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Abstract: (1) Background: According to Taiwan’s ministry of health statistics, the rate of breast cancer
in women is increasing annually. Each year, more than 10,000 women suffer from breast cancer, and
over 2000 die of the disease. The mortality rate is annually increasing, but if breast cancer tumors are
detected earlier, and appropriate treatment is provided immediately, the survival rate of patients will
increase enormously. (2) Methods: This research aimed to develop a stepwise breast cancer model
architecture to improve diagnostic accuracy and reduce the misdiagnosis rate of breast cancer. In
the first stage, a breast cancer risk factor dataset was utilized. After pre-processing, Artificial Neural
Network (ANN) and the support vector machine (SVM) were applied to the dataset to classify breast
cancer tumors and compare their performances. The ANN achieved 76.6% classification accuracy, and
the SVM using radial functions achieved the best classification accuracy of 91.6%. Therefore, SVM
was utilized in the determination of results concerning the relevant breast cancer risk factors. In the
second stage, we trained AlexNet, ResNet101, and InceptionV3 networks using transfer learning. The
networks were studied using Adaptive Moment Estimation (ADAM) and Stochastic Gradient Descent
with Momentum (SGDM) based optimization algorithm to diagnose benign and malignant tumors,
and the results were evaluated; (3) Results: According to the results, AlexNet obtained 81.16%,
ResNet101 85.51%, and InceptionV3 achieved a remarkable accuracy of 91.3%. The results of the three
models were utilized in establishing a voting combination, and the soft-voting method was applied
to average the prediction result for which a test accuracy of 94.20% was obtained; (4) Conclusions:
Despite the small number of images in this study, the accuracy is higher compared to other literature.
The proposed method has demonstrated the need for an additional productive tool in clinical settings
when radiologists are evaluating mammography images of patients.

Keywords: breast cancer; neural network; support vector machine; deep learning; convolutional
neural network

1. Introduction

According to the 2020 statistics globally sourced by the World Health Organization,
countries have reported that breast cancer is considered a dominant disease ranked the
highest cause of death in women [1]. Taking Taiwan as an example, according to the
Ministry of health’s 2019 death statistics of women, the leading cause of death among all
diseases such as diabetes, chronic respiratory disease, hypertension, chronic liver diseases,
etc., breast cancer mortality rate was ranked fourth. Its mortality rate significantly increased
from 12.8% (1439) in 2006 to 22.2% (2633) in 2019 [2]. Compared to the United States of
America (USA), the USA projected 41,760 deaths in 2019 at a rate of 19.9 per 100,000 women
per year, and more than 3.8 million have a history of breast cancer [3,4].

Despite the presence of an upsurge in the annual mortality rate, early detection of
breast cancer increases the survival rate of patients if the appropriate treatment is provided
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to avoid the need for a surgical procedure. R. Kate and R. Nadig (2016) [5] mentioned
that physicians and healthcare workers may make more informed decisions regarding a
patient’s condition if breast cancer survivability can be accurately predicted. In the last
decade, numerous data mining tools have been used to determine the factors affecting
the survival of patients with breast cancer [6–12]. Due to the advancement of technology,
many machine learning tools were used to predict and diagnose patients with breast
cancer [13]. These data mining tools have assisted doctors in making accurate diagnoses.
However, one of the most used machine learning methods for detecting or diagnosing
diseases are classifiers [14]. It was noted by [15–17] that ANN and SVM are among the
most commonly used supervised learning methods in the medical field for breast cancer
diagnosis. Despite, the fact that multiple classifiers were used to deal with medical-related
classification problems. Ren (2012) [18] suggested that when the training samples are
imbalanced, balanced learning with an optimized decision is employed to improve the
performance of both ANN and SVM. Although, some previous works have highlighted
significant gains in the area of deep learning to identify lesion in breast cancer [19]. Despite
the small number of images in this study, we developed a model architecture by exploiting
ANN, SVM, AlexNet [20], ResNet 101 [21], and InceptionV3 [22] networks to improve the
diagnostic accuracy and reduce the misdiagnoses rate of patients with breast cancer.

2. Materials and Methods

This study applied the use of machine learning methods in artificial intelligence to
train and construct machine learning models for breast cancer diagnosis using data related
to patients’ breast cancer risk factors and mammograms. In the first stage, ANN and
SVM were applied to the breast cancer dataset, and their performances were compared to
determine the relevant breast cancer risk factors. In the second stage, an image recognition
model was setup using pretrained AlexNet, ResNet101, Inception_V3 fed with preprocessed
mammograms. The networks were studied using Adaptive Moment Estimation (ADAM)
and Stochastic Gradient Descent with Momentum (SGDM) based optimization algorithms
to diagnose benign or malignant tumors, after which their accuracies were evaluated.
Since the accuracy of breast cancer survivability is essential, the stepwise approach has
significantly boosted the classification accuracy level. Furthermore, soft-voting was applied
to average prediction results obtained from the pretrained networks.

2.1. Research Framework

This study focuses on using machine learning in artificial intelligence to build a system
that can assist doctors in making diagnostic decisions. First, the patient’s breast cancer risk
factor data is inputted into the breast cancer diagnosis model, and the model is used to
classify the patient’s current status as normal or breast cancer, and when the result is normal,
the patient is followed up regularly; when the result shows a high risk of breast cancer, the
patient is further scheduled to undergo mammography for in-depth examination, and the
images obtained from mammography are processed and inputted into the breast cancer
confirmation model for suspected tumors. To determine whether the mammogram is
a benign or malignant tumor, the mammogram model is used to provide an additional
basis for the physician to make a judgment and allow the patient to receive the required
treatment. The overall structure is shown in Figure 1.

2.1.1. Classification

In this study, two classification methods, Backpropagation Neural Network (BPN) and
Support Vector Machine (SVM) were used to classify the breast cancer risk factors of breast
cancer patients.
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Figure 1. Breast cancer risk factor model. (The dotted lines on the top are the first phase of the model
were the BPN and SVM are applied to the dataset. The second dotted lines at the bottom are the
second phase of the recognition model where the deep learning networks and the single and majority
voting are applied).

2.1.2. Back Propagation Network (BPN)

Step1. Determining the network architecture
This includes variables that determine the input and output layers, select the number

of hidden layers, neurons in the hidden layer, and the activation function.

1. Input layer: Generally, data that are about to enter the input layer need to be pre-
processed to reduce possible prediction errors caused by different data units. After
the data were preprocessed by normalization, the weight adjustment rate of the data
should be similar to avoid weight dispersion. Additionally, the number of neural
processing units depends on the problem, and the number of neurons in the input
layer of this study is the number of attributes of the cancer data used.
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2. Output layer: The output layer represents the output variables of the network, and
the number of neural processing units depends on the problem. According to this
research, the output was set to benign and malignant.

3. Hidden layer: The hidden layer represents the interaction between the neural process-
ing units of the input layer. In this study, the hidden layer represents the interaction
between the input and output layers. The computation of the hidden layers, the
number of neurons, and the activation function were determined here.

(a) Number of hidden layers: A neural network with one hidden layer can approximate
the most complex functions with the required accuracy [23]. Therefore, this study sets
the hidden layers to one.

(b) The number of neurons in the hidden layer: if the number of neurons in the hidden
layer is too small, it will not be enough to construct a nonlinear relationship between
the output and the input, leading to an error, but overfitting may occur if it exceeds a
certain number. Studies have pointed out that the number of neurons in the hidden
layer can be set using either Equation (1) or (2).

number of neurons in the hidden layer = number of neurons in the input layer+number of neurons in the output layer
2 (1)

number of neurons in the hidden layer =
√

number of neurons in the input layer number of neurons in the output layer (2)

(c) Activation Function: the primary function of the activation function is to convert the
output value of the function into the output of the processing unit. In this study, a
sigmoid function, as shown in Equation (3) was used. This function converts the
output value to a value between zero and one.

f (x) =
1

1 + e−x (3)

Step 2. Finding the best parameter combination

1. Learning Rate and momentum: the learning rate is mainly used to control the magni-
tude of the weight each time it changes. If it is too large or too small, it may negatively
impact the network in ways such as (1), causing the model to converge too quickly to
a suboptimal solution or (2) causing the process to jam. Therefore, in this study, we
set a large initial value (e.g., 0.01) for the learning rate, and then gradually reduce it
during the training process, to strike a balance between speeding up the convergence
and avoiding the oscillation. This concept is also known as decaying learning rate as
shown in Equation (4).

αcurrent =
αinitial

1 +
(

rdecay × nepoch

) (4)

where αcurrent is the learning rate at the current stage, αinitial is the initial learning rate, rdecay
is the decay rate, nepoch is the current iteration number, In this study, αinitial was set to 0.01,
rdecay is set to 0.9 to prevent the learning rate from being close to 0 due to too long iterations,
and the minimum learning rate was set to 1× 10−8.

2. Convergence conditions: to find a stable and predictive network architecture, certain
evaluation indicators should set criteria for network architecture selection. Since this
study is a classification problem, the classification accuracy rate and Mean Square Er-
ror (MSE) are used as an index to evaluate the performance of the network prediction
ability. The accuracy rate and MSE are shown in Equations (5) and (6), respectively.

Accuracy Rate =
number o f sample classi f ied correctly

N
× 100% (5)

MSE =
∑N

i=1(ŷi − yi)
2

N
(6)
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where N is the total number of samples, ŷi is the predicted value of the ith sample, and
yi is the actual value of the ith sample. In this study, the convergence criteria were based
on the highest Accuracy Rate for selecting the best network architecture and parameter
combination was the first priority and the test sample with the smallest MSE value was the
second priority.

3. Support Vector Machine (SVM): is a machine learning method published by Cortes
and Vapnik in 1995 [24]. SVM has been widely used in recent years to solve various
classification problems [25], [26]. By calculating the training data, SVM can find an
optimal hyperplane and classification decision function to effectively separate the data
points belonging to two categories, and when a new case is predicted for classification,
the hyperplane can be used to determine the category to which the case belongs [27].

If you want to use SVM to deal with nonlinear problems, you can use the kernel
function to map the data group, mapping the observation point to a higher-dimensional
feature space, make it a linear hyperplane, and then find its solution; in other words, the
kernel function converts nonlinear data into linear data, and the classifier performs the
classification work. The definition of the core function is shown in Equation (7).

K
(
xi, xj

)
= ϕ(xi)

T ϕ
(
xj
)

(7)

where ϕ is the mapping function, x can be mapped to a higher-dimensional feature space
through ϕ.

The four commonly used core functions are Linear, Polynomial, Radial Basis Function
(RBF) and Sigmoid, as shown in Equation (8) to (11), respectively.

Lin_K
(
xi, xj

)
= xT

i xj (8)

Poly_K
(
xi, xj

)
=
(

γxT
i xj + r

)d
,γ > 0 (9)

RBFK(xi , xj)
= exp

(
−γ‖xi − xj‖2

)
,γ > 0 (10)

Sig_K
(
xi, xj

)
= tanh

(
xT

i xj + r
)

(11)

In the above equation, γ, r and d are the core parameters. Different core functions are
matched with different core parameters to have different classification effects. Therefore,
the selection of the core functions and parameters are important. According to Hsu et al.
(2010) [28], the selection of core functions should give priority to Radial Basis Function
(RBF) because of its advantages:

1. Radial Basis Function can classify non-linear and high-dimensional data.
2. By simply adjusting the Upper Bound parameter C and the core parameter γ, the

operation is less complex and achieves better prediction capability.
3. The input data is limited between 0 and 1 to reduce the complexity of the calculation

time.
4. Due to the high dimensional nature of the data used in this study, the RBF was used to

find the optimal C and γ, and input the test data to evaluate the prediction accuracy
rate (Accuracy Rate) of the model.

2.2. Image Recognition

In this study, a Convolutional Neural Network (CNN) was used for image recognition
of mammograms to determine the stage of breast cancer in patients. The functions of
the Convolutional Layer, Pooling Layer, and Fully Connected Layer of the CNN and the
parameters required to construct a CNN are described below.
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2.2.1. Convolutional Neural Network (ConvNet)

CNNs are types of biologically-inspired feed-forward networks characterized by
a sparse connectivity and weight sharing among their neurons [29]. It accepts two-
dimensional input data in contrast with other DL algorithms [30]. A CNN can also be
referred to as a sequence of convolution and subsampling layers where the entire network
will take an image input of size (h,w,c), where H is height, W weight, and C is the number
of channels in the image. Those channels are mostly referred to different (RGB) colors [31]
and output the conditional probability distribution over the categories p(y|x). This is
carried out by a sequence of the nonlinear level image [32]. For each pixel in an image, the
kernel multiplies the pixel and its adjacent pixels that the kernel covers by the opposite
kernel pixels. The products are then totalled and their results are set as the pixel value in
the convolved image at the preliminary pixel location [33].

The CNN architecture consists of three layers. Two consecutive conventional pooling
layers and a final fully-connected layer [34]

The convolutional layer: is the main layer that forms a ConvNet and is also the more
computationally intensive layer. Its main function is to extract features from the input image
pixels. The first few layers of ConvNet can extract features at lower levels. As the network
progresses to a deeper level, the features that can be extracted from the convolutional
layers gradually increases. The calculation is based on the Element-wise multiplication of
Input and Filter and then summed up. The so-called Filter (also known as Kernel) can be
regarded as a window composed of several weights, by which the window is padded on
the image, and each pixel value in the area covered by the window during the padding
is multiplied with the weight of the window at its corresponding position, resulting in a
convolution, hence, the name convolutional layer.

2.2.2. Pooling Layer or Downsampling

In most ConvNet, after the computation of the convolutional layer, the Input usually
enters the pooling layer. The main purpose of the pooling layer is to reduce the spatial
dimension of the Feature Map (Resolution) [35]. Downsampling is conducted along the
width and height of the image to reduce the computational requirements progressively
through the network and minimize overfitting.

The role of pooling is the process of reducing the image size by padding the image
through the Filter window after the convolution is completed. The image size was reduced
by extracting a specific pixel value (maximum or average) from the Filter window at each
transition. In addition, when the image size is reduced, it also means that the number of
parameters to be calculated reduces. As the complexity of the parameters decreases, the
computation time reduces.

Fully connected layers: In a typical ConvNet architecture, besides the convolutional
layer and the pooling layer, the last layer of ConvNet is the Fully Connected layer. When
Input starts from the beginning of ConvNet, it passes through several layers of convolu-
tional layer and pooling layer, and then passes through the last pooling layer (provided that
there is a pooling layer), when it is about to enter the fully connected layer, The neurons
in the previous pooling layer will connect to the feature values, which have already been
activated and the structure becomes a common neural network.

Transfer Learning: Pretrain network architectures on an extensive large dataset and
uses the trained model on a dataset with minimal size on a new classification task [36] The
application of transfer learning to ConvNet is to extract the features of pictures using the
weights in the pretrained model and using the extracted features for classification.

2.2.3. Stochastic Gradient Descent

The common algorithms used to calculate the gradient in training networks are
Stochastic Gradient Descent with Momentum (SGDM) and Adaptive Moment Estimation
(ADAM) [37,38]. In this study, we used different optimizers, including SGDM and Adaptive
Moment Estimation (ADAM), to train the network and later compared the performance of
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the two. The SGDM algorithm is shown in Equation (12), while the ADAM algorithm uses
Equations (13) and (14) and updates the network parameters with Equation (15).

Pl+1 = Pl − α∇E(Pl) + γ(Pl − Pl−1) (12)

ml = β1ml−1 + (1− β1)∇E(Pl) (13)

vl = β2vl−1 + (1− β2)[∇E(Pl)]
2 (14)

Pl+1 = Pl −
αml√
vl + ε

(15)

When there is enough data for training a model, a new model can be built and trained
from scratch, but when there is less data, the problem of overfitting can easily occur, and
then transfer learning can be used to overcome overfitting.

2.2.4. Soft Voting

After averaging the output probabilities of breast cancer obtained from each model
with Equation (16) [39], the Equation (17) was used to obtain the final classification prob-
ability result. Benign or normal cases of patients with breast cancer are represented as B
or N (benign means a lump is present in the breast and normal means no breast lump is
present), malignant is represented as M, and the classification probability is represented as
[B or N probability, M probability].

Outputi =
1
n

n

∑
j=1

netj(i) (16)

where Outputi is the output of the voting combination model, n is the number of CovNet
used for the voting model and netj(i) is the output i of the jth ConvNet.

ypredict = argmax[ p (i0 | x), p (i1 | x) ] (17)

In Equation (6), where y_predict is the category predicted using the combined voting
model; i_0 represents category B or N; i_1 represents category M, that is, if the classification
probability is greater than category B or N, the output is category B or N; if the classification
probability is greater than category M, then the output is category M.

2.2.5. Confusion Matrix

The model performance was evaluated through a standard data classification system
based on accuracy, sensitivity, and specificity. True Positive (TP) and true negative (TN)
results represent correctly classified cases. A test’s Accuracy is computed by estimating
the fraction of true positive and negative instances in all cases as computed in Equation
(18). Sensitivity, are correctly generated positive cases with either cancer or cancer free (also
known as TP rate) as in Equation (19). Specificity, correctly generated negative cases of
those without cancer or cancer-free (also known as the TN rate) as in Equation (20) [40].

Accuracy :
TP + TN

TP + FN + FP + TN
× 100 (18)

Sensitivity :
TP

TP + FN
(19)

Specificity :
TP

TN + FP
(20)
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2.2.6. Data Description

This study uses data obtained from the Breast Cancer Surveillance Consortium (BCSC),
Data Resource [41,42]. The breast cancer risk factor assessment dataset is used in construct-
ing the first stage of the breast cancer diagnosis model.

The breast cancer risk factor assessment dataset contains 2,392,998 cases with
12 attributes namely: menopause, age group, breast density, ethnicity, Hispanic origin, BMI
value, age, number of relatives with breast cancer, previous breast-related surgery, last
mammogram result, menopause mode, hormonal treatment or not, and response variable
Class. The response variable (Class) was to evaluate whether the patient had invasive
breast cancer or noninvasive breast cancer (Ductal Carcinoma in Situ). After removing the
cases with missing values in the data, it was found that the number of cases in the category
was imbalanced, so the Synthetic Minority Oversampling Technique (SMOTE) [43–45]
Duplicate method which is considered the “de facto” standard able to learn from imbalance
data was used to increase the categories with fewer cases, and after processing the data a
total of 88,763 cases were used to train and classify the model.

2.2.7. Data Pre-Processing

Before inputting the mammogram image into ConvNet for training, it is necessary to
preprocess the mammogram images, and the following steps were applied.

(1) Cropping—The original image was cropped to retain only the main Region of Interest
(ROI), i.e., the tumor area was cropped out. An example is depicted in Figure 2.

(2) Rotation—The image was rotated at a random angle within a specific range.
(3) Random vertical and horizontal image flip.
(4) Vertical and horizontal image rotation (Shift).
(5) Randomly zoom in or out in a specific area.
(6) Vertical and horizontal image mirroring (Reflection).
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2.2.8. Input Layer

The input size of all images was then scaled to the required input size for each
Convolutional Neural Network, 227 × 227 × 3 for AlexNet, 224 × 224 × 3 for ResNet101,
and 299 × 299 × 3 for Inception v3, where three is the number of color channels. This
means that the input images of these ConvNets are all RGB images (color images). The
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last fully linked layer of AlexNet, ResNet101, and Inception v3 was removed and replaced
with a new spreading layer and a Softmax layer, and the number of output neurons were
changed from 1000 to 2 (benign or normal (B or N) and malignant (M)).

2.2.9. Model Development

In this study, MATLAB R2018a software [46] was used in building the model. Since the
weights of a specific number of layers need to be fixed when conducting transfer learning,
the learned weights were used to extract the features of the image to reduce the probability
of overfitting, but at the same time allowing deeper convolutional layers to conduct higher-
level feature extraction of the image may also improve the classification accuracy of the
model. Therefore, we let the deeper convolutional layers of ResNet101 and Inception v3
with deeper network depth learn the images (i.e., the weights of the deeper layers were not
fixed) to compare and find the best fixed-weight layers between the two models. Since the
network depth (number of layers) of AlexNet was not as deep as that of ResNet101 and
Inception v3, the number of layers with fixed weights was not explored here.

2.2.10. Back Propagation Network (BPN)

The number of neurons in the input layer of BPN is the number of attributes in the
BCSC breast cancer risk factor data set (there were 12 neurons in the input layer), and
the number of neurons in the output layer is used to determine the presence of invasive
breast cancer or noninvasive breast cancer (N = 1). Based on this, to find the best network
architecture for BPN, we set the hidden layer of the network to one and determined the
number of neurons in the hidden layer using the Equations (21) and (22).

Number of neurons in the hidden layer =
12 + 1

2
= 6.5 (21)

Number of neurons in the hidden layer =
√

12× 1 = 3.46 (22)

According to the above equations, the number of neurons in the hidden layer was
set to two, three, four, five, six, seven, and tested. The sigmoid function was used for the
activation function, and the results were averaged over three times for each number of
neurons (Table 1).

Table 1. Selection of the number of neurons in the hidden layer of 1BPN.

Number of
Neurons in the
Hidden Layer

First Result Second Result Third Result Average

2 73.1% 74.0% 73.6% 73.6%
3 74.4% 73.4% 74.1% 73.9%
4 74.6% 74.0% 75.2% 74.6%
5 74.3% 74.8% 74.8% 74.6%
6 76.6% 76.4% 76.7% 76.6%
7 76.1% 74.9% 76.5% 75.8%

Bold text indicates the highest accuracy rate.

The BCSC breast cancer risk factor dataset was entered into the BPN, and the results
were obtained by training the architecture with six hidden layer neurons, 31,901 cases with
cancer were correctly classified, while 10,212 cases were classified as not having cancer.
Among those without cancer, 12,291 cases were correctly classified, and 34,339 cases were
classified as having cancer.

The experiment performed on our breast cancer risk factors model accumulated the
results of the various evaluation metrics. Tables 2 and 3 depicts the accuracy, sensitivity,
and specificity for the BPN and SVM. The accuracies of the BPN and SVM are 74.63% and
91.6%, respectively, showing a march between the predicted and the actual instances.
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Table 2. BPN confusion matrix.

Prediction
Category

Genuine Category

Cancer Cancer-Free Total Accuracy Sensitivity Specificity

Cancer 31,901 10,212 42,113 74.63% 24.24% 75.75%
Cancer-free 12,291 34,339 46,630 25.35% 73.64% 26.36%

Table 3. SVM confusion matrix.

Prediction
Category

Genuine Category

Cancer Cancer-Free Total Accuracy Sensitivity Specificity

Cancer 42,092 21 42,113 91.6% 0.05% 99.95%
Cancer-free 7437 39213 46,650 8.4% 84.06% 15.94%

The sensitivity and specificity are inversely proportional, meaning as the sensitivity
increases, the specificity decreases and vice versa [47]. For instance, the BPN sensitivity is
24.24% whiles the specificity is 75.75%. under cancer-free the sensitivity is 73.64% whiles
the specificity is 26.36%.

2.2.11. Support Vector Machine (SVM)

The core function used here is the Radial Basis Function (RBF) SVM with outputs
zero (normal) and one (breast cancer), and the algorithm used to train this SVM is the
Sequential Minimal Optimization. The SVM was then cross-validated 10 times to obtain a
loss of 0.0842, i.e., a classification accuracy of 91.6% and an AUC of 0.96. According to the
classification results, 42,092 cases were correctly classified, and 21 cases were not classified
as having cancer. Among those without cancer, 39,213 cases were correctly classified, and
7437 cases were classified as having cancer (Table 3).

From the above experimental results, we found that both SVM and BPN were excellent
in correctly classifying cancer patients. The performance of the support vector machine was
better than that of the backpropagation neural network in terms of classification accuracy
(91.6%) and AUC (0.96).

2.2.12. Breast Cancer Validation Model

Due to personal information attached to the mammograms; data collection was dif-
ficult. As a result, the amount of data obtained was relatively small, and when the data
is small, training the network from scratch can easily cause overfitting and affect the gen-
eralization of the model. Therefore, transfer learning will be ideal for training the image
recognition model.

Since the number of mammograms in this study was very minimal, among which
the benign tumor images are the least, the diagnostic results of benign and normal were
combined into one category (B or N), and malignant (M) into another category, this reduces
the occurrence of overfitting.

3. Results

1. AlexNet–Optimizer: Adaptive Moment Estimation (ADAM)

The classification accuracies obtained from the training and testing on three occasions
were 79.71%, 81.16%, and 81.16%, respectively, with an average classification accuracy of
80.68% (Table 4).
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Table 4. AlexNet classification accuracy (ADAM).

First Accuracy Rate Second Accuracy Rate Third Accuracy Rate Average

79.71% 81.16% 81.16% 80.68%
Bold text indicates highest accuracy rate.

2. AlexNet–Optimizer: Stochastic Gradient Descent with Momentum (SGDM)

The classification accuracies obtained from the training and testing on three occasions
were 81.16%, 85.51%, and 84.06%, and the average classification accuracy was 83.58%
(Table 5).

Table 5. AlexNet classification accuracy (SGDM).

First Accuracy Rate Second Accuracy Rate Third Accuracy Rate Average

81.16% 85.51% 84.06% 83.58%
Bold text indicates highest accuracy rate.

Comparing the average accuracy in Table 4 with that of Table 5, the classification
accuracy obtained by AlexNet using SGDM as the optimizer during training was better
than that obtained using ADAM. The results were 24 of the benign or normal cases were
correctly classified and six were misclassified as malignant; 32 of the malignant cases were
correctly classified and seven were misclassified as benign or normal (Table 6).

Table 6. AlexNet classification results.

Prediction Category
Genuine Category

B or N M

B or N 24 7
M 6 32

3. ResNet101–Optimize: Adaptive Moment Estimation (ADAM)

From the experimental results, it can be found that when using the ADAM optimizer,
the average classification accuracy of 81.16% was obtained after fixing the weights of each
layer in front of module 5c, 83.09% was obtained after fixing the weights of each layer in
front of module 5b, and 81.16% was obtained after fixing the weights of each layer in front
of module 5a (Table 7).

Table 7. The classification accuracy of different fixed layers.

Fixed-Weight Layer Classification
Accuracy 1

Classification
Accuracy 2

Classification
Accuracy 3 Average

Before fixing module 5c
(1-333) 81.16% 79.71% 82.61% 81.16%

Before fixing module 5b
(1-323) 82.61% 84.06% 82.61% 83.09%

Before fixing module 5a
(1-311) 79.71% 82.61% 81.16% 81.16%

Bold text indicates highest accuracy rate.

It can be seen from Table 7 that not allowing all the deeper convolutional layers of
the model to perform higher-level feature extraction on the image will improve the classi-
fication accuracy. From the perspective of ResNet101, when using the ADAM optimizer,
fixing the weights of the first to the 323rd layer can make the model develop a higher
classification accuracy.
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4. ResNet101–Optimizer: Stochastic Gradient Descent with Momentum (SGDM)

From the experimental results, it was observed that the average classification accuracy
of 79.71% was obtained after fixing the weights of each layer in front of module 5c, 82.61%
was obtained after fixing the weights of each layer in front of module 5b, and 79.71% was
obtained after fixing the weights of each layer in front of module 5a (Table 8).

Table 8. Accuracy rate of each classification with fixed number of layers (SGDM).

Fixed-Weight Layer Classification
Accuracy 1

Classification
Accuracy 2

Classification
Accuracy 3 Average

Before fixing module 5c
(1-333) 79.71% 81.16% 78.26% 79.71%

Before fixing module 5b
(1-323) 82.61% 84.06% 81.16% 82.61%

Before fixing module 5a
(1-311) 81.16% 78.26% 79.71% 79.71%

Bold text indicates highest accuracy rate.

From Table 8, it can be observed that when ResNet101 uses SGDM as the optimizer,
fixing the weights of layer one to layer 323 still results in a better average classification
accuracy rate of 82.61%. Although, the performance is not as good as when using ADAM
(83.09%). Generally, the classification accuracy rate when using ADAM optimizer is still
slightly better than when using SGDM. After applying the data to ResNet101 with ADAM
as the optimizer, the classification accuracy of 85.51% was obtained, and the results were;
25 of the benign or normal cases were correctly classified and five were misclassified as
malignant; 34 of the malignant cases were correctly classified and five were misclassified as
benign or normal (Table 9).

Table 9. ResNet101 classification results.

Prediction Category
Genuine Category

B or N M

B or N 25 5
M 5 34

5. Inception v3–Optimizer: Adaptive Moment Estimation (ADAM)

From the experimental results, it can be observed that when using ADAM as the
optimizer, the average classification accuracy of 85.51% was obtained after fixing the
weight of each layer before the merge point mixed10. The average classification accuracy of
87.44% was obtained after setting the weights of each layer before the merge point mixed9;
the average classification accuracy of 90.71% was obtained after setting the weights of each
layer before the merge point mixed8 (Table 10).

Table 10. Fixed classification accuracy of different layers (ADAM).

Fixed-Weight Layer Classification
Accuracy 1

Classification
Accuracy 2

Classification
Accuracy 3

Average
Accuracy

Before fixing mixed10
(1-281) 85.51% 86.96% 84.06% 85.51%

Before fixing mixed9
(1-250) 88.41% 86.96% 86.96% 87.44%

Before fixing mixed8
(1-230) 89.86% 91.30% 89.86% 90.71%

Before fixing mixed7
(1-198) 82.61% 84.06% 81.16% 82.61%

Bold text indicates highest accuracy rate.
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From Table 10, it can be observed that the classification accuracy of Inception v3
increases as the deeper layers are allowed to conduct higher-level feature extraction on
the images. For this reason, the number of layers with fixed weights were reduced to test
whether reducing the number of layers with fixed weights could increase the classification
accuracy again (i.e., fixed weights from layer one to layer 198).

From Table 10 the results showed that the classification accuracies obtained through
three intervals of training and testing were 82.61%, 84.06%, and 81.16%, with an average
accuracy of 82.61%; in other words, higher classification accuracy was obtained when the
weights of Inception v3 were fixed from layer one to layer 230.

6. Inception v3–Optimizer: Stochastic Gradient Descent with Momentum (SGDM)

From the experimental results, it can be observed that when using SGDM as an
optimizer, the average classification accuracy of 83.09% was obtained after fixing the
weight of each layer before the merge point mixed10. The average classification accuracy
of 81.64% was obtained after fixing the weights of each layer before mixed9; 83.58% was
obtained after fixing the weights of each layer before mixed8 (Table 11).

Table 11. Fixed classification accuracy of different layers (SGDM).

Fixed-Weight Layer Classification
Accuracy 1

Classification
Accuracy 2

Classification
Accuracy 3

Average
Accuracy

Before fixing mixed10
(1-281) 84.06% 82.61% 82.61% 83.09%

Before fixing mixed9
(1-250) 81.16% 79.71% 84.06% 81.64%

Before fixing mixed8
(1-230) 84.06% 81.16% 85.51% 83.58%

Bold text indicates highest accuracy rate.

As shown in Table 11, the highest classification accuracy is still obtained when using
the SGDM optimizer with fixed weights from the first layer to the 230th layer, but in
contrast with when using the ADAM optimizer. The second-highest classification accuracy
was obtained using SGDM optimizer with fixed weights from the first layer to the 281st
layer instead of the fixed weights from the first layer to the 250th layer. It was also observed
that the overall performance of Inception v3 using ADAM optimizer was better than the
performance using SGDM.

Since the best classification accuracy was obtained using Inception v3 with ADAM
optimizer and transfer learning with fixed weights from the first layer to the 230th layer, the
test data set was integrated into this completed model and 91.3% classification accuracy was
obtained. Twenty-eight (28) of the cases (benign or normal cases) were correctly classified,
and two cases were incorrectly classified as malignant, 35 of the malignant cases were
correctly classified, and four were incorrectly classified as benign or normal (Table 12).

Table 12. Inception v3 classification results.

Predicted Category
Genuine Category

B or N M

B or N 28 4
M 2 35

Generally, from the classification results of AlexNet, ResNet101, and Inception v3,
Inception v3 had the best performance, while the classification accuracy of ResNet101 was
higher than that of the AlexNet. It can also be observed that as the network deepens, the
classification accuracy increases. The results obtained from the training and testing of every
single model are summarized in Tables 13–15.
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Table 13. Accuracy rates of each single model.

AlexNet ResNet101 Inception v3

Training 83.58% 83.09% 90.71%
Testing 81.16% 85.51% 91.30%

7. Soft-voting model

Table 14. Soft-voting model classification results.

Predicted Category
Genuine Category

B or N M

B or N 29 3
M 1 36

8. Majority voting

Table 15. Majority voting model classification results.

Predicted Category
Genuine Category

B or N M

B or N 27 4
M 3 35

The accuracy of the soft-voting model is 94.20%, which is about 2.9% higher than the
accuracy of the single model Inception v3. Table 14 shows the classification results of the
soft-voting model, and Table 15 shows the classification results of the majority voting. It can
be observed that applying soft-voting can successfully reduce the cases of misclassification
and improve the classification accuracy, and this led to a significant classification accuracy
rate of 89.85%.

4. Discussion

The proposed model demonstrates that it is capable to Improve diagnostic accuracy
and reduce the misdiagnosis rate of breast cancer. The results showed that when the
three networks were compared using ADAM and SGDM, the InceptionV3 achieved the
highest accuracy 91.30% when compared to [48]. This was due to the deep network of the
InceptionV3 after being fine-tuned. Although, the AlexNet is capable of achieving excellent
results on highly challenging datasets using purely supervised learning but if a single
convolution layer is removed the network’s performance degrades [49]. In relation to this,
it was observed when we fix module 5a layers in Table 7 and it degraded the performance
of the network, resulting to an accuracy of 81.16%.

In comparing ADAM and SGDM, ADAM outperformed SGDM since its adaptation of
learning rate scale for different layers instead of hand-picking manually in SGDM [50].

Regarding SVM and ANN, the SVM outperformed the ANN and this is attributed to
the ability of SVM handling large feature space, avoiding overfitting and condensing of
information for a given dataset [51]. In this regard, the SVM results have demonstrated a
highly classification accuracy of 91.60%.

Although, our soft voting model was able to correct misclassified data using a single
model. We are cognizant of the fact that there was a small proportion of the data used
with limited computational resources which has hindered our efforts to perfectly fine-tune
the networks. Thus, in future research, we would consider employing a large dataset and
carryout more exhaustive tests to optimize the performance of the deep learning networks
and test other algorithms such as AdaBelief [52] optimizer which converges fast and has
high accuracy on image classification and language modeling.
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5. Conclusions

This research was aimed at developing a stepwise breast cancer model architecture
to improve diagnostic accuracy and reduce the misdiagnosis rate of breast cancer. In the
first stage, a breast cancer risk factor dataset was used. In the second stage, an image
recognition model was set up using pretrained AlexNet, ResNet101, Inception_V3 fed
with preprocessed mammograms. The networks were studied using Adaptive Moment
Estimation (ADAM), and SGDM based optimization algorithms to diagnose benign or
malignant tumors, and their accuracies were evaluated. Since the accuracy of breast cancer
survivability is essential, the stepwise approach has significantly boosted the classification
accuracy level. It was observed that using a single model may misclassify a patient with
benign or normal tumor as malignant; or misclassify a patient with malignant tumor as
benign or normal, resulting in a missed opportunity to receive appropriate treatment.
However, using multiple ConvNets voting models, soft voting can classify several cases
that were originally misclassified using a single model to the correct category. This allows
patients to have more time to receive proper treatment.
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