
����������
�������

Citation: Chen, Y.-H.; Lin, P.-Y.; Wu,

H.-P.; Chen, S.-H. Joint Hamming

Coding for High Capacity Lossless

Image Encryption and Embedding

Scheme. Appl. Sci. 2022, 12, 1966.

https://doi.org/10.3390/app12041966

Academic Editor: Xin Zhong

Received: 10 December 2021

Accepted: 11 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Joint Hamming Coding for High Capacity Lossless Image
Encryption and Embedding Scheme †

Yi-Hui Chen 1,2,‡, Pei-Yu Lin 3,‡, Hsin-Pei Wu 4,*,‡ and Shih-Hsin Chen 5,*,‡

1 Department of Information Management, Chang Gung University, Taoyuan City 33302, Taiwan;
cyh@gap.cgu.edu.tw

2 Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
3 Department of Electrical Engineering, National Kaohsiung University of Science and Technology,

Kaohsiung 80778, Taiwan; pagelin3@gmail.com
4 Department of Business Administration, Soochow University, Taipei 10048, Taiwan
5 Department of Computer Science and Information Engineering, Tamkang University,

New Taipei City 251301, Taiwan
* Correspondence: bessiewu@scu.edu.tw (H.-P.W.); shchen@mail.tku.edu.tw (S.-H.C.)
† This paper is an extended version of our paper published in the work: Integrated Hamming Coding

Operation to Reversible Data Hiding Scheme for Encrypted Images.
‡ These authors contributed equally to this work.

Abstract: Encryption is a widely used solution to prevent privacy leakage and illegal spread when
sensitive images are uploaded to cloud storage. Hiding technology also allows confidential data
to be embedded into encrypted images for secret communication. As image accuracy without
distortion is essential within certain fields (such as medicine and the military), sensitive images must
be completely decrypted back into the original images. However, an encrypted image is a noise-like
pattern that is meaningless to a user; thus, it is difficult for a user to find the accurate image they
desire. Take keywords as search indexes and embed them in encrypted images for encrypted image
retrieval as an example. This idea has been extended by Chen and Line’s scheme to achieve higher
capacity with reversibility. The proposed scheme adjusts the coding results according to smooth and
complex images to increase its hiding capacity. In addition, two thresholds are designed to adjust the
predicted pixel value to be close to the original one. Experiments show that compared with the other
schemes, the proposed method achieves superior results. In addition, a hidden encrypted image can
be extracted from the cover image. Afterward, the hidden secrets can be completely extracted, and
sensitive images can also be perfectly restored.

Keywords: reversible data embedding; privacy protection; privacy leakage; image encryption;
hamming coding

1. Introduction

Private web albums rely on a cloud service for owners to back up personal photos.
This is a convenient but insecure platform that enables malicious users to illegally log in
and obtain sensitive content for illegal dissemination. Image encryption offers a feasible
solution to this potential security risk by allowing users to encrypt sensitive content into
meaningless content before uploading it. To confirm the security and validity of image
encryption, several techniques, such as compound homogeneous hyper-chaotic [1], Chaotic
Map [2], and Rubik’s cube method [3], are applied to image encryption. An encrypted
image exists in a kind of noise-like mode. Data cannot be obtained without the secret keys,
even through statistical calculations. However, meaningless image content is difficult for
the owner to manage. Data hiding can cleverly embed the search index into an encrypted
image for subsequent image retrieval so that owners can efficiently find specific photos
from a large number of encrypted images. In addition, privileged data, such as patient
name or identity, can be embedded in encrypted images to preserve a patient’s privacy.
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For some specific fields, such as medical and military fields, image distortion is
unacceptable. Therefore, after extracting the hidden data, the medical image must be
completely restored. Such methods are referred to as Reversible Data Hiding (RDH)
methods [4–7]. When reversibility is applied to encrypted images, it is called the RDHEI
method [8–32].

Zhang’s scheme [25] encrypts the most significant five bits (MSB) in the original
pixel through XOR operation with the random bit stream. Later, it compresses the least
significant bit (LSB) of the encrypted image to create space for embedding the secret.
However, the embedding rate of the test image “Lena” is very low, only 0.017 bpp (bits
per pixel). The decrypted image is similar to but not the same as the original image. Hong
et al. [11] applied side matching information to improve the quality of restoration, which
is about 1.21% higher than Zhang’s [25]. Qian et al. [16] used a progressive method
to achieve concealment and recovery quality of 0.043 bpp and 38.1 dB, respectively. To
increase confidentiality, Zhang [33] generated two different keys to encrypt images and
hide messages in images; the keys were then distributed to different authorized users.

To achieve reversibility, Ma et al. [14] proposed a reversible data embedding scheme
utilizing histogram shifting technology in encrypted images. Qian et al. [17] used error
correction codes in Huffman coding to increase the amount of hidden information. Based on
the pixel concept, which is similar to surrounding pixels, Cao et al. [8] compressed the image
to make room for data embedding. However, the spatial correlation changed after the image
was encrypted [12]. To resolve this shortcoming, Huang et al. [12] unitized a key design
to maintain the spatial correlation even after image encryption. Zhou et al. [32] predicted
pixels using neighboring pixels for secret embedding. Unfortunately, the pixels could be
fully restored. In order to improve the security, the scheme [10,30] uses homomorphic
encryption to encrypt the image. However, the scheme in [10,30] has low hiding capacity
and encounters the problem of pixel expansion. Using the histogram shifting technique,
Huang et al. [12] regard the MSB as the secret embedded in the LSB of the encrypted block.

To increase the hiding capacity, Yi et al. [22] utilized parameter binary tree labels to
mark the redundant relationship between pixels and blocks. In Yi et al.’s scheme [22], the
average hidden payload displayed based on the 2× 2 and 3× 3 block sizes were 1.752 and
2.003 bpp, respectively. Yin et al. [24] observed that the MSB of the original pixel and the
predicted pixel are usually the same, which can be used to make room for secret embedding.
In addition, Huffman coding is applied to reduce the size of the indicator, which is used to
indicate the number of MSBs that can be leveraged to embed secrets per pixel. Yin et al.’s
scheme [24] provides good pixel predictions to improve the hidden payload. However, an
image encrypted through MSB prediction is easily decoded through statistical analysis [34].
To address this issue, a hiding and encryption method [35] integrated with Hamming
coding is proposed in this paper. The MSB prediction can be shuffled using Hamming
coding with a secret key. To achieve good pixel prediction, the proposed scheme designs
two thresholds used in [24] to flexibly adjust the predicted value to be close to the original
one. To improve the hiding capacity of the technique in [35], the Hamming code encoding
is based on two different image types: smooth and complex images.

2. Proposed Scheme

The proposed scheme includes a secret embedding and encryption stage (in Section 2.1)
and a secret extraction and decryption stage (in Section 2.2).

2.1. Secret Embedding and Encryption Stage

For clarity, the stage is divided into four steps, namely prediction, difference calcula-
tion, Hamming coding calculation and shuffling, and secret embedding and encryption.
The details of each step are described as follows.

In the prediction step, since pixels are similar to their neighboring pixels, the pixels
located in the first row and first column are regarded as unchanged seed pixels, named
reference pixels, which are used to predict the neighboring pixels. Aside from the reference
pixels, the predicted pixels represented by p̂(i, j) are calculated via Equation (1) based on
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the neighboring pixels of the pixel p(i, j), where (i, j) is the location of the pixel in the
given image O, t1 and t2 are thresholds that control the predicted value close to p(i, j).
For example, as shown in Figure 1, the neighboring pixels of p(2, 2) are p(1, 1), p(1, 2)
and p(2, 1) and the corresponding pixel values are 100, 102 and 105, respectively. Because
p(1, 1) is less than p(1, 2) and p(2, 1), p̂(2, 2) will be 106 when t1 is 1.

Figure 1. A sample prediction for a complex image.

Next, in the difference calculation step, we use Equation (2) to convert p(i, j) and
p̂(i, j) into two bitstreams. The k-th bits corresponding to p(i, j) and p̂(i, j) are respectively
expressed as pk(i, j) and p̂k(i, j), where “mod” is a modular operation. For example, if
p(2, 2) is equal to 108, then p8(2, 2) is 0. Then, Equation (3) is used to calculate the difference
between the two numbers p(i, j) and p̂(i, j), where ⊕ is the exclusive OR operation. As
for the example shown in Figure 1, if p(2, 2) and p̂(2, 2) are 108 and 106, the result of
Equation (3) is 00000110, denoted by x(2, 2). With Equation (4), the kth most significant bit
of x(i, j) equal to 1 is denoted by cd(i, j). In the same example, if x(2, 2) is equal to 00000110,
the value cd(2, 2) will be 3. Next, c∗(i, j) is calculated with Equation (5) to represent the
number of consecutive MSBs of the original pixel equal to that of its predicted pixel. For
example, the value of c∗(2, 2) is 5. In other words, in the example, five MSBs of the pixel
p(2, 2) can be predicted by p̂(2, 2). The value of the 6th MSB of p(i, j) can be recovered as
the flipped value of p̂(2, 2). Thus, the c∗(i, j) + 1 MSB of the pixel p(i, j) can be used to hide
the secret.

p̂(i, j)=


p(i− 1, j− 1) if p(i−1, j−1)= p(i−1, j)= p(i, j−1)
max(p(i−1, j), p(i, j−1))+t1 if p(i−1, j−1)<min(p(i−1, j), p(i, j−1))
min(p(i−1, j), p(i, j−1))+t2 if p(i−1, j−1)> max(p(i−1, j), p(i, j−1))
p(i, j− 1)+p(i−1, j)−p(i−1, j−1) otherwise.

(1)

pk(i, j) =
p(i, j) mod 2k

2k−1 , k for 8 to 1 (2)

xk(i, j) = pk(i, j)⊕ p̂k(i, j), k = 1, 2, ..., 8 (3)

cd(i, j) = arg max
k

xk(i, j) = 1, k = 1, 2, ..., 8 (4)

c∗(i, j) = 8− cd(i, j) (5)

In the Hamming coding calculation and shuffling step, when applying Hamming
coding matrix [36], we convert the c∗(i, j) into a bit stream as an indicator, depicted by
(w1w2w3). Noted that since (w1w2w3) can only appear in eight cases, but there are actually
nine cases in the difference calculation, the cases are defined according to smooth and
complex images. The image judges the type of image based on the higher capacity in the
smooth type encoding or complex one. The image type (smooth and complex are marked
as “s” and “c”, respectively) is treated as a parameter saved in the database. If it is a smooth
image, values of c∗(i, j) equal to 0 and 1 fall into the same case. Therefore, with regard to
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the smooth image, the decimal value of the indicator (w1w2w3) is the value of c∗(i, j)− 1
if c∗(i, j) is larger than 0 (the fallen cases are recorded under “Label” in Table 1). If it is
a complex image, the values of c∗(i, j) equal to 7 and 8 fall into the same case; in such a
situation, if c∗(i, j) is equal to 8, then the decimal value of (w1w2w3) is adjusted to 7 (also
recorded under “Label” in Table 1). For example, in Figure 1, the value c∗(i, j) generates
the indicator (w1w2w3) as 101 if the image is a complex image.

Essentially, the value w1w2w3 can represent which case the pixel has fallen into, which
indicates the hiding capacity. Next, the value of w1w2w3 is assigned to Equation (7), and the
values of w∗1 , w∗2 and w∗3 can be found to make the condition mC satisfy the value of w1w2w3
(as shown in Equation (7)). The Hamming coding matrix is used as the first round to shuffle
the original values of w1w2w3 to produce the values of w∗1 , w∗2 and w∗3 . For example, if
c∗(2, 2) is equal to 5, w1w2w3 will be 101. While satisfying Equation (7)), the values of w∗1 ,
w∗2 and w∗3 will be 1, 1, and 0, respectively.

Subsequently, the value w∗1w∗2w∗3 is recalculated as w′1w′2w′3 for the second round of
shuffling with Equation (8), where r1r2r3 is generated by a random number generator
with the key s1. In the previous example, if the value of r1r2r3 is 001, w′1w′2w′3 will be
110⊕ 001 = 111.

In the secret embedding and encryption step, the bit stream of the embedded pixel
consists of three parts as shown in Figure 2, in which the embedded pixel is represented
by p′(i, j). The first part is for the Hamming encoding code, which expresses which case
the given pixel p(i, j) falls into. The first three MSBs of the embedded pixel equate to the
second-round shuffling result w′1w′2w′3.

As for the second part in Figure 2, the values of the “Payload” column in Table 1,
depicted by payload(i, j), indicate the number of secret bits to-be embedded to the pixel
p(i, j). In this part, the hiding capacity for different types of images is listed in Table 1. Here,
the fallen cases, the capacity, the code length, and pure payload are denoted by “Label”,
“Capacity”, “Code length” and “Payload”, respectively. The column “Label” indicates the
decimal value of the indicator (w1w2w3), “Capacity” refers to the amount of changeable
bits for a given pixel, “Code length” is the code length of Hamming codes, and “Payload”
represents the pure hiding capacity (i.e., the result of “Capacity” value minus the “Code
length” value). For example, for a complex image, the payload is 3 if Label is 5 (i.e.,
6− 3 = 3). If payload(i, j) is less than 0, no secret data are hidden. In addition, the original
|payload(i, j)|MSBs of the pixel p(i, j) are regarded as part of the to-be hidden secret data,
where |b| is the absolute value of b. When payload(i, j) is larger than 0, the second part
of the p′(i, j), bits of the secret data, are equal to the values from the 4th MSB bit to the
payload(i, j) + 3-th MSB bits of the p′(i, j). The third part is the last (5− payload(i, j)) bits
of p(i, j) if payload(i, j) is larger than 0; otherwise, the last five bits of the embedded pixel
are kept the same as those of p(i, j).

In the same example, p′(i, j) can be constructed as 11100100, and the first 3 MSBs
w′1w′2w′3 as 111; the second part for embedding payload(i, j) bits of secret data (e.g., obtain
three bits of the to-be hidden data (001 in this example), owing to the w1w2w3 equal to
101 in Table 1); and the third part as the last (i.e., 5− 3 = 2) bits of the original pixel (i.e.,
the last two bits of original pixel p(2, 2) are 00). If payload(i, j) is less than 0, no data are
hidden in this situation, and the 4th MSB onward to the last bit of p(i, j) is equal to that of
p′(i, j). For clarity, the k position of the pixel p′(i, j) is represented by p′k(i, j). In the image
encryption stage, the key s2 generates a random number r(i, j), where the k bit of r(i, j) is
represented as rk(i, j). Finally, p′(i, j) can be encrypted via Equation (9) with key s2. For
example, if rk(2, 2) is 01011001, the encrypted pixel p∗(2, 2) will be (10111101)2 = 189.
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Figure 2. Three pieces of the embedded pixel.

Table 1. The pure payloads of the smooth image and complex image.

Label
Smooth Image Complex Image

Capacity Code Length Payload Capacity Code Length Payload

0 0 3 −3 1 3 −2
1 3 3 0 2 3 −1
2 4 3 1 3 3 0
3 5 3 2 4 3 1
4 6 3 3 5 3 2
5 7 3 4 6 3 3
6 8 3 5 7 3 4
7 8 3 5 7 3 4

m =
[
(w∗1 w∗2 p̂5(i, j) w∗3 p̂6(i, j) p̂7(i, j) p̂8(i, j)

]
(6)

Let w1w2w3 = mC mod 2, where C =



1 0 1
1 1 0
1 1 1
0 1 1
1 0 0
0 1 0
0 0 1


(7)

w′1w′2w′3 = w∗1w∗2w∗3 ⊕ r1r2r3 (8)

p∗k(i, j) = p′k(i, j)⊕ rk(i, j), for k = 1 to 8 (9)

2.2. Secret Extraction and Decryption Phases

This phase consists of three steps: the decryption step, data extraction step, and
recovery step.

In the decryption step, the keys s1 and s2 will generate random bits r1r2r3 and r(i, j).
Using Equation (9), the encrypted pixel p∗k(i, j) can be decrypted as p′k(i, j), where rk(i, j)
is the random bit used to decrypt the k bits of pixel pk(i, j). Thus, the p′k(i, j) can be
reconstructed as 10111101⊕ 01011001 = 11100100.

In the data extraction step, the value of w∗1w∗2w∗3 can be obtained through Equation (8)
key s1. In the same example, the values of w′1w′2w′3 and r1r2r3 are 111 and 001, which
output w∗1w∗2w∗3 as 111⊕ 001 = 110. After that, the first 3 MSBs of the decrypted image
are integrated as w∗1w∗2w∗3 with predicted pixels p̂5(i, j), p̂6(i, j), p̂7(i, j) and p̂8(i, j) using
Equation (7) to calculate mC. mC determines w1w2w3. The decimal of w1w2w3 represents
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the indicator in column “Label” of Table 1. Mapping to a fallen case, if the corresponding
value of payload(i, j) is larger than 0, we can obtain the hidden data from the 4th MSB to
the 3 + payload(i, j)th MSB of p′(i, j) as shown in the second piece of Figure 2. In contrast,
if payload(i, j) is less than 1, no secret data are extracted.

In the previous example, the predicted pixel is p̂(2, 2) = 106; thus, the values of p̂5(i, j),
p̂6(i, j), hatp7(i, j) and p̂8(i, j) are 0, 1, 1, 0, respectively. The value of m is constructed as
[1100110] by Equation (6). With Equation (7), the value of w1w2w3 is 101. The decimal value
of w1w2w3 is equal to 5, which indicates payload(i, j) equal to 3. In the example, the hidden
data are extracted as 001 (from the 4th MSB to the 6th MSB of p′(2, 2)).

The algorithm for the recovery step is shown in Algorithm 1. The value of “Capacity”
in Table 1 (for clarity, the value depicted by payload(i, j), represents the number of bits that
can be recovered from the predicted pixel). Furthermore, two recovery situations are for
smooth images and complex images. For the smooth image, if payload(i, j) equals 0, no bits
of the predicted pixel p̂(i, j) can be used to recover the original pixel p(i, j), and the original
3 MSBs of p(i, j) are recovered through the hidden data extracted by other pixels. As for a
complex image, if payload(i, j) is less than 1, the |payload(i, j)|MSBs are also recovered by
the hidden data extracted by other pixels. The 4th MSB onward to the last bit of p(i, j) is
recovered by that of p′(i, j).

If payload(i, j) is larger than 0, the first payload(i, j)− 1 MSBs of the predicated pixel
are the same as the first payload(i, j) − 1 MSBs of the original pixel. In addition, the
payload(i, j)th MSB of p(i, j) is recovered by the flipped value of p̂(i, j). The last 5 −
payload(i, j) bits of p′(i, j) can be used to recover those of p(i, j). That is, the payload(i, j)th
MSB of p(i, j) is equal to 1− p̂8−payload(i,j)(i, j).

In the example, payload(i, j) is 6. Thus, the original first five MSBs are recovered as
01101 and the 6th MSB bit can be restored as 1 (flip the 6th MSB of p̂(2, 2)). The remaining
bits of p′(2, 2) can be used to recover that of p(2, 2) as 00. Thus, the reconstructed pixel is
01101100 (i.e., 108).

Algorithm 1 Recovering pseudo code

1: procedure RECOVERY(payload(i, j), p̂(i, j))
2: if payload(i, j) > 0 then
3: the payload(i, j)− 1 MSBs of p(i, j) are recovered by that of p̂(i, j).
4: the payload(i, j)th MSB of p(i, j) = 1− p̂8−payload(i,j)(i, j).
5: the last 5− payload(i, j) bits of p(i, j) are recovered by that of p′(i, j).
6: else if payload(i, j) ≤ 0 then
7: if Image is tagged as s then
8: the original 3 MSBs of p(i, j) can be recovered by the other pixels.
9: else if Image is tagged as c then

10: |payload(i, j)|MSBs are recovered by the other pixels.
11: the last 5 bits of p(i, j) are recovered by that of p′(i, j).

3. Experimental Results

This section shows the experimental results and compares them with the results
of [9,15,22,35,37,38]. Three test images: Lena, Baboon and Jetplane, as shown in Figure 3. In
addition, the measured metric PSNR (Peak Signal-to-Noise Ratio), as seen in Equation (10),
is used to evaluate the visual quality. After the image is encrypted, the encrypted results of
Figure 3a–c are shown in Figure 3d–f, respectively. The encryption result is meaningless
to users. The PSNRs of Figure 3d–f are 8.816, 9.524 and 8.677 dB, respectively. Figure 3g–i
shows that the attacker used the wrong key to decrypt the image, and the PSNRs are 8.797,
9.507 and 8.656 dB, respectively.

PSNR = 10× log10
2552

MSE
(10)
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MSE =
∑m−1

i=0 ∑n−1
j=0 (p∗(i, j)− p(i, j))

m× n
(11)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 3. Test images and the corresponding encrypted and decrypted with wrong key images.
(a) Lena. (b) Baboon. (c) Jetplane. (d) Encrypted result of (a). (e) Encrypted result of (b). (f) Encrypted
result of (c). (g) Illegal decryption of (d). (h) Illegal decryption of (e). (i) Illegal decryption of (f).

Hidden capacity is expressed in bits per pixel (bpp). Table 2 shows the hiding capacity
of the test images Lena, Baboon and Jetplane. Here, the field “Label” is mapped to the
falling case according to the value of c∗(i, j) and the image type (smooth or complex image),
and the “distribution” is the number of pixels classified into the same “Label”. “Payload”
refers to pure payload. The payloads of the images Lena, Baboon and Jetplane are 2.58, 1.19
and 3.43 bpp, respectively, which are higher than those in [35]. In addition, the experiments
showed that the prediction results for smooth images (such as Lena and Jetplane) were
better than those for complex images (such as Baboon), which resulted in smooth images
having greater hiding capacity than complex images did. Moreover, thresholds t1 and t2
settings are the flexible factors for different images to make the prediction pixel close to the
original ones. The close prediction causes a better hiding capacity. Table 3 compares the
payload (bpp) of the proposed scheme with the methods in [9,15,22,35,37,38]. The results
show that the proposed method outperforms the six other algorithms.
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Table 2. The pure payloads of images “Lena”, “Baboon” and “Jetplane”.

Label
Lena (t1 = − 1, t2 = 1) (t1 = 0, t2 = 0) Jetplane (t1 = 0, t2 = − 1)

Distribution Payload Distribution Payload Distribution Payload

−1 1023 − 1023 − 1023 −

0 8200 −24,600 34,591 −69,182 4457 −13,371
7493 −22,479 9990 −29,970

1 18,984 0 22,574 −22,574 8427 0
2 28,742 28,742 40,173 0 16,430 16,430
3 47,653 95,306 44,464 44,464 26,250 52,500
4 53,002 159,006 41,394 82,788 33,346 100,038
5 42,304 169,216 32,230 96,690 36,543 146,172
6 25,060 125,300 20,949 83,796 36,952 184,760

7 29,683 148,415 12,033 48,132 88,726 443,63012,713 50,852

Total - 677,883 - 313,943 - 899,166

Table 3. Comparison of payload on three images.

Method
Payload

Lena Baboon Jetplane

Scheme [35] 2.42 1.19 2.98
Scheme [15] 0.977 0.838 0.983
Scheme [37] 1.636 0.833 1.717
Scheme [38] 1.156 0.372 1.294
Scheme [22] 2.014 0.462 2.008
Scheme [9] 1.928 0.480 2.254

Proposed Scheme 2.58 1.19 3.43

4. Conclusions

Image encryption aims to encrypt sensitive data to protect privacy for the image
owner. This paper proposes a reversible data embedding scheme using Hamming coding
in encrypted images. On average, the code length is 3 bpp to expand the hiding capacity.
In the experiment, the hiding capacity of the proposed scheme is greater than that in
[9,15,22,35,37,38] for both smooth and complex types of images. In addition, the proposed
technique enables an encrypted image to be completely restored to its original state after
the hidden data are extracted.

Author Contributions: Formal analysis, P.-Y.L.; Methodology, Y.-H.C. and S.-H.C.; Visualization,
S.-H.C.; Writing–original draft, Y.-H.C., P.-Y.L. and H.-P.W.; Writing–review and editing, H.-P.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Ministry of Science and Technology of the
Republic of China, Taiwan, under Grant MOST 107-2221-E-182 -081 -MY3 and MOST 110-2221-E-
182-026-MY3, and in part by the Kaohsiung Chang Gung Memorial Hospital with grant number
CMRPD3M0011.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, H.; Zhang, X.; Yu, H.; Zhao, C.; Zhu, Z. An image encryption algorithm based on compound homogeneous hyper-chaotic

system. Nonlinear Dyn. 2017, 89, 61–79. [CrossRef]
2. Zhu, H.; Zhao, Y.; Song, Y. 2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption. IEEE Access 2019,

7, 14081–14098. [CrossRef]

http://doi.org/10.1007/s11071-017-3436-y
http://dx.doi.org/10.1109/ACCESS.2019.2893538


Appl. Sci. 2022, 12, 1966 9 of 10

3. Zhu, H.; Dai, L.; Liu, Y.; Wu, L. A three-dimensional bit-level image encryption algorithm with Rubik’s cube method. Math.
Comput. Simul. 2021, 185, 754–770. [CrossRef]

4. Coatrieux, G.; Le Guillou, C.; Cauvin, J.M.; Roux, C. Reversible watermarking for knowledge digest embedding and reliability
control in medical images. IEEE Trans. Inf. Technol. Biomed. 2008, 13, 158–165. [CrossRef]

5. Lee, S.; Yoo, C.D.; Kalker, T. Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans. Inf.
Forensics Secur. 2007, 2, 321–330. [CrossRef]

6. Celik, M.U.; Sharma, G.; Tekalp, A.M.; Saber, E. Lossless generalized-LSB data embedding. IEEE Trans. Image Process. 2005,
14, 253–266. [CrossRef]

7. Celik, M.U.; Sharma, G.; Tekalp, A.M. Lossless watermarking for image authentication: A new framework and an implementation.
IEEE Trans. Image Process. 2006, 15, 1042–1049. [CrossRef]

8. Cao, X.; Du, L.; Wei, X.; Meng, D.; Guo, X. High capacity reversible data hiding in encrypted images by patch-level sparse
representation. IEEE Trans. Cybern. 2015, 46, 1132–1143. [CrossRef]

9. Chen, K.; Chang, C.C. High-capacity reversible data hiding in encrypted images based on extended run-length coding and
block-based MSB plane rearrangement. J. Vis. Commun. Image Represent. 2019, 58, 334–344. [CrossRef]

10. Chen, Y.C.; Shiu, C.W.; Horng, G. Encrypted signal-based reversible data hiding with public key cryptosystem. J. Vis. Commun.
Image Represent. 2014, 25, 1164–1170. [CrossRef]

11. Hong, W.; Chen, T.S.; Wu, H.Y. An improved reversible data hiding in encrypted images using side match. IEEE Signal Process.
Lett. 2012, 19, 199–202. [CrossRef]

12. Huang, F.; Huang, J.; Shi, Y.Q. New framework for reversible data hiding in encrypted domain. IEEE Trans. Inf. Forensics Secur.
2016, 11, 2777–2789. [CrossRef]

13. Liao, X.; Shu, C. Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J.
Vis. Commun. Image Represent. 2015, 28, 21–27. [CrossRef]

14. Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible Data Hiding in Encrypted Images by Reserving Room before Encryption.
IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [CrossRef]

15. Puteaux, P.; Puech, W. An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images.
IEEE Trans. Inf. Forensics Secur. 2018, 13, 1670–1681. [CrossRef]

16. Qian, Z.; Zhang, X.; Feng, G. Reversible data hiding in encrypted images based on progressive recovery. IEEE Signal Process. Lett.
2016, 23, 1672–1676. [CrossRef]

17. Qian, Z.; Zhang, X.; Wang, S. Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multimed. 2014, 16, 1486–1491.
[CrossRef]

18. Qian, Z.; Zhang, X. Reversible data hiding in encrypted images with distributed source encoding. IEEE Trans. Circuits Syst. Video
Technol. 2015, 26, 636–646. [CrossRef]

19. Wu, X.; Sun, W. High-capacity reversible data hiding in encrypted images by prediction error. Signal Process. 2014, 104, 387–400.
[CrossRef]

20. Xu, D.; Wang, R. Separable and error-free reversible data hiding in encrypted images. Signal Process. 2016, 123, 9–21. [CrossRef]
21. Yi, S.; Zhou, Y. Binary-block embedding for reversible data hiding in encrypted images. Signal Process. 2017, 133, 40–51. [CrossRef]
22. Yi, S.; Zhou, Y. Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans.

Multimed. 2019, 21, 51–64. [CrossRef]
23. Yin, Z.; Abel, A.; Tang, J.; Zhang, X.; Luo, B. Reversible data hiding in encrypted images based on multi-level encryption and

block histogram modification. Multimed. Tools Appl. 2017, 76, 3899–3920. [CrossRef]
24. Yin, Z.; Xiang, Y.; Zhang, X. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding.

IEEE Trans. Multimed. 2020, 22, 874–884. [CrossRef]
25. Zhang, X. Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 2011, 18, 255–258. [CrossRef]
26. Zhang, X. Separable Reversible Data Hiding in Encrypted Image. IEEE Trans. Inf. Forensics Secur. 2012, 7, 826–832. [CrossRef]
27. Zhang, W.; Ma, K.; Yu, N. Reversibility improved data hiding in encrypted images. Signal Process. 2014, 94, 118–127. [CrossRef]
28. Zhang, X.; Qian, Z.; Feng, G.; Ren, Y. Efficient reversible data hiding in encrypted images. J. Vis. Commun. Image Represent. 2014,

25, 322–328. [CrossRef]
29. Zhang, X.; Long, J.; Wang, Z.; Cheng, H. Lossless and reversible data hiding in encrypted images with public-key cryptography.

IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 1622–1631. [CrossRef]
30. Zhang, W.; Wang, H.; Hou, D.; Yu, N. Reversible data hiding in encrypted images by reversible image transformation. IEEE

Trans. Multimed. 2016, 18, 1469–1479. [CrossRef]
31. Zheng, S.; Li, D.; Hu, D.; Ye, D.; Wang, L.; Wang, J. Lossless data hiding algorithm for encrypted images with high capacity.

Multimed. Tools Appl. 2016, 75, 13765–13778. [CrossRef]
32. Zhou, J.; Sun, W.; Dong, L.; Liu, X.; Au, O.C.; Tang, Y.Y. Secure reversible image data hiding over encrypted domain via key

modulation. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 441–452. [CrossRef]
33. Zhang, X.; Feng, G.; Ren, Y.; Qian, Z. Scalable coding of encrypted images. IEEE Trans. Image Process. 2012, 21, 3108–3114.

[CrossRef]
34. Dragoi, I.C.; Coltuc, D. On the security of reversible data hiding in encrypted images by MSB prediction. IEEE Trans. Inf. Forensics

Secur. 2021, 16, 187–189. [CrossRef]

http://dx.doi.org/10.1016/j.matcom.2021.02.009
http://dx.doi.org/10.1109/TITB.2008.2007199
http://dx.doi.org/10.1109/TIFS.2007.905146
http://dx.doi.org/10.1109/TIP.2004.840686
http://dx.doi.org/10.1109/TIP.2005.863053
http://dx.doi.org/10.1109/TCYB.2015.2423678
http://dx.doi.org/10.1016/j.jvcir.2018.12.023
http://dx.doi.org/10.1016/j.jvcir.2014.04.003
http://dx.doi.org/10.1109/LSP.2012.2187334
http://dx.doi.org/10.1109/TIFS.2016.2598528
http://dx.doi.org/10.1016/j.jvcir.2014.12.007
http://dx.doi.org/10.1109/TIFS.2013.2248725
http://dx.doi.org/10.1109/TIFS.2018.2799381
http://dx.doi.org/10.1109/LSP.2016.2585580
http://dx.doi.org/10.1109/TMM.2014.2316154
http://dx.doi.org/10.1109/TCSVT.2015.2418611
http://dx.doi.org/10.1016/j.sigpro.2014.04.032
http://dx.doi.org/10.1016/j.sigpro.2015.12.012
http://dx.doi.org/10.1016/j.sigpro.2016.10.017
http://dx.doi.org/10.1109/TMM.2018.2844679
http://dx.doi.org/10.1007/s11042-016-4049-z
http://dx.doi.org/10.1109/TMM.2019.2936314
http://dx.doi.org/10.1109/LSP.2011.2114651
http://dx.doi.org/10.1109/TIFS.2011.2176120
http://dx.doi.org/10.1016/j.sigpro.2013.06.023
http://dx.doi.org/10.1016/j.jvcir.2013.11.001
http://dx.doi.org/10.1109/TCSVT.2015.2433194
http://dx.doi.org/10.1109/TMM.2016.2569497
http://dx.doi.org/10.1007/s11042-015-2920-y
http://dx.doi.org/10.1109/TCSVT.2015.2416591
http://dx.doi.org/10.1109/TIP.2012.2187671
http://dx.doi.org/10.1109/TIFS.2020.3006382


Appl. Sci. 2022, 12, 1966 10 of 10

35. Chen, Y.H.; Lin, P.Y. Integrated Hamming Coding Operation to Reversible Data Hiding Scheme for Encrypted Images. In
Proceedings of 22nd IEEE/ACIS International Fall Virtual Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD2021-Fall), Taichung, Taiwan, 24–26 November 2021.

36. Greenwald, S.W. Matrix Multiplication with Asynchronous Logic Automata. Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2010.

37. Puteaux, P.; Puech, W. EPE-based huge-capacity reversible data hiding in encrypted images. In Proceedings of the 2018 IEEE
International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–7.

38. Puyang, Y.; Yin, Z.; Qian, Z. Reversible data hiding in encrypted images with two-MSB prediction. In Proceedings of the 2018
IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–7.


	Introduction
	Proposed Scheme
	Secret Embedding and Encryption Stage
	Secret Extraction and Decryption Phases

	Experimental Results
	Conclusions
	References

