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Abstract: An area of growing interest in wheat-breeding programs for abiotic stresses is the accurate
and expeditious phenotyping of large genotype collections using nondestructive hyperspectral
sensing tools. The main goal of this study was to use data from canopy spectral signatures (CSS)
in the full-spectrum range (400–2500 nm) to estimate and predict the plant biomass dry weight at
booting (BDW-BT) and anthesis (BDW-AN) growth stages, and biological yield (BY) of 64 spring
wheat germplasms exposed to 150 mM NaCl using 13 spectral reflectance indices (SRIs, consisting of
seven vegetation-related SRIs and six water-related SRIs) and partial least squares regression (PLSR).
SRI and PLSR performance in estimating plant traits was evaluated during two years at BT, AN, and
early milk grain (EMG) growth stages. Results showed significant genotypic differences between the
three traits and SRIs, with highly significant two-way and three-way interactions between genotypes,
years, and growth stages for all SRIs. Genotypic differences in CSS and the relationships between
the three traits and a single wavelength over the full-spectrum range depended on the growth stage.
Water-related SRIs were more strongly correlated with the three traits compared with vegetation-
related SRIs at the BT stage; the opposite was found at the EMG stage. Both types of SRIs exhibited
comparable associations with the three traits at the AN stage. Principal component analysis indicated
that it is possible to assess plant biomass variations at an early stage (BT) through published and
modified SRIs. SRIs coupled with PLSR models at the BT stage exhibited good prediction capacity of
BDW-BT (57%), BDW-AN (82%), and BY (55%). Overall, results demonstrated that the integration of
SRIs and multivariate models may present a feasible tool for plant breeders to increase the efficiency
of the evaluation process and to improve the genetics for salt tolerance in wheat-breeding programs.

Keywords: biological yield; booting stage; partial least squares regression; plant dry weight; principal
component analysis; vegetation-related SRIs; water-related SRIs

1. Introduction

Wheat (Triticum aestivum L.) is one of the most important cultivated cereal crops
around the world and plays a crucial role in global food security. It ranks first and sec-
ond globally among cereal crops in terms of acreage (215.9 million ha) and production
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(765.76 million tons), respectively [1]. It occupies a central place in human nutrition, pro-
viding approximately 18% of the global human intake of food calories and 20% of the daily
protein intake [1]. Furthermore, approximately 80 million farmers in low-income countries
rely on wheat for their livelihoods [2]. Most importantly, by the year 2050, the current
global wheat production will need to increase by up to 60% (a 1.7% per-year increase) to
meet the projected demand from the rising population, which will number over 9 billion [3].
Unfortunately, wheat production is constrained by a number of environmental abiotic
stresses, especially salinity and drought, which are the major constraints to crop production
in arid and semiarid regions. Salinity, in particular, influences more than 6% of the world’s
total land area, including 30% of irrigated land and 20% of arable land. Additionally,
approximately 1.5 Mha of arable land is degraded annually by salt accumulation, with
the main cause being the improper application of several agricultural activities including
intensive agriculture and heavy application of fertilizers [4–6]. If the degradation of arable
land continues at this rate, soil salinization will lead to the degradation of an estimated
50% of the world’s agricultural land by 2050 [7]. Furthermore, salinization of agricultural
soil causes approximately 50% of potential yield losses and up to $27.5 billion of economic
losses annually [8]. Therefore, recovering the agricultural potential of degraded saline
soils is vitally important to ensure global food security and improve farmers’ livelihoods
in arid and semiarid regions. Common agronomic practices to reduce the deleterious
effects of salinity stress on crop growth and productivity include the addition of mineral
gypsum and organic amendments into the soil, use of effective leaching and drainage
schemes, and treatment of plants and seeds with hormones, growth regulators, and nu-
trient nanoparticles [9–11]. However, these approaches require particular skills in their
application. Therefore, improving the salt tolerance of genotypes through different breed-
ing techniques is generally seen as an integrated approach with agronomic practices to
sustain crop production and harvest reasonable yields under salinity conditions, as well as
reducing reliance on the costlier agronomic practices [5,12–14]. Although many efforts have
been made during the past five decades to develop the genotypes salinity tolerance of field
crops, especially wheat, limited salinity-tolerant genotypes have been released through
breeding programs. The lack of easy screening methodologies necessary for the in-depth
multidimensional assessment of phenotypic traits associated with salinity tolerance and
the lack of assessment methods for the salt tolerance of a large number of genotypes at
different growth stages, locations, and years remain a major challenge for plant breeders to
accelerate wheat breeding for salinity tolerance [15–20].

The potential yield of a crop through different growth stages and under normal or
stress conditions is controlled by three main integrative processes: (1) the interception
of incident sunlight radiation by the canopy, (2) the conversion of this intercepted light
into biomass, and (3) the biomass allocation patterns between plant organs or harvest
index (HI) [21,22]. Generally, overall crop biomass is closely associated with the first two
processes, which depend on the photosynthetic area and overall photosynthetic efficiency
of the canopy [21]. Furthermore, because it may be difficult to achieve further genetic
improvement in grain yield based on HI, further improvement in grain yield may rely
more on increasing plant biomass rather than on HI [23,24]. Therefore, when monitoring
dynamic changes in the salt tolerance trait at different growth stages, the total biomass of a
crop could be used to practically evaluate and elucidate the mechanisms of salt tolerance
of various wheat genotypes. Unfortunately, conventional phenotyping of plant biomass
based on laborious field work and destructive plant sampling makes the evaluation of salt
tolerance of a large number of wheat genotypes at different growth stages cumbersome,
expensive, and time consuming. Therefore, the availability of effective phenotyping tools to
assess several key plant traits for a large number of genotypes in a time- and cost-efficient,
nondestructive manner is necessary to shorten the evaluation process and improve salt
tolerance genetics in wheat-breeding programs [19,25].

Generally, salinity stress causes noticeable changes in several biophysical and bio-
chemical characteristics of plants: photosynthetic efficiency, pigment content, chlorophyll
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fluorescence, ion concentrations, biomass accumulation, vegetative vigor, internal leaf
structures, leaf area index, and plant water status [5,26–29]. Fortunately, these changes
eventually result in unique changes in the characteristics of the spectral signatures that
are reflected from the canopy at certain wavelengths from the three different regions of
the spectrum. For example, Li et al. [30] reported that the canopy spectral reflectance
of Chinese castor bean shifts to a shorter wavelength at indigo blue (420–470 nm) and
red-edge (700–750 nm) regions in response to salt stress. Previous studies related to the
response of spectral signatures to salinity stress showed a decrease in the visible region (VIS,
350–700 nm) and at a peak of 550 nm with increasing salinity levels [23,31,32]. The spectral
reflectance at blue, green (520–580 nm), red (640–680 nm), red-edge, and near-infrared
(NIR, 350–700 nm) regions were also found to be sensitive to salt stress in different field
crops [13,33–35]. Zhang et al. [15] also found that the spectral reflectance of cotton at the
NIR and shortwave-infrared (SWIR, 1300–2500 nm) regions showed obvious differences
between five salinity levels, and these differences were most obvious in three spectrum
regions: (1) 920 to 1120 nm, (2) 1650 to 1850 nm, and (3) 2000 to 2400 nm. Consequently,
these close associations between plant characteristics and spectral reflectance of the canopy
at these three spectrum regions indicate that the high-throughput phenotyping technique
(HTPT) is a promising salt-response screening tool that can be incorporated in plant breed-
ing. Currently, the feasibility of using HTPT to evaluate several genotypes under normal
and varying abiotic stresses, particularly drought stress, was reported in different field
crops [19,36–39]. However, few studies have tried to identify salt tolerance in wheat geno-
types using HTPT. Additionally, almost all of these studies reported the spectral evaluation
of a relatively small number of genotypes, leaving a substantial field to be explored by
researchers addressing the use of HTPT to evaluate a large number of genotypes.

Generally, HTPT data have often been exploited as an indirect screening tool after
they are used to establish specific spectral reflectance indices (SRIs). These SRIs are usually
obtained by incorporating two or three spectral bands in simple mathematical formulas.
Importantly, the majority of the published SRIs are usually developed on the basis of
their relationships with various plant traits. Therefore, several SRIs have been widely
applied to rapidly and nondestructively assess several plant traits under either control or
stress conditions [15,19,39–46]. For example, the normalized difference vegetation index
(NDVI), photochemical reflectance index, water index (WI), and normalized difference
water index (NDWI) were each found to be sensitive to salinity stress. Therefore, they are
widely applied to delineate the negative impacts of salinity stress on plant growth and
production in different crops [15,19,20,31,35,47–49]. Rud et al. [34] reported a possibility of
providing an early warning of salinity effects on the growth of eggplant and cauliflower
plants through seven SRIs that are concentrated mainly in the green, red, and NIR regions.
Hackl et al. [50] estimated the genotypic differences in shoot fresh wheat between two
spring wheat genotypes under salinity stress using the NDVI and simple ratio indices:
R780/R550 and R760/R670. However, the use of SRIs as simple and rapid tools for genotype
evaluation in a breeding program requires identification of the plant growth stage in which
the maximum genotypic differences appear. Because several factors have been found to
affect canopy spectral reflectance signatures, and some SRIs may be more effective under
certain conditions but are not suitable under other conditions, it is necessary to test the
performance of published SRIs with different crops, abiotic stresses, and locations. The
need to further validate the published SRIs for phenotyping the plant traits related to the
salinity tolerance of genotypes remains.

Because most SRIs include only two to three wavelengths, they tend to perform poorly
at early growth stages, particularly vegetation-related-SRIs. Poor performance may also
be due to the saturation problems that are observed with a high leaf area index, above-
ground biomass, and chlorophyll content [39,51]. Additionally, the performance of SRIs in
the estimation of traits is influenced by their limited wavelengths when measured across
various growth conditions [44,49]. Most SRIs exhibit substantial multicollinearity among
themselves because they are formulated from broad wavelengths with similar reflectance
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and absorption behaviors exhibited by the plant canopy. Therefore, it is difficult to deter-
mine which index provides the best performance [39]. To overcome these problems, several
studies have integrated the information given by each index separately by combining them
together into one model using multivariate models to provide more information than an
individual index. In recent literature, partial least squares regression (PLSR), the most
common multivariate method used in spectral studies, has been combined with different
SRIs to provide an important approach for better predictions of target traits compared with
standalone SRIs. For instance, Hansen et al. [52] found that coupling two-band SRIs with
a PLSR model estimated the biomass of wheat satisfactorily (R2 = 0.89). Ferrio et al. [53]
mentioned that the prediction of the grain yield of durum wheat under normal conditions
was generally stronger when based on PLSR models than when based on previously as-
sayed SRIs. Elsayed et al. [54] also reported that SRIs coupled with PLSR increased the
accuracy of predictions of wheat grain yield under drought conditions. Other studies
have reported that SRIs coupled with other multivariate models, such as artificial neural
network and support vector regression, exhibited better performance for predicting the
biomass of wheat and maize at different growth stages [55,56]. These articles show that the
predictions for plant biophysical traits could be significantly improved by coupling SRIs
with an appropriate multivariate model.

Owing to the limited available knowledge on the use of hyperspectral reflectance
data for characterizing the impacts of salinity stress on plant biomass of a large number of
advanced spring wheat genotypes at various phenological stages under field conditions,
this investigation was undertaken with the following objectives: (1) to evaluate the potential
of full-spectrum range (350–2500 nm) wavelengths to accurately detect genotypic variation
in plant biomass at different growth stages, (2) to investigate the performance of published
and modified vegetation- and water-related SRIs in estimating plant biomass at each
distinct growth stage and across all stages, (3) to evaluate the performance of SRIs coupled
with the PLSR model in predicting plant biomass at each distinct growth stage and across
all stages, and (4) to identify the most effective combination of SRIs and PLSR models for
early detection of genotypic variation in plant biomass.

2. Materials and Methods
2.1. Plant Materials

The field experiment was conducted in a randomized complete block design with
three replications. To generate a wide range of genetic variability in salt tolerance, the
experiment included 56 recombinant inbred lines (RILs) of spring wheat, which were
developed from the following genetic crosses: between the salt-tolerant genotype Sakha
93 and moderately salt-tolerant genotype Sids 1 (28 RILs), between Sakha 93 and the salt-
sensitive genotype Sakha 61 (28 RILs), in addition to five commercial cultivars (Kharchia
65, Misr-1, Shandawel-1, Gemiza-9, and Kawz). These commercial cultivars demonstrated
differences in their salt tolerance based on their previous evaluations for salinity tolerance
at different growth stages using various agronomic and physiological traits [57–59]. All
plant material was evaluated under high-salinity levels (150 mM NaCl) during two growing
seasons, from 2019 to 2020 and from 2020 to 2021, at the Dierab Research Station of King
Saud University in the middle of Saudi Arabia (24◦25′ N, 46◦34′ E; elevation, 400 m)
(Figure 1). At the research station and during the wheat growing season, which is about
150 days, the mean temperature and rainfall ranged from 12.9 ◦C to 32.2 ◦C and from
4.0 to 20.0 mm, respectively. Soil texture was sandy loam with electrical conductivity of
1.12 dS m−1, pH of 7.85, organic matter of 0.46%, bulk density of 1.48 g cm−3, field capacity
of 0.101 m3 m−3, and water-holding capacity of 0.066 m3 m−3 [60].
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Figure 1. A location map of the experimental field (1) and canopy spectral reflectance measurements (2).

The seeds of each genotype were sown on 25 November 2019, and 17 November
2020 in five 1.5 m-long rows spaced 0.2 m apart (1.5 m2 in the total area) and at a seeding
rate of 15 g m−2. All genotypes were fertilized with a nitrogen–potassium–phosphorus
(NPK) fertilizer at a rate of 150, 120, and 100 kg ha−1, respectively. The entire amount of
phosphorus (as calcium superphosphate, 18.5% P2O5) and 50 kg ha−1 of each nitrogen (as
ammonium nitrate, 33.5 N) and potassium (as potassium chloride, 50% K2O) were applied
before sowing. The plants were fertilized again with 50 kg ha−1 of nitrogen at the late
tillering growth stage (Zadoks scale, ZS 28) and with 50 kg ha−1 of nitrogen and potassium
at the late booting growth stage (Zadoks scale, ZS 47). The phenology growth stages were
defined based on the scale created by Zadoks et al. [61]. Weeds were removed manually,
whereas pests and diseases were chemically treated when necessary.

Each genotype was irrigated with fresh water for the first three weeks after sow-
ing to avoid the negative impacts of salinity on germination and seedling establishment.
Thereafter, the genotypes were irrigated with artificial saline water containing 150 mM
NaCl L−1 solution. The genotypes were irrigated with saline water using a low-pressure
surface irrigation system. To deliver saline water from plastic water tanks (5.0 m3) to each
plot, the irrigation system consisted of a main line (76 mm in diameter) that branched off
to the sub-main hoses at each plot and that was equipped with a manual control valve.
Irrigation (frequency and rate) was adjusted according to environmental conditions and
plant phenology. On the basis of this information, the genotypes were irrigated with saline
water 10 times during their growth stages, with the amount of water totaling 4800 m3 ha−1.

2.2. Measurements of Biomass and Biological Yield

At the booting (BT, ZS 49) and anthesis (AN, ZS 65) growth stages, at about 75 and
90 days from sowing, respectively, 10 plants were randomly selected from the second row
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of each plot to determine the biomass dry weight (BDW) per plant at BT(BDW-BT) and AN
(BDW-AN) stages. The leaves, stems, and spikes of 10 plants were separated, and each part
was dried at 70 ◦C for three days and then weighed to obtain the BDW.

At maturity (on 21 April 2020, and 21 April 2021), the plants from the 1 m-long central
two rows of each plot were harvested by hand, air-dried for one week, and weighed to
obtain the total biological yield (BY, ton ha−1).

2.3. Spectroradiometric Data and Processing

The spectral reflectance of the canopy for each genotype was captured at the BT, AN,
and early milk grain (EMG, ZS 73) growth stages using a FieldSpec 4.0 spectroradiometer
(Analytical Spectral Devices (ASD), Malvern Panalytical, Malvern, Worcs, UK), which
can detect reflected light from the canopy in the range between 350 and 2500 nm with
a final spectral interval of 1 nm and spectral resolution ranging between 3 nm below
1000 nm and 10 nm between 1000 and 2500 nm. The spectral reflectance of the canopy
was captured between 11:00 and 15:00 h under clear-sky conditions from two different
places within each plot. The optical sensor of the device, which had a field of view of
25◦, was placed vertically approximately 1.0 m above the canopy to cover an area of
approximately 0.15 m2 (approximately 44 cm in diameter). The final reflectance curve for
each plot was the average of the spectral reflectance of the two different places with 10 scans
for each. A white polytetrafluoroethylene (PTFE) barium sulfate panel (BaSO4, Spectralon,
Labsphere, ASD), which provides a reflectance value of 95–99% over a full spectrum range
(350–2500 nm), was used to calibrate the spectral reflectance measurements and to account
for any changes in sun irradiance and atmospheric conditions. These calibrations were
made on each of the two plots. The spectral reflectance regions between 1830–1940 and
2445–2500 nm were removed from the final reflectance curve and analysis because of
high noise levels. The spectral reflectance data in the full-spectrum range (350–2500 nm)
were used to test the relationship between spectral reflectance at a single wavelength in
the full-spectrum range and target traits. These spectral reflectance data were also used
to calculate 13 published and modified SRIs. According to El-Hendawy et al. [19], the
modified SRIs were constructed in this study by replacing one or two wavelengths from
published SRIs with new wavelengths, but these new wavelengths were still close to those
of the published SRIs. The names of these SRIs and their abbreviations and equations
are listed in Table 1. To make the data processing easier to understand, Figure 2 shows a
general flowchart of the methodology proposed for indirectly estimating the plant biomass
at different phenological stages.

Table 1. The full name, abbreviation, and equation of published (P) and modified (M) spectral
reflectance indices (SRIs) used in this study.

Name and Abbreviation of SRIs Equation References

Vegetation-SRIs
Blue normalized difference vegetation index (BNDVI-P) (R1245 − R415)/(R1245 + R415) [62]
Blue normalized difference vegetation index (BNDVI-M) (R1640 − R415)/(R1640 + R415) This study

Green normalized difference vegetation index (GNDVI-P) (R1245 − R550)/(R1245 + R550) [62]
Green normalized difference vegetation index (GNDVI-M) (R1640 − R550)/(R1640 + R550) This study

Red normalized difference vegetation index (RNDVI-P) (R1245 − R680)/(R1245 + R680) [62]
Red normalized difference vegetation index (RNDVI-M) (R1640 − R680)/(R1640 + R680) This study

Red-edge normalized difference vegetation index (RENDVI-P) (R1100 − R715)/(R1100 + R715) [62]

Water-SRIs
Water index (WI-M) (R860/R1640) This study

Normalized water index -1 (NWI-1-P) (R970 − R850)/(R970 + R850) [63]
Normalized difference water index (NDWI-P) (R860 − R1640)/(R860 + R1640) [64]

Normalized difference moisture index (NDMI-P) (R2200 − R1100)/(R2200 + R1100) [65]
Normalized difference moisture index (NDWI-M1) (R669 − R1300)/(R669 + R1300) This study

Normalized difference water index (NDWI-M2) (R737 − R1360)/(R737 + R1360) This study
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Figure 2. Flowchart showing a general overview of the methodology proposed for indirectly estimat-
ing the plant biomass at different phenological stages.

2.4. Data Analysis

The traits and SRI data were analyzed according to a randomized complete block
design using the Proc Mixed procedure in SAS software (v9.4, SAS Institute, Inc., Cary,
NC, USA). Data were analyzed in each growing year and growth stage, and in combined
years and growth stages. Mean squares of combined analyses were obtained using the
Proc Mixed procedure following the TYPE1 method. Pearson’s correlation coefficients
(r) were used to test the relationships of plant traits with individual wavelengths in the
full-spectrum range and different SRIs at each growth stage and across different growth
stages. Principal component analysis (PCA) was conducted to detect the interrelationships
between plant traits and all SRIs at each growth stage and across all stages using data
from all genotypes over two years. PLSR combined with leave-one-out cross-validation
was applied to relate plant traits with all SRIs. The prediction accuracy of the PLSR was
evaluated by selecting the optimal number of latent factors (ONLVs). The best ONLVs
were those yielding the smallest root mean squared error (RMSE) and largest coefficient
of determination (R2). Correlation, PCA, and PLSR analyses were conducted using the
XLSTAT statistical package (v2020.1, Excel Add-ins soft, SARL, New York, NY, USA).

3. Results
3.1. Genotypic Variations for Biomass and Biological Yield

Figure S1 displays summary statistical information (the mean, minimum, maximum,
analysis of variance (ANOVA), and frequency distribution) of BDW measured at BT (BDW-
BT) and AN (BDW-AN) growth stage and BY of 64 wheat genotypes irrigated with a
saline water contain 150 mM NaCl. As shown in Supplementary Figure S1, the values of
BDW-BT, BDW-AN, and BY across all genotypes ranged between 2.49 and 5.48 g plant−1,
3.49 and 6.83 g plant−1, and 8.90 and 15.41 ton ha−1 in the first year, with average values
of 4.19 g plant−1, 5.27 g plant−1, and 12.58 ton ha−1, respectively. In the second year,
the BDW-BT, BDW-AN, and BY values ranged between 2.40 and 5.30 g plant−1, 3.93
and 7.76 g plant−1, and 9.13 and 17.88 ton ha−1, with average values of 4.15 g plant−1,
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5.41 g plant−1, and 13.81 ton ha−1, respectively. Additionally, the histogram of frequency
distribution showed that the three traits were normally distributed in both years. Further-
more, mean squares from the combined ANOVA revealed highly significant differences
(p < 0.0001) among genotypes for the three traits, whereas the difference between the years
was significant (p < 0.05) for BY only. The interaction effect between genotype and year
was significant (p < 0.05) and highly significant (p < 0.0001) for BDW-BT and BDW-AN,
respectively (Figure S1).

3.2. Analysis of Canopy Spectral Reflectance across Genotypes and Relationship with Biomass and
Biological Yield at Different Growth Stages

Figure 3 displays the minimum, maximum, and standard deviations of canopy spectral
reflectance in the full range of the spectrum (350–2500 nm) across all genotypes at BT, AN,
and EMG stages. Overall, the shape of the spectral reflectance curves in Figure 3 shows
that there are obvious differences between the minimum and maximum values of spectral
reflectance across all genotypes at the three main regions of the spectrum (VIS, NIR, and
SWIR) at each growth stage. In the VIS region, the differences between the minimum and
maximum values of the spectral reflectance curve were large at the EMG stage. Compared
to the other two stages, the green peak (approximately 550 nm) at the EMG stage was
expanded and distorted for the curve of the maximum values (Figure 3). The differences
between the minimum and maximum values of the spectral reflectance curve in the NIR
region were large at the three stages, except at the BT stage in the first year. The differences
between the minimum and maximum values of the spectral reflectance curve in the SWIR
region showed very similar patterns at the three stages, except the BT stage in the first year,
which indicated obvious differences between the minimum and maximum values in this
region (Figure 3).

The results in Figure 3 also revealed that the spectral reflectance at the EMG stage
presented higher standard deviations in the VIS and SWIR regions, compared to the other
two stages, except the BT stage in the first year, which also presented a high value of
standard deviations in the SWIR region. However, the high value for standard deviations
of spectral reflectance in the NIR region was observed at the AN stage, as compared with
the other two stages (Figure 3).

The Pearson’s correlation coefficient (r) between spectral reflectance at a single wave-
length in the three regions of the spectrum and the three traits at the three growth stages are
shown in Figure 4. In general, the results showed that the wavelengths in the VIS region
were negatively correlated with the three traits at the three growth stages in both years,
whereas the whole wavelength in the NIR region was positively correlated with the same
traits at the AN and EMG stages. At the BT stage, the red-edge region (700–750 nm) and
wavelengths between 1150–1300 nm in the NIR region exhibited a negative correlation
with the three traits, and a positive correlation was expressed in the wavelength region
between 750–1150 nm (Figure 4). The signs of r between the SWIR wavelengths and three
traits depended on the growth stage: r was negative at the BT and AN stages, whereas
it was positive at the EMG stage (Figure 4). Additionally, the wavelengths in the three
regions of the spectrum showed a higher correlation with the BDW-AN trait than those
of the BDW-BT and BY traits at the BT and AN stages, and they were best correlated with
the BY trait, followed by the BDW-AN trait, at the EMG stage (Figure 4). The wavelengths
in the VIS region showed no significant correlation with any trait at the BT stage, and
they showed weak to strongly significant correlations (r ranged from −0.25 to −0.80) with
all traits at the AN and EMG stages. The wavelengths in the NIR region had a weak to
strong positive correlation (r ranged from 0.25 to 0.82) with the three traits at the AN and
EMG stages, and the red-edge band was the only wavelength range in the NIR region that
exhibited a weak to strong negative correlations (r ranged from −0.30 to −0.75) with the
three traits at the BT stage (Figure 4). At the BT stage, the wavelengths in the SWIR region
exhibit a weak to strong correlation (r ranged from −0.30 to −0.75) with the three traits in
both years, and the correlation depended on the traits and year in the AN and EMG stages.
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In the first year, most wavelengths in the SWIR region were only moderately correlated
with the BDW-AN trait at the AN stage and the BY trait at the EMG stage. In the second
year, these wavelengths exhibited a moderate correlation with only the BDW-AN trait at
the AN stage and three traits at the EMG stage (Figure 4).

Figure 3. Summary statistical information (minimum, maximum, and standard deviations) of canopy
spectral reflectance in the full range of the spectrum (350–2500 nm) across 64 wheat genotypes grown
in 150 mM NaCl at three different growth stages.
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Figure 4. Correlation coefficients of spectral reflectance at single wavelength in the full range of
the spectrum (350–2500 nm) and measured at the booting, anthesis, and the early milk-grain stages
with plant dry weight measured at booting (BDW-BT) and anthesis (BDW-AN) growth stages and
biological yield (BY) across 64 wheat genotypes grown in 150 mM NaCl for two years.

3.3. Genotypic Variations for Spectral Reflectance Indices and Their Relationship with Biomass and
Biological Yield

Tables 2 and 3 display summary statistical information (ANOVA analysis, minimum,
maximum, mean, LSD, and significant level of F-test) for different vegetation- and water-
related SRIs calculated at different growth stages. Mean squares from the ANOVA analysis
combined over years and growth stages revealed that year, growth stage, and genotype
main effects were highly significant (p < 0.001 and 0.0001) for all SRIs, except the published
green normalized difference vegetation index (GNDVI-P), for which the year effect was not
significant. The two-way (growth stage × year, genotype × year, and genotype × growth
stage) and three-way (genotype× growth stage× year) interactions were highly significant
for all SRIs (Table 2).
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Table 2. Mean squares and degrees of freedom (df)for the effects of year (Y), growth stage (GS), geno-
types (G), and their possible interaction by ANOVA on different spectral reflectance indices (SRIs).

Effect Y GS GS × Y G G × Y G × GS G × GS × Y

dF 1 2 2 63 63 126 126

Vegetation-SRIs
BNDVI-P 0.0114 ** 0.0817 *** 0.0731 *** 0.0120 *** 0.0032 *** 0.0066 *** 0.0034 ***
BNDVI-M 0.1969 ** 0.0366 *** 0.2666 *** 0.0160 *** 0.0103 *** 0.0202 *** 0.0104 ***
GNDVI-P 0.0011 ns 1.9338 *** 0.0500 *** 0.0578 *** 0.0120 *** 0.0305 *** 0.0123 ***
GNDVI-M 0.2608 ** 2.0079 *** 0.1929 *** 0.0530 *** 0.0294 *** 0.0596 *** 0.0293 ***
RNDVI-P 0.8169 ** 5.6678 *** 0.2006 *** 0.0922 *** 0.0148 *** 0.0524 *** 0.0164 ***
RNDVI-M 1.1368 * 8.8531 *** 0.3262 *** 0.1073 *** 0.0365 *** 0.1005 *** 0.0348 ***
RENDVI-P 0.1400 ** 4.6975 *** 0.0295 ** 0.0130 *** 0.0102 *** 0.0143 *** 0.0097 ***

Water-SRIs
WI-M 68.3056 ** 34.2353 *** 16.7869 *** 1.8441 *** 0.3190 *** 0.7575 *** 0.6815 ***

NWI-1-P 0.1229 ** 0.0291 *** 0.0390 *** 0.0016 *** 0.0007 *** 0.0007 *** 0.0008 ***
NDWI-P 1.3212 *** 0.6691 *** 0.3359 *** 0.0471 *** 0.0103 *** 0.0183 *** 0.0172 ***
NDMI-P 0.9310 ** 0.3763 *** 0.2314 *** 0.0295 *** 0.0119 *** 0.0143 *** 0.0141 ***

NDWI-M1 0.7614 ** 5.4684 *** 0.1913 *** 0.0896 *** 0.0149 *** 0.0516 *** 0.0161 ***
NDWI-M2 0.7219 ** 0.1230 *** 0.4228 *** 0.0354 *** 0.0072 *** 0.0194 *** 0.0133 ***

*, **, ***: indicate significance at p ≤ 0.05, 0.01, and 0.001, respectively, and ns indicate not significant. The full
names of the abbreviations SRIs are listed in Table 1.

The results in Table 3 also revealed a wide range between the minimum and maximum
values among genotypes for all SRIs at the three stages. For nearly all SRIs, the maximum
values were two to four times higher than the minimum values. Additionally, the values of
all vegetation-related SRIs and two indices from water-related SRIs (the modified water
index (WI-M) and published normalized difference water index (NDWI-P) showed a
continuous decrease from the BT to the EMG stage. By contrast, the values of other
water-related SRIs increased from the BT to the EMG stage (Table 3).

The relationships between SRIs and the three traits at each growth stage, across three
growth stages for each year, and across two years are presented in Table 4.

Table 3. Statistical parameters (minimum (Min), maximum (Max), mean values, mean standard error
(MSE), and LSD) for different spectral reflectance indices (SRIs) at each growth stage and combined
all stages across 64 wheat genotypes grown in 150 mM NaCl.

SRIs
Booting Stage Anthesis Stage

Min Max Mean MSE LSD Min Max Mean MSE LSD

BNDVI-P 0.768 0.917 0.864 0.003 0.047 *** 0.720 0.931 0.857 0.005 0.026 ***
BNDVI-M 0.551 0.838 0.740 0.007 0.092 *** 0.601 0.832 0.740 0.005 0.059 ***
GNDVI-P 0.547 0.810 0.705 0.006 0.084 *** 0.458 0.828 0.676 0.010 0.047 ***
GNDVI-M 0.219 0.651 0.478 0.011 0.140 *** 0.257 0.609 0.456 0.008 0.089 ***
RNDVI-P 0.584 0.891 0.806 0.007 0.077 *** 0.551 0.890 0.745 0.011 0.051 ***
RNDVI-M 0.254 0.797 0.641 0.012 0.130 *** 0.315 0.730 0.563 0.011 0.085 ***
RENDVI-P 0.453 0.662 0.587 0.006 0.056 *** 0.474 0.639 0.555 0.005 0.040 ***

WI-M 1.626 3.515 2.812 0.049 0.542 *** 1.480 3.940 2.644 0.070 0.590 ***
NWI-1-P −0.086 −0.022 −0.063 0.002 0.015 *** −0.075 −0.007 −0.056 0.002 0.012 ***
NDWI-P 0.238 0.557 0.466 0.008 0.078 *** 0.193 0.595 0.436 0.011 0.071 ***
NDMI-P −0.799 −0.487 −0.712 0.007 0.074 *** −0.809 −0.531 −0.696 0.008 0.058 ***

NDWI-M1 −0.890 −0.580 −0.803 0.007 0.078 *** −0.890 −0.553 −0.744 0.011 0.051 ***
NDWI-M2 −0.080 0.117 0.030 0.004 0.060 *** −0.233 0.234 0.053 0.012 0.098 ***
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Table 3. Cont.

Early milk-grain stage Across three stages

Min Max Mean MSE LSD Min Max Mean MSE LSD

BNDVI-P 0.701 0.919 0.834 0.005 0.025 *** 0.792 0.904 0.853 0.003 0.020 ***
BNDVI-M 0.496 0.853 0.721 0.009 0.043 *** 0.649 0.807 0.736 0.004 0.039 ***
GNDVI-P 0.266 0.773 0.569 0.013 0.056 *** 0.512 0.768 0.649 0.007 0.037 ***
GNDVI-M −0.051 0.623 0.343 0.016 0.077 *** 0.257 0.568 0.422 0.007 0.061 ***
RNDVI-P 0.196 0.837 0.570 0.019 0.070 *** 0.480 0.852 0.700 0.009 0.038 ***
RNDVI-M −0.079 0.737 0.351 0.024 0.091 *** 0.289 0.712 0.499 0.011 0.060 ***
RENDVI-P 0.275 0.527 0.379 0.007 0.036 *** 0.423 0.568 0.500 0.003 0.026 ***

WI-M 1.551 2.969 2.252 0.032 0.222 *** 1.798 3.142 2.521 0.037 0.276 ***
NWI-1-P −0.077 −0.001 −0.044 0.001 0.010 *** −0.074 −0.028 −0.055 0.001 0.007 ***
NDWI-P 0.216 0.496 0.381 0.006 0.043 *** 0.285 0.517 0.427 0.006 0.038 ***
NDMI-P −0.766 −0.511 −0.650 0.006 0.510 *** −0.761 −0.551 −0.685 0.005 0.036 ***

NDWI-M1 −0.838 −0.205 −0.572 0.019 0.069 *** −0.851 −0.482 −0.700 0.009 0.038 ***
NDWI-M2 −0.050 0.176 0.061 0.005 0.040 *** −0.064 0.136 0.048 0.005 0.041 ***

***: indicate significance at p ≤ 0.001. The full names of the abbreviations SRIs are listed in Table 1.

Table 4. Correlation coefficients for the relationships between different vegetative- and water-SRIs
and plant dry weight measured at booting (BDW-BT) and anthesis (BDW-AN) growth stage and
biological yield (BY) across 64 wheat genotypes grown in 150 mM NaCl at each growth stage and
across three stages for each year and across two years (com.).

SRIs

Booting Stage Across
StagesBDW-BT BDW-AN BY

1st Year 2nd Year Com. 1st Year 2nd Year Com. 1st Year 2nd Year Com. BDW-BT

BNDVI-P −0.04 −0.14 −0.09 −0.19 −0.07 −0.14 −0.13 −0.03 −0.14 0.61
BNDVI-M −0.24 −0.23 −0.29 −0.43 −0.16 −0.39 −0.31 −0.13 −0.35 0.44
GNDVI-P −0.03 −0.13 −0.10 −0.16 −0.09 −0.14 −0.10 −0.06 −0.14 0.61
GNDVI-M −0.24 −0.22 −0.31 −0.40 −0.18 −0.40 −0.30 −0.15 −0.36 0.48
RNDVI-P 0.02 −0.11 −0.03 −0.11 −0.09 −0.11 −0.06 −0.02 −0.08 0.65
RNDVI-M −0.11 −0.18 −0.18 −0.26 −0.17 −0.30 −0.17 −0.10 −0.24 0.60
RENDVI-P 0.60 0.62 0.71 0.77 0.75 0.88 0.65 0.60 0.71 0.39

WI-M 0.63 0.46 0.65 0.77 0.51 0.82 0.57 0.52 0.68 0.60
NWI-1-P −0.64 −0.45 −0.64 −0.74 −0.53 −0.79 −0.56 −0.51 −0.66 −0.57
NDWI-P 0.61 0.42 0.62 0.75 0.48 0.80 0.57 0.52 0.68 0.60
NDMI-P −0.63 −0.47 −0.66 −0.75 −0.66 −0.83 −0.60 −0.54 −0.68 −0.52

NDWI-M1 −0.01 0.12 0.04 0.12 0.10 0.13 0.07 0.03 0.09 −0.65
NDWI-M2 0.49 −0.02 0.35 0.62 0.03 0.48 0.46 0.03 0.43 0.55

Anthesis Stage BDW-AN

BNDVI-P 0.63 0.43 0.65 0.74 0.69 0.83 0.50 0.45 0.54 0.77
BNDVI-M 0.52 0.26 0.55 0.46 0.48 0.58 0.30 0.30 0.38 0.52
GNDVI-P 0.67 0.46 0.67 0.83 0.71 0.88 0.53 0.46 0.55 0.80
GNDVI-M 0.60 0.35 0.65 0.62 0.58 0.75 0.35 0.36 0.45 0.60
RNDVI-P 0.61 0.46 0.65 0.80 0.72 0.88 0.50 0.42 0.55 0.82
RNDVI-M 0.57 0.41 0.64 0.65 0.69 0.80 0.38 0.35 0.46 0.74
RENDVI-P 0.27 0.06 0.12 0.45 0.36 0.34 0.08 0.13 0.19 0.53

WI-M 0.46 0.40 0.51 0.76 0.73 0.84 0.39 0.39 0.47 0.88
NWI-1-P −0.45 −0.13 −0.34 −0.66 −0.43 −0.60 −0.23 −0.15 −0.29 −0.78
NDWI-P 0.47 0.41 0.51 0.78 0.70 0.83 0.41 0.41 0.49 0.86
NDMI-P −0.40 −0.30 −0.40 −0.66 −0.53 −0.68 −0.32 −0.22 −0.34 −0.76

NDWI-M1 −0.62 −0.46 −0.65 −0.79 −0.72 −0.88 −0.51 −0.42 −0.55 −0.81
NDWI-M2 0.42 0.38 0.50 0.68 0.62 0.76 0.34 0.39 0.42 0.80
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Table 4. Cont.

Early Milk-Grain Stage BY

BNDVI-P 0.36 0.54 0.54 0.54 0.66 0.70 0.61 0.71 0.74 0.65
BNDVI-M 0.26 0.51 0.48 0.43 0.63 0.64 0.54 0.68 0.72 0.52
GNDVI-P 0.34 0.53 0.52 0.53 0.62 0.68 0.63 0.69 0.72 0.66
GNDVI-M 0.24 0.51 0.47 0.43 0.61 0.64 0.56 0.67 0.71 0.56
RNDVI-P 0.41 0.56 0.57 0.56 0.67 0.71 0.65 0.73 0.73 0.71
RNDVI-M 0.34 0.56 0.54 0.51 0.68 0.69 0.63 0.73 0.74 0.68
RENDVI-P 0.09 −0.24 −0.09 −0.04 −0.23 −0.16 −0.17 −0.30 −0.31 0.26

WI-M 0.19 −0.10 0.12 0.23 −0.13 0.16 0.08 −0.08 0.02 0.55
NWI-1-P −0.20 0.04 −0.23 −0.22 0.06 −0.25 −0.26 −0.06 −0.23 −0.55
NDWI-P 0.23 −0.08 0.18 0.25 −0.10 0.20 0.14 −0.03 0.08 0.58
NDMI-P −0.10 0.14 −0.02 −0.12 0.14 −0.07 −0.09 0.09 −0.02 −0.50

NDWI-M1 −0.41 −0.56 −0.57 −0.56 −0.67 −0.71 −0.65 −0.73 −0.74 −0.71
NDWI-M2 0.19 0.06 0.31 0.31 0.07 0.38 0.36 0.21 0.38 0.53

Bold values indicate significant at 0.05, 0.01, 0.001 probability level. The full name of the abbreviation SRIs is
listed in Table 1.

In general, nearly all SRIs exhibited strong correlations with BDW-BT (r > 0.64 or
<−0.64), BDW-AN (r > 0.85 or <−0.81), and BY (r > 0.70 or <−0.70) when data from
two years and different growth stages were combined. In most cases, the correlation
coefficients between SRIs and the three traits for an individual year were lower than the
coefficients using two-year combinations (Table 4). All water-related SRIs, except the
modified normalized difference water index-1 (NDWI-M1) and one index from vegetation-
related SRIs (i.e., the published red-edge normalized difference vegetation index (RENDVI-
P)), provided a moderate to strong correlation with the three traits at the BT stage. The
opposite was true at the EMG stage, whereas nearly all vegetation- and water-related SRIs
exhibited moderate to strong correlations with the three traits at the AN stage (Table 4).

3.4. Principal Component Analysis

PCA was conducted to compare all SRIs and to show which SRIs are close to plant
traits. The results from PCA showed that the first factor (PC1) explained 53.1%, 66.5%,
53.8%, and 69.7% of the total variation whereas the second factor (PC2) explained 30.7%,
11.7%, 28.1%, and 14.1% of the total variation at the BT, AN, EMG, and combined three
growth stages, respectively (Figure 5). At the BT stage, the three measured traits were
grouped together with three water-related SRIs (WI-M, NDWI-P, and NDWI-M2) and one
published vegetation-related SRI (RENDVI-P) in a negative PC1 slope, with an acute angle
between the vectors of three traits and these four SRIs. The three traits were grouped with
the same three water-related SRIs (WI-M, NDWI-P, and NDWI-M2) and all vegetation-
related SRIs with a positive PC1 slope at the AN stage and in the combined three stages,
and in a negative PC1 slope (except RENDVI-P) at the EMG stage, with an acute angle
between the vectors of three traits and these SRIs (Figure 5). At each growth stage and
in the combined three stages, the angle between the vectors of the three traits and other
water-related SRIs was obtuse and straight (Figure 5). In general, an acute angle indicates
a strong positive association between SRIs and the three traits. The opposite is indicated
with obtuse and straight angles.
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Figure 5. Principal component analysis plot for the first two components of plant dry weight
measured at booting (BDW-BT) and anthesis (BDW-AN) growth stage, biological yield (BY), and
different vegetative- and water-SRIs at each growth stage and across three stages. The full names of
the abbreviation SRIs are listed in Table 1.

3.5. Prediction of Biomass and Biological Yield Based on All SRIs Using PLSR Models

Figure 6 shows the relationship between the measured and predicted values of the
BDW-BT, BDW-AN, and BY traits at each growth stage and in the combined three stages
by the PLSR models and based on all SRIs. The optimum number of components was
estimated via cross-validation and selected on the basis of the best PLSR model that gave
high and low values for R2 and RMSE, respectively. The optimum number ranged from
five to nine for the BDW-BT trait, from three to seven for the BDW-AN trait, and from
five to seven for BY when the data were analyzed for each growth stage separately or for
the combined three stages together (Figure 6). For the BDW-BT trait, predictive ability
was good at the BT (R2 = 0.57) and EGM (R2 = 0.55) stages and moderate at the AN stage
(R2 = 0.51) and combined three stages (R2 = 0.48). For the BDW-AN trait, predictive ability
was strongest at the BT, AN, and combined three stages (R2 = 0.79–0.86) and good at the
EGM stage (R2 = 0.59). For BY, predictive ability was strongest at the EMG stage (R2 = 0.61),
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good at the BT stage (R2 = 0.55) and combined three growth stages (R2 = 0.57), and moderate
at the AN stage (R2 = 0.41) (Figure 6).
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Figure 6. One-to-one relationships between the measured and predicted values of plant dry weight
measured at booting (BDW-BT) and anthesis (BDW-AN) growth stage and biological yield (BY)
across 64 wheat genotypes grown in 150 mM NaCl at booting, anthesis, early milk-grain stages, and
combined three stages using PLSR models that based on all SRIs. The R2 cross-validation, root mean
square error (RMSE), and the optimum number of components (comp) for use in each PLSR model
are presented in each graph.
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4. Discussion

Previous studies have reported that whole-plant biomass is considered one of the
most useful phenotypic traits to evaluate genotypes in breeding programs under both
normal and stress conditions. This is because this plant trait reflects several physiological
processes, integrates plant responses to stresses at the whole-plant level and at different
growth stages, and is directly related to radiation use efficiency and final crop produc-
tion [19,21,22,28,66,67]. Interestingly, this study confirmed that plant biomass measured
at booting (BDW-BT) and anthesis (BDW-AN) growth stages, as well as the BY measured
at maturity, are important phenotypic traits for differentiating salt tolerance among geno-
types. We observed a sufficient genotypic variation for these traits (i.e., genotype had a
highly significant main effect on these traits (p < 0.0001) with a wide range between the
minimum and maximum values for these traits across genotypes (Figure S1). This wide
range of genotypic variation in plant biomass at different growth stages indicates that some
tested genotypes might possess more efficient mechanisms than others to cope with the
osmotic injury and specific ion toxicity effects of salinity stress. This further indicates that
measurements of biomass at different growth stages can be used as potential screening
criteria for differentiating salt tolerance behavior between wheat genotypes. Unfortunately,
the direct assessment of plant biomass based on destructive sampling methods is generally
time- and cost-inefficient, tedious, and unable to detect the dynamic changes of this trait
in real time. Tools that are rapid, nondestructive, and cost-efficient are therefore urgently
needed to assess plant biomass, particularly when plant breeders wish to incorporate this
plant trait into breeding programs as screening criteria to evaluate the salt tolerance of a
large number of genotypes across different growth stages.

In general, exposing plants to high-salinity levels leads to noticeable changes and
modifications in several morphological, anatomical, biochemical, and physiological plant
characteristics [5,68–70]. Fortunately, the characteristics of spectral signatures that are
reflected from the plant canopy at specific full-spectrum wavelengths using hyperspectral
sensors are usually closely associated with these changes [5,42,45,71,72]. This reveals that
it is possible to rapidly and nondestructively assess plant biomass for large germplasm
collections based on genotypic variation in the spectral reflectance behavior over the full-
spectrum range. Interestingly, the results in Figure 1 revealed that there are obvious
differences between the minimum and maximum values of spectral reflectance across all
genotypes in the three main regions of the spectrum at three different growth stages, with
a few exceptions. Additionally, the standard deviation of spectral reflectance across all
genotypes is highest in the VIS and SWIR regions at the EMG stage and in the three regions
of the spectrum at the AN stage (Figure 3). This genotypic variation in spectral reflectance
behavior makes the hyperspectral reflectance tool a promising technique for providing
crucial information for genotype selection and management of abiotic stresses and allows
for the effective evaluation of a large number of genotypes without compromising the
accuracy of conventional phenotyping methods through repetitive assessments of screening
criteria of interest. The results in Figure 4 further confirmed this and indicated that the three
traits (BDW-BT, BDW-AN, and BY) showed significant correlation with the wavelengths
in the three regions of the spectrum. However, the value of correlation between traits and
wavelengths depends on growth stages. The wavelengths in the VIS region exhibited a
weak correlation (not significant) with the three traits at the BT stage, and they showed
weak to strong correlations (r ranged from −0.25 to −0.80) with the three traits at the
AN and EGM stages. The three traits were better correlated with wavelengths in the
SWIR region than with wavelengths in the NIR region at the BT stage, and the opposite
was found at the AN and EMG stages, with a few exceptions (Figure 4). These findings
revealed that in using hyperspectral reflectance tools, specific wheat growth stages must
be taken into account when phenotyping the plant traits for a large number of genotypes.
These findings also suggest that the hyperspectral reflectance tool can be applicable in
salinity studies for assessing plant biomass and for effectively screening wheat genotypes
at the early growth stage, obviating the need to grow genotypes to maturity, but this
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suggestion is only applicable by looking at specific wavelengths in the red-edge and SWIR
regions as shown in Figure 4. Generally, the spectral reflectance at wavelengths in the VIS,
NIR, and SWIR regions is affected primarily by the vegetation growth status (contents of
chlorophyll and other photosynthetic pigments), plant biomass status (cumulative plant
biomass, canopy structure, and leaf cellular structure), and plant water status (content
of canopy water and material absorbed light such as lignin, cellulose, protein, and cell
walls), respectively [73–78]. According to Munns and Tester [24], plant biomass responds
to salinity stress in two phases, referred to as the osmotic phase and ionic phase. In the
first phase, the plant canopy begins to show symptoms of a water deficit because the high
salt concentrations in the root zone restrict the capacity of roots to uptake sufficient water.
In the second phase, which corresponds to the build-up of harmful ions (Na+ and Cl−) in
the leaves, necrosis and senescence are the main canopy symptoms. These two phases of
salinity stress, in addition to the close relationship between spectral reflectance at specific
wavelengths and plant canopy characteristics may explain why the relationships between
SWIR wavelengths and plant biomass are stronger at the early stage (BT) than those in the
VIS and NIR regions, and vice versa at the later stages (AN and EMG stages).

4.1. Identification of the Best Spectral Reflectance Indices and Growth Stage for Indirect
Biomass Assessment

Previous studies have reported that SRIs can be used as indirect alternative evaluation
tools for providing rapid and accurate assessment of stress-related traits [13,17,19,50,79,80].
However, SRI type (vegetation- or water-based), sampling date (phenological growth
stages), and the degree of genotypic variation for SRIs play a key role in the capability
of SRIs to accurately assess and monitor plant traits of interest. In the case of the SRI
type, previous studies reported that in capturing genotypic variability in grain yield and
biomass under diverse environmental conditions, water-related SRIs, which are calculated
from wavelengths located in the NIR and SWIR regions, always performed better than
the vegetation-related SRIs, which are calculated from wavelengths located in the VIS
and red-edge regions [19,36,63,79,81]. Because there is a significant interaction between
growth stages and genotypes for different SRIs, the suitable growth stage for assessing the
plant traits based on SRIs must be cautiously identified to accurate assessment of the most
effective plant traits among genotypes. In wheat, most previous studies reported that the
majority of SRIs were sensitive to variation in measured plant traits (i.e., plant biomass and
grain yield) when recorded after the heading stage (AN and EMG stages). Combining SRIs
across multiple stages also gave a better correlation with plant traits than any individual
growth stage [17,21,44,63,79,81–83]. This study dealt with the abovementioned three factors
and found that a significant genotypic variation was observed for all SRIs (Table 2), with a
wide range between the minimum and maximum values for these indices at different stages
separately and across three stages (Table 3). This finding indicates that effective genetic
gain in plant biomass under salinity stress could be obtained by evaluating genotypes
based on SRIs and that these SRIs could be used as alternative selection criteria for fast and
accurate assessments of salinity tolerance in a spring wheat-breeding program. However,
we observed the interaction of growth stages with genotypes for different SRIs in this study
(Table 2). This emphasizes that the appropriate growth stage for assessing plant biomass
under salinity conditions using SRIs must be precisely identified for the accurate assessment
of the salt tolerance of wheat genotypes in breeding programs. The results presented in
Table 4 confirmed this finding and further revealed that the appropriate growth stage for
assessing plant biomass also depends on the type of SRIs. At the BT stage, all water-related
SRIs, except NDWI-M1, and only one index from vegetation-related SRIs (RENDVI-P)
were found to be efficient for assessing the three traits; the opposite was true at the EMG
stage. However, nearly all vegetation- and water-related SRIs were similarly well suited
to assess the three traits at the AN stage (Table 4). All of these results implied that the
variation in plant biomass among genotypes can be assessed at the early growth stage (BT)
using the water-related SRIs, which detect plant water status, and the late growth stage
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(EMG) is appropriate for vegetation-related SRIs, which reflects the chlorophyll and growth
status of plants. The AN stage is the appropriate developmental stage for plant biomass
assessment, using a combination of vegetation- and water-related SRIs. These results
confirmed the importance of two phases of plant response to salinity stress described by
Munns and Tester [24]. Additionally, the visible wavelengths incorporated in the vegetation-
related SRIs (especially red light) are usually saturated at a high leaf area index and high
concentration of different pigments; this may explain why vegetation-related SRIs failed to
assess plant biomass at the BT stage. However, as growth progresses from the BT to EMG
stage, these kinds of indices become effective for assessing plant biomass because necrosis
and senescence symptoms start to appear on the leaves as a real phenomenon of salinity
damage, and genotypic differences in biomass and chlorophyll contents are also high at
later stages. This also confirms why the mean values of vegetation-related SRIs decrease
from the BT to the EMG stage (Table 3). Furthermore, because multiple measurements of
spectral reflectance of genotypes across multiple growth stages capture overall the effects of
salinity stress on various physiological attributes that ultimately cumulatively affect plant
biomass and yield, this may be the reason that nearly all SRIs successfully assess plant
biomass when the SRI data are analyzed together across the three growth stages (Table 4).
Therefore, in all cases, our results suggest that it is possible to detect genotypic variation
in plant traits related to biomass accumulation under high-salinity stress at early growth
stages based on SRIs.

The results of the PCA presented in Figure 5, in which all indices and their relationship
with the three plant traits are shown together, fully confirmed the abovementioned findings
and showed that the angle of the vectors of the three traits was acute in three cases: (1) with
three water-related SRIs (WI-M, NDWI-M2, and NDWI-P) and one vegetation-related SRI
(RENDVI-P) at the BT stage; (2) with all vegetation-related SRIs, except RENDVI-P, at the
EMG stage; and (3) with a combination of these former indices at the AN stage and across
three stages. However, the angle between the vectors of the remaining indices and the
three traits was obtuse or straight at each growth stage or across three stages (Figure 5).
Generally, the acute angle between SRIs and traits reflects the ability of these indices to
effectively assess genotypic variation in plant biomass. The obtuse and straight angles
between SRIs and traits indicate that these indices could be used as a complementary
selection tool with other indices to detect genotypic differences in plant biomass. The
results of PCA indicate that the water-related SRIs are more effective in assessing plant
biomass than vegetation-related SRIs at an early growth stage; the opposite is true at a late
growth stage. Additionally, each type of SRI measures related parameters, confirming the
importance of the two phases of plant response to salinity stress described by Munns and
Tester [24].

4.2. Prediction of Plant Biomass and Biological Yield Based on PLSR

The performance of SRIs for estimating the three plant traits depends on the growth
stage and type of SRIs. Additionally, almost all vegetation-related SRIs were grouped in
one dimension as shown in PCA (Figure 5). One reason for these findings may be that
the different SRIs are always formulated based on two to three sensitive wavelengths,
making it difficult to build a unified index that includes enough wavelengths that are
sensitive to all biophysical and biochemical changes that logically occur in plants in diverse
phenological stages. These limited wavelengths in each index make it difficult to overcome
the impacts of growth conditions, soil background, and saturation of the leaf area index,
chlorophyll content, and biomass on the performance of the index of interest. The same
type of SRIs exhibits high multicollinearity among themselves, which reduces the ability
of such indices to detect a variation among genotypes that exhibit similar reflectance and
absorption behavior. Therefore, previous studies have reported that using a combination of
SRIs and multivariate regression models such as PLSR can overcome these limitations and
significantly improve the predication accuracy of relevant plant traits [43,52,54,80,82,84–89].
Most of these studies reported that using several SRIs in tandem with the PLSR model
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resulted in better performance in the estimation of plant traits, such as plant biomass,
grain yield, and plant water content, as compared with a single index. In this study,
by combining SRIs with PLSR, assessing plant biomass at the early growth stage was
possible. Interestingly, by coupling both methods, a good prediction of BDW-BT (57%),
BDW-AN (82%), and BY (55%) was obtained at the BT stage (Figure 6). However, the
highest predictions of BDW-BT, BDW-AN, and BY were obtained at the BT (57%), AN
(86%), and EMG (61%) stages, respectively (Figure 6). The results in Figure 4 generally
suggest that the combination of different SRIs and PLSR models is a promising approach
to predict the plant biomass of a large number of wheat genotypes under high-salinity
conditions at the BT stage because this combination can simultaneously cover several
response variables and can account for multicollinear variables.

5. Conclusions

The results of this study showed that the response plant biomass of a large number
of wheat genotypes to salinity stress at different growth stages can be assessed using the
rapid, nondestructive, and relatively inexpensive hyperspectral reflectance tool. Significant
genotypic differences were observed in canopy spectral reflectance at the three regions
of the spectrum (VIS, NIR, and SWIR) with a significant correlation between a single
wavelength within these regions and the three plant traits related to biomass accumu-
lation. Furthermore, the significant correlation between SRIs confirmed the potential of
hyperspectral reflectance data as a simple and easy way to assess plant biomass for a large
number of genotypes. However, the growth stage and type of SRIs played a key role in
the capability of SRIs to accurately assess and monitor plant biomass. Water-based SRIs
were much more effective than vegetation-related SRIs for assessing plant biomass at the
BT stage; the opposite was found at the EMG stage. Both types of SRIs demonstrated
consistently higher levels of association with plant biomass at the AN stage. Interestingly,
by coupling SRIs with the PLSR model, an assessment of the plant biomass at the early
stage (BT) was possible. Combining both methods resulted in a good prediction of BDW-BT
(57%), BDW-AN (82%), and BY (55%) at the BT stage. Finally, our findings confirmed the
importance of hyperspectral reflectance data and multivariate analysis in evaluating the
salt tolerance of a large number of genotypes in wheat-breeding programs.
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biological yield (BY) across 64 wheat genotypes grown in 150 mM NaCl during first (S1) and second
(S2) year.
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