this “compensation”, the scatter plots obtained
for elementary metrics and their combination for the KADID-10k database are presented
in Figure 4. Different outliers may be easily observed for elementary metrics and the
NN-based metric provides the smallest number of obvious outliers and practically linear
dependence between MOS and the metric.
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Figure 2. Scatter plots illustrating the correlation between the subjective (MOS values) and objective
metrics for the NA subset: (a) the “best” elementary metric (IL-NIQE); (b) the “best” combined
weighted sum of 5 metrics (CM+

5 metric); (c) the “best” combined NN-based metrics using 5 inputs;
(d) the “best” combined NN-based metrics using 15 inputs.
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Table 8. Results of the verification of the universality of the proposed NN-based metric: SROCC
values obtained for LIVE database and various subsets from the TID2013 and KADID-10k databases;
the highest SROCC correlations are marked with bold fonts.

Database LIVE TID2013 KADID-10k

Subsets Noise+SC Noises ImProc RS Blur Compr Noises RS RS2

Distortions # All 1–7,19 1,2,
4–7,19 8–11,21 1–11,19,21 1–3 9,10 11–15 1–3,9–15 1,9–15

5 metrics

SISBLIM_WFB 0.8233 0.1272 0.2102 0.6823 0.3789 0.8625 0.7083 0.5265 0.6590 0.6204
IL-NIQE 0.8537 0.6763 0.6092 0.7770 0.7221 0.8766 0.7916 0.6207 0.7794 0.7474
HOSA 0.9430 0.3693 0.5469 0.7987 0.5690 0.8846 0.8545 0.3206 0.6540 0.5886

CORNIA 0.9550 0.0978 0.1253 0.8771 0.4735 0.8908 0.8438 0.3628 0.6623 0.5884
MSGF 0.9166 0.1851 0.3399 0.4845 0.3085 0.8107 0.8214 0.2552 0.4840 0.4020

NN metric 0.8921 0.7880 0.7641 0.8459 0.8208 0.8492 0.7742 0.4502 0.7135 0.6750

10 metrics

MLV 0.2326 0.1162 0.1588 0.5124 0.1755 0.8489 0.2757 0.2213 0.4017 0.2799
SISBLIM_WFB 0.8233 0.1272 0.2102 0.6823 0.3789 0.8625 0.7083 0.5265 0.6590 0.6204

TCLT 0.9950 0.0395 0.1487 0.7099 0.3151 0.7683 0.7086 0.1131 0.4622 0.3941
IL-NIQE 0.8537 0.6763 0.6092 0.7770 0.7221 0.8766 0.7916 0.6207 0.7794 0.7474
HOSA 0.9430 0.3693 0.5469 0.7987 0.5690 0.8846 0.8545 0.3206 0.6540 0.5886

CORNIA 0.9550 0.0978 0.1253 0.8771 0.4735 0.8908 0.8438 0.3628 0.6623 0.5884
MSGF 0.9166 0.1851 0.3399 0.4845 0.3085 0.8107 0.8214 0.2552 0.4840 0.4020

PSI 0.1638 0.3090 0.4925 0.3596 0.0105 0.8771 0.1072 0.0839 0.2445 0.0468
NMC 0.3607 0.2344 0.2865 0.3606 0.0485 0.6812 0.3087 0.0906 0.2171 0.0520
BLUR 0.3361 0.4312 0.6477 0.3554 0.0393 0.8510 0.2328 0.2521 0.1965 0.0205

NN metric 0.8342 0.8484 0.8362 0.9051 0.8813 0.8954 0.8203 0.6217 0.7964 0.7648
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(f) combined NN-based metric using 5 inputs.

4. Discussion

The visual analysis of scatter plots presented in Figure 2c,d shows one important
benefit of the NN-based combined metrics. The dependence of the metric on MOS values is
practically linear and this produces high SROCC and PLCC, simultaneously. This is caused
by the fact that MOS values have been used as the target function in the NN training. For
the designed CM+

5 metric based on the weighted sum (Figure 2b) the dependence is not
linear and, due to this, PLCC can be sufficiently smaller than SROCC. Meanwhile, this
drawback can be easily removed by an appropriate fitting made after the calculation of
CM+ and optimization of its coefficients.

For some of the CM and CM+ metrics, particularly based on the combination of
a relatively small number of elementary metrics, the optimization of their coefficients
according to the maximization of Spearman’s correlation, has led to very low values of
Pearson’s correlation and high nonlinearity of the relation between them and MOS values.
One of the possible approaches to avoid this problem is the choice of the PLCC as the goal
function, similarly as in some earlier papers [29,30], however, in this case, smaller SROCC
values may be achieved.

Although for 5 elementary metrics better SROCC results may be obtained using the
weighted sum, even in comparison with the NN-based approach, the advantages of the
neural networks may be observed when more elementary metrics are used as inputs, as
illustrated in Figure 3.

The choice of elementary metrics made by the Lasso algorithm during the NN-based
design differs from the “best” combinations used in the CM and CM+ metrics. Comparing
the case of five elementary metrics, the following metrics have been selected by the Lasso:
SISBLIM_WFB, IL-NIQE, HOSA, CORNIA, and MSGF, whereas the highest SROCC value
for the CM+

5 metric has been obtained for the combination of ARISMC, IL-NIQE, CORNIA,
WNJE, and QAC as presented in Table 5. Interestingly, only two of the metrics selected in
these two cases are the same.

As shown in Table 8, for 10 elementary metrics, the performance of the NN-based
metric is the best for 4 out of 5 subsets of the KADID-10k database and close to the best in
the remaining case. Thus, in general, although optimized for the database TID2013, the
performance of the designed NN-based metrics is appropriately good for other databases.

The results presented in the paper confirm the usefulness of the various combination
methods of elementary no-reference image quality metrics for the evaluation of images
subject to distortions typical for RS images. Nevertheless, considering the results obtained
for the whole TID2013 database, further experiments would be necessary to improve the
correlation of such metrics with subjective quality scores as well as for the enhancement of
the universality of the combined NR metrics. A design of such metrics sensitive to various
types of distortions should be one of the natural directions of further research.
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