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Abstract: During severe earthquakes, liquefaction-induced lateral displacement causes significant
damage to designed structures. As a result, geotechnical specialists must accurately estimate lateral
displacement in liquefaction-prone areas in order to ensure long-term development. This research
proposes a Gaussian Process Regression (GPR) model based on 247 post liquefaction in-situ free
face ground conditions case studies for analyzing liquefaction-induced lateral displacement. The
performance of the GPR model is assessed using statistical parameters, including the coefficient of
determination, coefficient of correlation, Nash–Sutcliffe efficiency coefficient, root mean square error
(RMSE), and ratio of the RMSE to the standard deviation of measured data. The developed GPR
model predictive ability is compared to that of three other known models—evolutionary polynomial
regression, artificial neural network, and multi-layer regression available in the literature. The results
show that the GPR model can accurately learn complicated nonlinear relationships between lateral
displacement and its influencing factors. A sensitivity analysis is also presented in this study to assess
the effects of input parameters on lateral displacement.

Keywords: lateral displacement; liquefaction; Gaussian process regression; sensitivity analysis;
machine learning

1. Introduction

Loss of life and property remains an unavoidable consequence of major earthquakes.
Studies of the consequences of major earthquakes have attempted to analyze the damage
and make recommendations for reducing loss in the event of future earthquakes throughout
history [1–3]. Liquefaction-induced lateral displacement is one of the most prevalent and
damaging of these effects. It can cause enormous blocks of soil to move by a few millimeters
to 10 m or more, inflicting substantial damage to lifeline networks, buried utilities, and
a variety of other subsurface and civil engineering projects. Liquefaction-induced lateral
displacement is most common on gentle slopes built on loose sand with a groundwater
table close to the surface of the ground; however, open faces such as stream channels can
also be susceptible [4].
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Various approaches have been presented to estimate the magnitude of lateral displace-
ment to date, and from the technical perspective, they can be classified as: (1) numerical
analysis based on finite element or finite difference approaches (e.g., Finn et al. [5], Liao
et al. [6] and Arulanandan et al. [7], (2) simplified analytical methods, e.g., Newmark [8],
Towhata et al. [9], and Kokusho and Fujita [10], (3) empirical methods based on either
laboratory testing set or analytical methods of lateral spreading case history records (e.g.,
Hamada et al. [11] and Youd et al. [12]) and (4) machine learning approaches (e.g., Wang and
Rahman [13]). These different approaches are reviewed herein, with particular emphasis on
empirical models and soft computing techniques.

1.1. Finite Element Analysis

To simulate different aspects of liquefaction and lateral spreading, including seismic
loads, rapid loss of shear strength, redistribution of pore water pressure, and soil softening,
Liao et al. [6] reported that very complex finite element and finite difference approaches
are required. Very intricate numerical techniques, large computer skills, and extensive
resources are necessary to create a realistic three-dimensional simulation inside the real-time
domains. A number of well-known finite element method (FEM) and finite difference (FD)
software programmes are used for liquefaction-induced lateral displacement assessments
and earthquake soil dynamic analysis. Other finite element models provided by Hamada
et al. [14] and Orense and Towhata [15] to determine the lateral ground deformations
generated by earthquakes. Gu et al. [16,17] estimated liquefaction deformation using a
planar strain model. It successfully anticipated the pattern of displacements at a wildlife
site in California [17], but overestimated the magnitude of displacements by around 30%.

1.2. Simplified Analytical Models
1.2.1. Sliding Block Model

Newmark [8] proposed a model based on strategy of sliding block on a frictional
sloping surface that predicted seismically induced ground deformations by integrating
accelerations above the sliding block’s yield acceleration to obtain its velocities. The angle of
inclination and the factor of safety over sliding are associated to yield acceleration. When the
driving force (seismic acceleration) equal to or greater than resisting force (yield acceleration),
block will begin to slide. The total cumulative resulting deformation is then determined by
integrating the sliding block velocity. Yegian et al. [18] used Newmark’s concept to introduce
their model for predicting the permanent ground displacement expressed as

D = NeqT2ap f
(

ay

ap

)
(1)

where D is the lateral ground deformation, Neq denote cycles number equivalent to uniform
base motion, T denotes time interval (s), ay denotes yield acceleration (g), ap denotes peak
acceleration (g), and f denotes dimensionless function that depends on base motion. Baziar
et al. [19] also used Newmark’s concept, assuming an equivalent sinusoidal base acceler-
ation record, to propose their model for predicting the permanent ground displacement
expressed as:

log D = 1.46 log Ia − 6.642ay + 1.546 (2)

D denotes lateral ground deformation (cm), Ia presents arias intensity (m/s), and ay
presents yield acceleration (g).

1.2.2. Minimum Potential Energy Model

This model was proposed by Towhata et al. [9] depending on the results of shaking
table testing. The final position of soil layers was found by the principle of minimal
potential energy, using the Lagrangian equations of motion, and assuming the variation
of lateral ground deformation with depth as a sine function and with neglecting inertial
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effects during dynamic loading. Tokida et al. [20] used the same principle to establish
equations for predicting the maximum lateral displacement at the center of a slide as:

D = 1.73 × 10−5L1.99H0.298T−0.275θ0.963 for (10 m ≤ L ≤ 100 m) (3)

D = 1.29 × 10−5L1.99H0.28T−0.243θ0.995 for (100 m < L ≤ 1000 m) (4)

where D is horizontal displacement (m), L = length of slide (m), H represents average
thickness of liquefied layer (m), T represents average thickness of liquefied surface layer (m),
and θ is the slope of ground surface express in percentage.

1.2.3. Shear Strength Loss and Strain Re-Hardening Model

Bardet et al. [21] reported that in 1997, Byrne proposed a method to find the final
position of a liquefying slope using the finite element software tool Fast Lagrangian Analysis
of Continua. In liquefaction region, it is assumed that the liquefied material is initially free of
shear, and is subjected to isotropic pressure. After such immediate melting of liquefied soil,
the shear stress (τ) was supposed to rise with shear strain unless reached a certain residual
shear strength (τST). Although the liquefied soil regains shear strength, the shear modulus
was supposed to take a constant value GLIQ. The final position of the slope is determined
using the dynamic equation of motion.

1.2.4. Viscous Models

Hadush et al. [22] reported that Aydan [23] considered the liquefied subsoil to act as a
visco-elastic object and used an upgraded Lagrangian numerical approach to find the defor-
mation velocities for the liquefied soil sub-layers. They also proposed a numerical method
based on cubic interpolated pseudoparticles for liquefaction-induced lateral displacement
analysis in the context of fluid dynamics. Liao et al. [6] reported that Hamada et al. [24]
recommended to use viscous models to estimate the liquefaction-induced lateral displace-
ment. Kokusho and Fujita [10] studied the role of water film in lateral flow failure during
earthquakes, on the basis of field survey results collected from Niigata (1964) earthquake. It
was reported that the water films produced under the fine soil sub layers did not actually
have shear resistance, and a significant factor for the large lateral flow displacement.

1.3. Empirical Models and Soft Computing Techniques

Hamada et al. [11] provided a preliminary relation of measuring horizontal ground
displacement in meter’s relying on 60 case histories, majority of them are obtained in
Niigata and Noshiro, Japan. It can be seen from Table 1 that the equations are very common
and easy to apply that contains only two parameters of site geometry and not considered
seismic and geotechnical parameters but it has been suggested for limited dataset making
it insufficiently broad to be extended to additional lateral displacement sites.

Youd and Perkins [25] suggested “liquefaction severity index” (LSI) to estimate maxi-
mum horizontal ground displacement generated by an earthquake. The LSI (inches) was
calculated using distance to seismic energy source (R) (km); and moment magnitude (Mw)
with maximum range of horizontal ground displacement as 2.5 m. This model assumes that
the value of LSI depends on only seismic parameters (R, Mw). At the time, the proposed
equation drew the attention of engineers. Although this method may have been useful for
assessing lateral spreads inside the western United States, but lacks applicability and hence
didn’t receive widespread use.

Bardet et al. [21] used multiple linear regression (MLR) for developing relation to
estimate lateral ground deformation for free face and sloping ground situations, respectively,
utilizing data gathered by Bartlett and Youd [26,27], including three kinds of input variables:

1. Seismic parameters—seismic source distance (R, km) and earthquake magnitude, (M).
2. Topographic characteristics (in percent)—gradient of ground surface (S) and free

face ratio.



Appl. Sci. 2022, 12, 1977 4 of 17

3. Geotechnical parameters (in percent)—average mean particle size within T15 (D5015, mm)
and averaged fines contents in T15 (F15)

The MLR approach was used to create the Youd et al. [12] model, presented in 1992,
was built on upgraded results of Bartlett and Youd [26,27] for estimating lateral ground
displacement, DH (m). As indicated in Table 1 the models include free face and sloping
ground conditions equations. This model gained attraction amongst geotechnical engineers
due to its utilization of a huge dataset from various earthquakes, as well as geometry of
site, geotechnical data, and seismic characteristics. Although, it does have some limits in
terms of applications. For example, the free face equation was used when 5 ≤ W ≤ 20%,
Jafarian and Nasri [28] gathered the latest dataset of liquefaction-induced lateral ground
deformation based on uncertainties of different boreholes, which outperformed Hamada
et al. [11] Kanibir [29], Al Bawwab [30], Javadi et al. [31], Youd et al. [12], and Baziar and
Azizkandi [32] models.

Table 1. Empirical and machine learning approaches for liquefaction-induced lateral displacement.

Method and Technique Model Reference

Empirical model Regression
Analysis

DH = 0.75H1/2θ1/3 Hamada et al. [11]

log LSI = −3.49 − 1.86 log R + 0.98Mw Youd and Perkins [25]

log(DH + 0.01) = −17.372 + 1.248Mw − 0.923 log R − 0.014R
+0.685 log W + 0.3 log T15 + 4.826 log(100 − F15)
−1.091D5015 log(DH + 0.01)
= −14.152 + 0.988Mw − 1.049 log R − 0.011R
+0.318 log S + 0.619 log T15
+4.287 log(100 − F15)− 0.705D5015

Bardet et al. [21]

log(DH) = −16.713 + 1.532M − 1.406 log R∗ − 0.012R + 0.592 log W
+0.540 log T15 + 3.413 log (100 − F15)− 0.795 log(D5015 + 0.1mm)
log(DH) = −16.213 + 1.532M − 1.406 log R∗ − 0.012R + 0.338 log S
+0.540 log T15 + 3.413 log(100 − F15)− 0.795 log(D5015 + 0.1mm)

R∗ = R0 + 100.98M−5.64

Youd et al. [12]

log(DH) = −17.95 + 1.605Mw − 1.8673R∗ − (log(R + 20))−3.3836

+0.547 log W + 0.4431 log T15 + 4.1873 log(100 − F15)
−0.7666 log(D5015+ 0.1mm) log(DH)
= −19.63 + 2.0137Mw − 2.6124 log R∗

−(log(R + 20))−2.7004 + 0.3147 log S
+0.6985 log T15 + 4.1954 log(100 − F15)
−0.6772 log(D5015 + 0.1mm)

Jafarian and Nasri [28]

Soft computing
methods

ANN
DH = f (M, R, D5015, T15, F15, W, S, N160s) Wang and Rahman [13]

DH = f (M, R, D5015, T15, F15, W, S) Baziar and Ghorbani [33]

GP

DH = −163.1 1
M2 + 57 1

R·F15
− 0.0035 T2

15
W·D502

15
+ 0.02 T2

15
F15 ·D502

15

−0.26 T2
15

F2
15

+ 0.006T2
15 − 0.0013W2 + 0.0002M2 · W · T15 + 3.7

DH = −0.8 F15
M + 0.0014F2

15 + 0.16T15 + 0.112S + 0.04 S·T15
D5015

−0.026R · D5015 + 1.14

Javadi et al. [31]

ANFIS DH = f (M, R, D5015, T15, F15, W, S) Javdanian [34]

Note: N160s: (N1)60 value corresponds to Js, Js is the lowest factor of safety below water table using simplified
approach; θ: larger slope of either ground surface or the base of liquefied soil (%); H: thickness of liquefied
zone (m); R*: modified source distance factor that is a function of earthquake magnitude.

Soft computing is made up of a variety of techniques that function together, such as:
artificial neural network, genetic algorithm, neuro-computing etc. Wang and Rahman [13]
reported that new area of machine learning has arisen for handling decisions, modeling,
and control issues. Baziar and Ghorbani [33] and Wang and Rahman [13] both used artificial
neural networks (ANN) to estimate horizontal ground displacement. Javadi et al. [31]
computed lateral displacement for free face and sloping ground using genetic programming
(GP) using upgraded case data from Youd et al. [12]. In comparison to the MLR approach, the
proposed GP approach has some advantages. Table 1 shows the proposed equations for free
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face and sloping ground. Adaptive neuro-fuzzy inference system (ANFIS) based approach
was suggested by Jadanian [34] using 426 case histories data and shows an improvement to
the Youd et al. [12], Kanibir [29], Bardet et al. [21], and Rezania et al. [4] models.

Soft computing methodologies are more accurate than analytical formulas, according
to all of these studies. The findings revealed that the ML models mentioned above are
capable of obtaining the experimental observations with acceptable accuracy. However,
this field continues to be further explored.

The Gaussian process regression (GPR) approach has been successfully applied in
many domains, but its application in geotechnical engineering is limited based on literature
surveys. Considering the improved performance of GPR, it is, however, used for the first
time in this study to predict the liquefaction-induced lateral spread displacement for free
face condition. To demonstrate the efficacy of the proposed GPR-based model, the results
are compared with various well-known models for calculating the DH.

2. Gaussian Process Regression

Gaussian process regression (GPR) is one of the appropriate and newly-proposed
methods that have been employed for various machine learning examples. GPR is a
stochastic, non-parametric technique for addressing complicated and non-linear challenges.
GPR assumes that the target variable m is determined as follows:

m = f (n(k)) + ε (5)

where f represents unidentified functional dependency, n represents the number input
parameters, and ε represents Gaussian noise with variance σa

2. It’s a method of indicating
precedence straight over function space. The mean and covariance of a Gaussian distribu-
tion are matrices and vectors, respectively. The GPR model can determine the prediction
distributions, which is similar to ensuring input knowledge [35]. The GPR approach is
based on the idea that surrounding data informs neighbours.

GPR makes use of a number of kernel functions. A restriction of GPR regression is
the selection of a suitable kernel function. Pearson VII kernel function (PUK) is utilized for
GPR proposed model in this work.

PUK =

(
1/

[
1 +

(
2
√∥∥xi − xj

∥∥2√
2(1/ω) − 1/σ

)2
]ω)

(6)

where ω and σ are the Person’s width, and peak tailing factor, respectively.

3. Case-History Database

The case-study dataset used for this work was collected using three sources (Chu
et al. [36], Youd et al. [12], and Cetin et al. [37]) which contains a total of 247 records of lateral
displacement related to free face ground conditions.

The input parameters chosen by Youd et al. [12] have been largely acknowledged
amongst researchers as a full and acceptable set for controlling lateral displacement. As a
result, several other scholars have chosen the same characteristics as important indicators
(e.g., Javadi et al. [31]; Jafarian and Nasri [28]; Baziar and Saeedi Azizkandi [32]). In
addition, with inclusion of a ground’s intensity measure, peak ground acceleration (PGA,
amax) is employed in the present study to increase data set, making it more competent and
effective in accounting for earthquake causes. By considering the causative fault types of
all earthquakes, Sadigh et al. [38] employed attenuation equation to predict the PGA.

In this research, the following seven key parameters have been used to evaluate lateral
displacement: earthquake magnitude (M), peak ground acceleration (amax, g), horizontal
distance to seismic energy source (R, km), average particle size in T15 (D5015, mm), average
fines material (particles < 0.075 mm) in T15 (F15, %), accumulative thickness of saturated
layers with adjusted SPT number (N1)60 < 15 (T15, m), free-face ratio (W, %), while the
output is liquefaction-induced lateral displacement (DH, m).
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In this work, training datasets are based on 80% of the data available (198 sets of data
in free face characteristics). The testing dataset has been used to evaluate the proposed
models’ prediction abilities. The 49 historical records data are used as testing datasets
in this study. The training and testing datasets were partitioned depending on statistical
features of the datasets, such as mean and standard deviation. The model efficiency is
enhanced by the statistical consistency of the training and testing datasets, which makes it
easier to evaluate them. Table 2 shows the evaluation metrics of input and output variables
in training and testing datasets for free face. Summary of liquefaction-induced lateral
ground deformation database is presented in Appendix A, Table A1.

Table 2. Statistical parameters for free-face condition.

Dataset Statistical Parameters

Seismic Parameter Geotechnical Parameter Topographic Parameter Output

M amax R D5015 F15 T15 W DH

- g km mm % m % m

Training

Minimum 6.4 0.15 0.5 0.04 1 0.2 1.64 0
Average 7.26 0.41 15.10 0.36 18.83 7.80 11.69 2.45

Maximum 9.2 0.68 100 7.7 70 16.7 57.7 10.16
Standard deviation 0.51 0.15 11.61 0.65 13.71 5.16 9.96 2.26

Testing

Minimum 6.4 0.15 0.5 0.07 2 0.5 2.11 0
Average 7.3 0.38 16.10 0.39 13.96 7.98 10.04 2.17

Maximum 9.2 0.68 60 1.98 66 16 48.98 8.39
Standard deviation 0.49 0.13 10.61 0.42 12.14 5.20 9.78 2.21

4. Correlation Analysis

Correlation coefficients (ρ) have been used to test the significance of the relation
between different factors (see Table 3). The equation for ρ is as:

ρ(u, v) =
cov(u, v)

σuσv
(7)

where cov indicates covariance, σu represents standard deviation of u, and σv defines
standard deviation of v. |ρ| > 0.8 signifies a strong relation among u and v, values from
0.3–0.8 represents a moderate relationship, while |ρ| < 0.30 signifies a weak relation [39].
According to Song et al. [40], a relation is considered as “strong” if |ρ| > 0.8. M, amax, R,
D5015, F15, T15 and W have moderate to weak relations, as seen in Table 3. As a result, no
variables from the lateral displacement estimation model were eliminated. Table 3 reveals
that the correlation coefficient has a maximum absolute value of 0.761 and there is no
“strong” link between different pairs of components.

Table 3. Correlation between parameters.

Parameters M amax R D5015 F15 T15 W DH

M 1.000
amax −0.341 1.000

R 0.761 −0.722 1.000
D5015 0.033 −0.112 0.013 1.000

F15 −0.370 0.560 −0.371 −0.230 1.000
T15 0.208 −0.573 0.360 0.237 −0.591 1.000
W 0.003 0.178 −0.046 0.025 0.245 −0.145 1.000
DH 0.179 −0.250 0.230 −0.078 −0.354 0.518 0.146 1.000

5. Construction and Evaluation of Prediction Model

Figure 1 illustrates the prediction model’s creation process. In this case, 80% and
20% of the dataset were chosen as training and test sets, respectively, based on statistical
integrity. Second, the predictive model was constructed using the trial-and-error approach
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based on training set utilizing the optimum hyperparameters configurations. Iterative
method was utilized to find optimum values for the hyperparameters after setting them to
random values (within a reasonable range). The values of the key kernel parameters, omega
(ω) and sigma (σ) are 0.4 while noise is 0. 3in the GPR model after multiple trials. Finally,
the testing data was used to evaluate the proposed GPR model’s performance using four
common evaluation metrics: coefficient of determination (R2), coefficient of correlation (r),
mean absolute error (MAE), root mean square error (RMSE), ratio of the root mean square
error (RSR) to the standard deviation of measured values, and Nash–Sutcliffe coefficient
(NSE). The R2 and NSE values that are higher, and RSR values that are lower, imply that
proposed model’s prediction accuracy is better. Waikato Environment for Knowledge
Analysis software was used throughout the whole calculation process The Pearson VII
function-based kernel [41] was employed in this study for the GPR model.

Figure 1. The flowchart for GPR based model to predict liquefaction induced lateral displacement.

The generated model’s performance was assessed using R2, r, MAE, RMSE, RSR,
and NSE.

R2 = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (8)

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(9)

MAE =
1
n

n

∑
i=1

(xi − yi) (10)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (11)

RSR =

√
∑n

i=1(xi − yi)
2√

∑n
i=1(xi − x)2

(12)

NSE = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (13)

where n denotes the set of data points, xi and yi denotes the actual and estimated output of
data’s ith sample, respectively; x and y represents the mean actual and estimated output of
the dataset, respectively. The r value varies from −1 to 1. A perfect distribution between
actual and estimated values is represented by value of r equal to 1, whereas a value of 0
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shows no relation [42]. For MAE = 0, the model’s value is perfectly aligned with the real
value, and the model is deemed “ideal.” The MAE value is between 0 and +∞. The mean
squared difference between outputs and targets is termed as RMSE, and its value ranges
from 0 to +∞. The NSE scale ranges from -∞ to 1, with 1 representing the ideal match. A
strong relation is indicated by an NSE score of more than 0.65 [43,44]. The RSR ranges from
a perfect 0 to a significant positive number. A smaller RSR indicates low RMSE, indicates
that the model is more predictive. The RSR and NSE categorization ranges are shown in
Table 4 as very good, good, adequate, and inadequate [44].

Table 4. Statistical indicators for model performance evaluation.

Performance RSR NSE

Very Good 0 ≤ RSR ≤ 0.5 0.75 < NSE ≤ 1
Good 0.5 < RSR ≤ 0.6 0.65 < NSE ≤ 0.75

Adequate 0.6 < RSR ≤ 0.7 0.5 < NSE ≤ 0.65
Inadequate RSR > 0.7 NSE ≤ 0.5

6. Result and Discussion
6.1. Performance of GPR Model

The GPR model’s efficiency were assessed using coefficient of correlation (r), mean
absolute error (MAE), root mean square error (RMSE), ratio of root mean square error (RSR)
and Nash-Sutcliffe coefficient (NSE). The trend line for GPR in training and testing phases
has been drawn by comparing the observed regression in Figure 2 scatter plot, and the GPR
findings have the maximum inclination to the line y = x (i.e., R2 = 0.9402 in training and
R2 = 0.894 in testing phases). Table 5 shows clearly that for the training model, r = 0.9697,
MAE = 0.3403, RMSE = 0.5597, RSR = 0.248 and NSE = 0.938. Whereas for the testing model
r = 0.9455, MAE = 0.5443, RMSE = 0.8438, RSR = 0.387 and NSE = 0.851. The trend line for
GPR in training and testing phases has been drawn by comparing the observed regression
in Figure 2 scatter plot, and the GPR findings have the maximum inclination to the line
y = x (i.e., R2 = 0.9402 in training and R2 = 0.894 in testing phases).

Figure 2. Scatter plot presenting the measured DH values versus the predicted DH (a) training and
(b) testing model.
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Table 5. Performance statistics of GPR model in comparison with extra available models in literature.

Model Indicators R2 r MAE (m) RMSE (m) RSR NSE Reference

GPR
Training model 0.9402 0.9697 0.3403 0.5597 0.248 0.938 Present study
Testing model 0.894 0.9455 0.544 0.8438 0.387 0.851

EPR
Training model 0.913 - 0.537 1.003 - -

[4]

Testing model 0.883 - 0.291 1.158 - -

ANN
Training model 0.875 - 0.702 1.074 - -
Testing model 0.872 0.82 1.21 - -

MLR
Training model 0.868 - 0.81 1.24 - -
Testing model 0.875 - 0.43 1.196 - -

Note: - represents that this performance statistic is not included in the reference.

The performance of the developed GPR model was compared to the evolutionary
polynomial regression (EPR), MLR and ANN models in literature based on the R2, MAE,
and RMSE criteria and the results are summarized in Table 5. Furthermore, in terms of
the MAE and RMSE statistical measures in training, the lowest value was found for GPR
(MAE = 0.3403 m, RMSE = 0.5597 m) compared to EPR (MAE = 0.537 m, RMSE = 1.003 m),
ANN (MAE = 0.702 m, RMSE = 1.074 m), and MLR (MAE = 0.81 m, RMSE = 1.24 m).
Whereas the prediction results in the testing, the MAE and RMSE values was found less
for GPR (MAE = 0.544 m, RMSE = 0.8438 m) compared to EPR, ANN, and MLR except
the MAEs values of EPR (=0.291 m) and MLR (=0.43 m) models. The superiority may
be owing to the fact that the GPR model excellently captures the nonlinear relationships
between lateral displacement and its influencing factors. It can therefore be concluded that,
based on statistical indices, the GPR model had the best results. However, due to the use
of different number of datasets, a comparison between these results is unwarranted. A
project that uses different datasets is needed to gives generalized model to geotechnical
earthquake engineering.

6.2. Sensitivity Analysis

The sensitivity results of the GPR model were examined using Yang and Zang’s
approach for determining the impact of input variables on DH. This strategy, which has
been used in a number of research [44–47], is as follows:

rij =
∑n

k=1(xik × xok)√
∑n

k=1 xik
2 ∑n

k=1 xok
2

(14)

xik and xok are the actual and estimated variables, respectively, and n represents number
of datasets (i.e., 198 data samples). For each input variable, the rij value varies from
zero to one, with the greatest rij values indicating the most efficient output factor (i.e.,
DH). Figure 3 displays the rij values for all input factors. The accumulative thickness of
saturated layers with adjusted SPT number, T15 (rij = 0.843) has the greatest effect on the
DH. Furthermore, Table 3 shows that the accumulative thickness of saturated layers with
adjusted SPT number, T15 has the highest ρ of 0.518 in all other parameters validating the
sensitivity analysis results.
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Figure 3. Sensitivity analysis of input variables.

7. Conclusions

The GPR model was used to estimate liquefaction-induced lateral displacement in this
work. The predictive model was built using seven input parameters and one output param-
eter. Performance measures such as R2, r, RMSE, MAE, RSR, NSE, and visual inspection
such as scatter plots were used to assess the effectiveness of the developed model. This
study’s findings can be summarized as follows:

1. With respect to the values of GPR with R2 = 0.9402, r = 0.9697, MAE = 0.3403,
RMSE = 0.5597, RSR = 0.248 and NSE = 0.938 in training phase whereas for test-
ing phase it performed equally well with R2 = 0.894, r = 0.9455, MAE = 0.5443,
RMSE = 0.8438, RSR = 0.387 and NSE = 0.851, In comparison to the EPR, ANN, and
MLR models in literature, the GPR model was found to be more accurate and stable
than the other models.

2. The results of sensitivity analysis show that the degree of importance of different
input parameters on lateral displacement is as T15 > M > R > amax> W > F15 > D5015.

3. The developed Pearson VII kernel function-based GPR model makes predictions
accurate and outperforms the others for this dataset and may be applied to a range of
geotechnical engineering situations involving uncertainties.

The GPR approach has the advantage of becoming easily modified as new data
becomes available, reducing need for expertise and time to modify an existing design aid
or equation and/or suggest a new equation.
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Appendix A

Table A1. Summary of Liquefaction-Induced Lateral Ground Deformation Database.

Earthquake M R (km) amax (g) F15 (%) D5015 (mm) T15 (m) W (%) DH (m)

1906, San Francisco 7.9 27 0.24 23 0.25 7.2 22.02 1.84
1906, San Francisco 7.9 24 0.26 30 0.16 1.5 17.76 0.92

1964, Alaska 9.2 60 0.3 21 1.35 3.4 24.59 1.86
1964, Alaska 9.2 100 0.2 13 1 10.4 7.03 1.38
1964, Alaska 9.2 60 0.3 23 1.47 3.8 16.07 1.58
1964, Alaska 9.2 60 0.3 66 0.07 3.1 48.98 1.92
1964, Niigata 7.5 21 0.32 5 0.35 12.7 3.06 1.01
1964, Niigata 7.5 21 0.32 4 0.34 13.6 3.15 5.2
1964, Niigata 7.5 21 0.32 24 0.19 8.6 5.36 0.82
1964, Niigata 7.5 21 0.32 6 0.35 0.5 3.43 1.1
1964, Niigata 7.5 21 0.32 32 0.1 2.4 2.03 0.54
1964, Niigata 7.5 21 0.32 26 0.16 2.5 20.61 0.91
1964, Niigata 7.5 21 0.32 6 0.35 0.5 22.37 0.88
1964, Niigata 7.5 21 0.32 10 0.25 11.3 29.7 5.03
1964, Niigata 7.5 21 0.32 6 0.29 7.5 7.32 3.75
1964, Niigata 7.5 21 0.32 24 0.19 8.6 8.78 0.93
1964, Niigata 7.5 21 0.32 12 0.27 12.2 5.01 2.36
1964, Niigata 7.5 21 0.32 24 0.19 8.6 24.02 3.07
1964, Niigata 7.5 21 0.32 9 0.26 11.3 19.62 10.16
1964, Niigata 7.5 21 0.32 12 0.26 12.3 5.76 1.49
1964, Niigata 7.5 21 0.32 31 0.12 2.4 3.26 1.25
1964, Niigata 7.5 21 0.32 10 0.39 9 3.27 2.48
1964, Niigata 7.5 21 0.32 32 0.11 2.4 2.09 1.32
1964, Niigata 7.5 21 0.32 14 0.36 7.1 19.62 3.34
1964, Niigata 7.5 21 0.32 4 0.57 8.6 2.82 1.23
1964, Niigata 7.5 21 0.32 11 0.26 11.9 5.93 2.97
1964, Niigata 7.5 21 0.32 5 0.32 15.6 4.94 7.36
1964, Niigata 7.5 21 0.32 16 0.22 9.6 3.06 2.41
1964, Niigata 7.5 21 0.32 24 0.19 8.6 18.49 1.78
1964, Niigata 7.5 21 0.32 11 0.27 12 4.83 1.84
1964, Niigata 7.5 21 0.32 6 0.32 12.4 4.82 3.66
1964, Niigata 7.5 21 0.32 12 0.26 12.4 5.01 1.75
1964, Niigata 7.5 21 0.32 31 0.12 2.4 3.35 0.69
1964, Niigata 7.5 21 0.32 7 0.35 9.8 4.5 0.53
1964, Niigata 7.5 21 0.32 5 0.32 15.6 7.86 8.37
1964, Niigata 7.5 21 0.32 5 0.32 13.9 5.77 4.58
1964, Niigata 7.5 21 0.32 12 0.26 12 9.18 4.4
1964, Niigata 7.5 21 0.32 12 0.24 11.8 5.54 4
1964, Niigata 7.5 21 0.32 12 0.26 12.2 5.36 2.38
1964, Niigata 7.5 21 0.32 5 0.44 10.1 2.42 1.25
1964, Niigata 7.5 21 0.32 11 0.28 12.1 3.68 2.09
1964, Niigata 7.5 21 0.32 6 0.35 0.5 3.39 0.86
1964, Niigata 7.5 21 0.32 14 0.25 12.6 13.73 6.27
1964, Niigata 7.5 21 0.32 5 0.4 7.9 3.59 1.46
1964, Niigata 7.5 21 0.32 5 0.32 15.6 17.75 9.15
1964, Niigata 7.5 21 0.32 6 0.35 0.5 4.26 0.72
1964, Niigata 7.5 21 0.32 6 0.29 14.3 6.51 3.61
1964, Niigata 7.5 21 0.32 8 0.23 6.8 1.85 0.91
1964, Niigata 7.5 21 0.32 24 0.19 8.6 5.29 1.64
1964, Niigata 7.5 21 0.32 5 0.36 13.6 8.52 4.77
1964, Niigata 7.5 21 0.32 5 0.5 10.9 4.77 0.81
1964, Niigata 7.5 21 0.32 5 0.35 12.7 9.12 6
1964, Niigata 7.5 21 0.32 15 0.25 9.6 2.68 1.89
1964, Niigata 7.5 21 0.32 24 0.19 8.6 8.19 2.2
1964, Niigata 7.5 21 0.32 3 0.35 13.3 4.05 4.76
1964, Niigata 7.5 21 0.32 11 0.26 12 6.53 2.51
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Table A1. Cont.

Earthquake M R (km) amax (g) F15 (%) D5015 (mm) T15 (m) W (%) DH (m)

1964, Niigata 7.5 21 0.32 5 0.32 15.6 17.75 9.49
1964, Niigata 7.5 21 0.32 11 0.24 11.6 11.06 8.19
1964, Niigata 7.5 21 0.32 13 0.29 13.6 2.76 1.01
1964, Niigata 7.5 21 0.32 7 0.34 10.5 6.03 5.43
1964, Niigata 7.5 21 0.32 6 0.45 10.5 5.84 1.86
1964, Niigata 7.5 21 0.32 5 0.32 15.5 9.98 6.02
1964, Niigata 7.5 21 0.32 6 0.39 9.2 4.87 1.86
1964, Niigata 7.5 21 0.32 12 0.24 11.9 5.06 3.98
1964, Niigata 7.5 21 0.32 5 0.32 15.6 17.05 9.29
1964, Niigata 7.5 21 0.32 15 0.32 11.3 2.86 1.41
1964, Niigata 7.5 21 0.32 16 0.31 11 3.06 1.3
1964, Niigata 7.5 21 0.32 18 0.21 6.7 4.45 0.9
1964, Niigata 7.5 21 0.32 15 0.32 7 7.72 1.92
1964, Niigata 7.5 21 0.32 11 0.28 12.1 2.88 1.56
1964, Niigata 7.5 21 0.32 6 0.38 11.6 3.22 2.71
1964, Niigata 7.5 21 0.32 5 0.32 15.6 5.25 7.19
1964, Niigata 7.5 21 0.32 16 0.3 10.8 3.68 0.71
1964, Niigata 7.5 21 0.32 13 0.38 7.2 20.55 3.28
1964, Niigata 7.5 21 0.32 9 0.4 13 2.05 1.11
1964, Niigata 7.5 21 0.32 13 0.25 12.5 16.07 7.4
1964, Niigata 7.5 21 0.32 6 0.37 12.7 7.05 3.54
1964, Niigata 7.5 21 0.32 6 0.35 0.5 2.68 0.82
1964, Niigata 7.5 21 0.32 9 0.39 9.3 3.72 1.96
1964, Niigata 7.5 21 0.32 5 0.39 7.3 2.76 1.23
1964, Niigata 7.5 21 0.32 24 0.19 8.6 12.86 2.74
1964, Niigata 7.5 21 0.32 12 0.25 12.1 16.72 4.88
1964, Niigata 7.5 21 0.32 11 0.27 12.1 3.38 1.83
1964, Niigata 7.5 21 0.32 5 0.32 15.6 5.77 7.21
1964, Niigata 7.5 21 0.32 2 0.33 10.4 8.89 4.76
1964, Niigata 7.5 21 0.32 13 0.25 12.4 35 7.67
1964, Niigata 7.5 21 0.32 7 0.32 9.4 2.99 1.31
1964, Niigata 7.5 21 0.32 4 0.34 13.5 3.36 3.46
1964, Niigata 7.5 21 0.32 11 0.26 11.6 11.32 3.78
1964, Niigata 7.5 21 0.32 3 0.44 11.3 3.82 1.52
1964, Niigata 7.5 21 0.32 13 0.29 13 3.1 0.56
1964, Niigata 7.5 21 0.32 28 0.14 2.5 4.79 0.88
1964, Niigata 7.5 21 0.32 5 0.32 15.6 19.62 7.7
1964, Niigata 7.5 21 0.32 3 0.44 11.3 4.87 1.9
1964, Niigata 7.5 21 0.32 9 0.37 10 16.4 6.5
1964, Niigata 7.5 21 0.32 7 0.35 9.8 3.9 2.87
1964, Niigata 7.5 21 0.32 12 0.25 12.2 12.47 4.83
1964, Niigata 7.5 21 0.32 5 0.34 13.8 12.01 8.73
1964, Niigata 7.5 21 0.32 24 0.19 8.6 25.93 3.57
1964, Niigata 7.5 21 0.32 14 0.25 12.6 11.32 3.51
1964, Niigata 7.5 21 0.32 17 0.24 6.8 4.26 1.37
1964, Niigata 7.5 21 0.32 11 0.25 11.6 17.05 8.29
1964, Niigata 7.5 21 0.32 5 0.31 14.1 16.4 8.52
1964, Niigata 7.5 21 0.32 24 0.19 8.6 5.76 1.27
1964, Niigata 7.5 21 0.32 15 0.25 9.5 3.04 2.68
1964, Niigata 7.5 21 0.32 13 0.27 11.8 2.27 1.56
1964, Niigata 7.5 21 0.32 13 0.25 12.4 12.47 3.21
1964, Niigata 7.5 21 0.32 24 0.19 8.6 7.14 2.15
1964, Niigata 7.5 21 0.32 24 0.19 8.6 5.15 1.06
1964, Niigata 7.5 21 0.32 7 0.43 10.4 15.25 2.25
1964, Niigata 7.5 21 0.32 5 0.35 16.7 11.06 2.91
1964, Niigata 7.5 21 0.32 8 0.15 3.7 1.64 0.62
1964, Niigata 7.5 21 0.32 5 0.32 15.6 7.72 7.31
1964, Niigata 7.5 21 0.32 13 0.25 12.5 55.68 7.13
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Table A1. Cont.

Earthquake M R (km) amax (g) F15 (%) D5015 (mm) T15 (m) W (%) DH (m)

1964, Niigata 7.5 21 0.32 6 0.31 15.2 12.44 6.3
1964, Niigata 7.5 21 0.32 13 0.35 11.9 2.86 1.11
1964, Niigata 7.5 21 0.32 11 0.25 11.6 19.37 4.28
1964, Niigata 7.5 21 0.32 10 0.28 12.1 3.09 1.66
1964, Niigata 7.5 21 0.32 5 0.36 9.6 3.72 3.26
1964, Niigata 7.5 21 0.32 13 0.25 12.3 16.07 7.06
1964, Niigata 7.5 21 0.32 2 0.33 10.4 13.65 5.35
1964, Niigata 7.5 21 0.32 13 0.26 12.6 6.23 1.87
1964, Niigata 7.5 21 0.32 3 0.44 11.3 3.27 0.96
1964, Niigata 7.5 21 0.32 7 0.33 10.6 12.01 7.95
1964, Niigata 7.5 21 0.32 3 0.44 11.3 5.12 1.36
1964, Niigata 7.5 21 0.32 30 0.13 2.4 4.18 0.68
1964, Niigata 7.5 21 0.32 4 0.34 13.6 2.99 4.85
1964, Niigata 7.5 21 0.32 28 0.14 2.5 20.61 1.06
1964, Niigata 7.5 21 0.32 11 0.28 12.1 3.86 1.93
1964, Niigata 7.5 21 0.32 2 0.33 10.4 7.58 4.57
1964, Niigata 7.5 21 0.32 11 0.28 12.2 2.9 1.65
1964, Niigata 7.5 21 0.32 8 0.34 11.4 3.1 2.09
1964, Niigata 7.5 21 0.32 5 0.45 10 2.86 1.82
1964, Niigata 7.5 21 0.32 12 0.24 11.9 4.45 3.38
1964, Niigata 7.5 21 0.32 5 0.35 12.7 2.79 1.01
1964, Niigata 7.5 21 0.32 13 0.29 12.9 3.04 0.42
1964, Niigata 7.5 21 0.32 5 0.31 14.1 17.75 8.39
1964, Niigata 7.5 21 0.32 11 0.24 12.1 2.11 1.27
1964, Niigata 7.5 21 0.32 7 0.28 8.1 17.05 6.18
1964, Niigata 7.5 21 0.32 6 0.35 0.5 5.96 0.77
1964, Niigata 7.5 21 0.32 6 0.35 0.5 2.29 1.38
1964, Niigata 7.5 21 0.32 5 0.31 14.1 4.55 6.67
1964, Niigata 7.5 21 0.32 11 0.27 12 3.98 1.83
1964, Niigata 7.5 21 0.32 6 0.29 7.9 17.05 5.39
1964, Niigata 7.5 21 0.32 11 0.27 12.1 2.97 1.49

1971, San Fernando 6.4 0.5 0.68 47 0.08 5.3 19.96 2.93
1971, San Fernando 6.4 0.5 0.68 47 0.08 5.6 4.7 0.47
1971, San Fernando 6.4 0.5 0.68 47 0.08 6.5 5.08 0.52
1971, San Fernando 6.4 0.5 0.68 47 0.08 4.6 20.3 3.16
1971, San Fernando 6.4 0.5 0.68 47 0.08 3.6 20.34 3.18
1971, San Fernando 6.4 0.5 0.68 47 0.08 3 17.07 1.81
1971, San Fernando 6.4 0.5 0.68 47 0.08 2.3 13.59 2.14
1971, San Fernando 6.4 0.5 0.68 47 0.08 1.6 20.41 2.45
1971, San Fernando 6.4 0.5 0.68 47 0.08 4.8 19.61 2.78
1971, San Fernando 6.4 0.5 0.68 47 0.08 2.7 15.43 2.02
1971, San Fernando 6.4 0.5 0.68 47 0.08 2 13.59 1.46
1971, San Fernando 6.4 0.5 0.68 47 0.08 4 18.87 3.26
1971, San Fernando 6.4 0.5 0.68 47 0.08 2.7 20.47 3.16
1971, San Fernando 6.4 0.5 0.68 47 0.08 5.9 4.89 0.54
1971, San Fernando 6.4 0.5 0.68 47 0.08 4.5 19.26 1.99
1971, San Fernando 6.4 0.5 0.68 47 0.08 1 20.27 1
1971, San Fernando 6.4 0.5 0.68 47 0.08 3.1 18.26 2.04
1971, San Fernando 6.4 0.5 0.68 47 0.08 5.2 19.96 2.63

1979, Imperial Valley 6.5 2 0.49 20 0.12 3 8.57 2.63
1979, Imperial Valley 6.5 2 0.49 32 0.09 1.5 6.25 0.37
1979, Imperial Valley 6.5 2 0.49 23 0.11 2 7.89 2.04
1979, Imperial Valley 6.5 2 0.49 17 0.12 3.6 3.08 0.92
1979, Imperial Valley 6.5 2 0.49 15 0.12 3.8 6.56 2.02
1979, Imperial Valley 6.6 6 0.36 70 0.04 0.2 4.26 0.01
1979, Imperial Valley 6.6 6 0.36 54 0.12 1.8 10.66 0.01
1979, Imperial Valley 6.5 2 0.49 17 0.12 3.7 9.6 4
1979, Imperial Valley 6.5 2 0.49 22 0.11 2.6 3.68 0.31
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Table A1. Cont.

Earthquake M R (km) amax (g) F15 (%) D5015 (mm) T15 (m) W (%) DH (m)

1979, Imperial Valley 6.5 2 0.49 23 0.11 2.4 6.35 1.41
1979, Imperial Valley 6.5 2 0.49 23 0.11 2 6.15 1.1
1979, Imperial Valley 6.5 2 0.49 22 0.11 2.7 6.45 1.53
1979, Imperial Valley 6.5 2 0.49 23 0.11 2.9 7.02 1.43
1979, Imperial Valley 6.5 2 0.49 25 0.1 2.5 6.78 0.72
1979, Imperial Valley 6.5 2 0.49 15 0.12 4 6.56 1.48
1979, Imperial Valley 6.5 2 0.49 17 0.12 3.7 6.78 2.3
1979, Imperial Valley 6.5 2 0.49 21 0.11 1.6 4.8 0.67
1979, Imperial Valley 6.5 2 0.49 25 0.1 2.5 9.84 2.63
1979, Imperial Valley 6.5 2 0.49 22 0.11 1.8 6.67 1.13
1979, Imperial Valley 6.5 2 0.49 30 0.09 1.8 8.05 1.03
1979, Imperial Valley 6.5 2 0.49 22 0.11 2.7 8.05 2.12
1979, Imperial Valley 6.5 2 0.49 25 0.11 2.2 3.68 0.47
1979, Imperial Valley 6.5 2 0.49 16 0.12 3.8 9.37 4.25
1979, Imperial Valley 6.5 2 0.49 22 0.11 3 10.08 3.21
1979, Imperial Valley 6.5 2 0.49 16 0.12 3.7 3.72 1.23
1979, Imperial Valley 6.5 2 0.49 18 0.12 3.4 9.16 3.82
1979, Imperial Valley 6.5 2 0.49 19 0.12 3.3 6.15 1.51
1979, Imperial Valley 6.5 2 0.49 21 0.11 1.4 4.69 0.87
1979, Imperial Valley 6.5 2 0.49 25 0.11 2.2 3.52 0.47

1987, Superstition Hills 6.6 23 0.15 27 0.09 3.5 17.91 0.19
1987, Superstition Hills 6.6 23 0.15 22 0.09 3.3 41.38 0.21
1987, Superstition Hills 6.6 23 0.15 43 0.07 1.7 17.52 0.11
1987, Superstition Hills 6.6 23 0.15 44 0.07 3.6 7.5 0.01
1987, Superstition Hills 6.6 23 0.15 38 0.08 2.7 13.11 0.11
1987, Superstition Hills 6.6 23 0.15 25 0.09 3.4 41.38 0.24

1989, Loma Prieta 7 27.2 0.2 1 0.6 3.4 29.73 0.26
1989, Loma Prieta 7 27.2 0.2 2 0.8 2.7 33.54 0.29

1995, Hyogo-Ken Nanbu 6.8 7.5 0.35 12.6 0.47 14.2 13.95 1.18
1995, Hyogo-Ken Nanbu 6.8 6 0.38 13.4 0.94 12.5 9.25 1.01
1995, Hyogo-Ken Nanbu 6.8 8 0.34 14.6 1.98 16 6.67 0.45
1995, Hyogo-Ken Nanbu 6.8 8 0.34 14.6 1.98 16 16.82 0.93
1995, Hyogo-Ken Nanbu 6.8 7.5 0.35 12.6 0.47 14.2 10.4 0.89
1995, Hyogo-Ken Nanbu 6.8 5.5 0.39 10 1.36 15 14.56 1.34
1995, Hyogo-Ken Nanbu 6.8 5.5 0.39 10 1.36 15 30.21 2.83
1995, Hyogo-Ken Nanbu 6.8 6.5 0.37 10 1.88 12.5 5.16 0.34
1995, Hyogo-Ken Nanbu 6.8 5.5 0.39 10 1.36 15 56.8 2.48
1995, Hyogo-Ken Nanbu 6.8 8 0.34 14.6 1.98 16 18 0.97
1995, Hyogo-Ken Nanbu 6.8 8 0.34 14.6 1.98 16 20.69 0.9
1995, Hyogo-Ken Nanbu 6.8 7.5 0.35 12.6 0.47 14.2 18.56 1.33
1995, Hyogo-Ken Nanbu 6.8 8 0.34 14.6 1.98 16 14.63 0.66
1995, Hyogo-Ken Nanbu 6.8 6.5 0.37 10 1.88 12.5 9.84 1.03
1995, Hyogo-Ken Nanbu 6.8 5.5 0.39 10 1.36 15 14.34 1.31
1995, Hyogo-Ken Nanbu 6.8 6.5 0.37 10 1.88 12.5 14.63 1.47
1995, Hyogo-Ken Nanbu 6.8 6 0.38 13.4 0.94 12.5 15 1.48
1995, Hyogo-Ken Nanbu 6.8 5.5 0.39 10 1.36 15 9.79 1.47
1995, Hyogo-Ken Nanbu 6.8 8 0.34 14.6 1.98 16 8.45 0.41

1999, Chi-Chi 7.6 5 0.67 20.8 0.11 0.5 7.4 0
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 0.8 13.7 0.45
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 0.8 18.4 0.55
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 0.8 25.2 0.8
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 0.8 37.3 1.05
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 0.8 49.9 2.05
1999, Chi-Chi 7.6 5 0.67 13 0.18 0.75 21.2 0.49
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 1.1 11.9 0
1999, Chi-Chi 7.6 5 0.67 20.8 0.11 1.1 26.3 0
1999, Chi-Chi 7.6 5 0.67 30 0.13 0.45 12.2 0.4
1999, Chi-Chi 7.6 5 0.67 30 0.13 0.45 14.3 0.65
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1999, Chi-Chi 7.6 5 0.67 30 0.13 0.45 24.6 1
1999, Chi-Chi 7.6 5 0.67 30 0.13 0.45 57.7 1.24
1999, Chi-Chi 7.6 5 0.67 31.4 0.1 1 8 0.35
1999, Chi-Chi 7.6 5 0.67 31.4 0.1 1 10.5 0.61
1999, Chi-Chi 7.6 5 0.67 31.4 0.1 1 19 0.96
1999, Chi-Chi 7.6 5 0.67 31.4 0.1 1 31.3 2.96
1999, Chi-Chi 7.6 5 0.67 48.5 0.1 1.8 9.6 0.35
1999, Chi-Chi 7.6 5 0.67 48.5 0.1 1.8 11.7 0.52
1999, Chi-Chi 7.6 5 0.67 48.5 0.1 1.8 13.3 0.62
1999, Chi-Chi 7.6 5 0.67 48.5 0.1 1.8 23.7 1.62
1999, Chi-Chi 7.6 5 0.67 13 0.18 0.5 5.7 0
1999, Chi-Chi 7.6 5 0.67 13 0.18 0.75 6.6 0.1
1999, Chi-Chi 7.6 5 0.67 13 0.18 0.75 7.9 0.17
1999, Chi-Chi 7.6 5 0.67 13 0.18 0.75 9 0.23
1999, Chi-Chi 7.6 5 0.67 13 0.18 0.75 15 0.29
1999, Kocaeli 7.4 0.5 0.57 11 7.7 1.2 8 0.9
1999, Kocaeli 7.4 0.5 0.57 31 0.55 1.7 6 0.1
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