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Abstract: Acoustic micromembranes (AuMs) are attracting more and more attention due to their
unparalleled light weight but high sound transmission loss (STL) at low frequencies. Previous works
showed that ApMs feature remarkable sound insulation compared to homogeneous plates with the
same surface mass density, while some follow-up works claimed that the outstanding insulation
capability of small AuMs samples disappears when the sample size grows. To uncover the working
mechanisms underpinning the unique behavior of AuMs, in this paper, we present theoretical and
numerical studies of AuMs that couple the vibrations of the supporting frame and the AuMs within
the lattice. The results show how the global response in the STL of the AuMs assembly is related to
the geometrical parameters of AuMs cells and the lattice. This study provides a theoretical foundation
for designing a large-scale yet high-insulation assembly of AuMs, and paves the way for applying
AuMs for blocking low-frequency noise.

Keywords: acoustic metamaterials; micro-membrane; low frequency insulation

1. Introduction

Acoustic metamaterials (AMMs), as a family of macroscopic artificial composites, typi-
cally consist of many subwavelength-scaled structures arranged in a specific pattern so that
they produce an optimized combination, not available in nature, of two or more responses
to acoustic excitation [1]. In recent years, many acousticians have shown great interest in
studying acoustic metamaterials [1-5] and have uncovered many new phenomena different
from those associated with traditional acoustic materials [6-13].

Acoustic metamaterials have shown attractive features in noise control engineering.
In 2015, Sui et al. performed experiments on the transmission loss (TL) of metamaterials
arranged in a honeycomb frame [14] and showed that a significant TL could be achieved at
low frequencies if the membrane was only 0.2 mm thick. We call such membrane-based
metamaterials acoustic micromembranes (AuMs). Fellows further investigated Sui et al.’s
approach, and found a way to optimize the TL in a honeycomb AMM [15,16]. In our recent
work [17], we showed that the remarkable sound insulation at low frequencies rose from
the high equivalent stiffness of the whole composite. When AuMs’ thickness is doubled, it
provides an additional 18 dB of TL compared to traditional materials. When the size of an
ApuM is doubled, the TL decreases by 12 dB.

Although ApMs have very good TL at low frequencies and are lightweight, they
are inapplicable when extending to large sizes [18]. Although efforts have been taken to
design large-scale metamaterials, the low-frequency TLs have not been satisfactory [19-21].
To solve this problem, in this study, we theoretically investigated an array of square
ApMs mounted within a lattice frame. If the frames are made hard enough to provide an
approximately rigid boundary for every AuM cell, the TL of the whole assembly can be
regarded as the same as that of a single cell. However, in practice, the frames are often
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somehow compliant, and it is thus difficult to demarcate rigidly each cell of the AuMs. In
this work, by coupling the vibration of the frame and the AuMs within the lattice, we show
how the global response of the TL of the AuMs assembly is related to the number of AuM
cells and to the dimensions of the lattice.

2. Basic Calculation of a Square Membrane and Its Cross-Frame

Figure 1a shows the geometry of the AuM array and its frames, which are investigated
in this paper. The structure is composed of a regular array of square holes in a solid
material that is covered by a rubber membrane. The flexible membrane is clamped at the
edges of the square holes, and the frame divides the whole membrane into a large number
of AuMs. Each cell of the membrane, i.e., each AuM, has side length r and thickness
t. Each cell of the lattice has width a and thickness b. In this work, the membrane is
assumed to be made of latex rubber with a Young’s modulus E;, = 7 MPa, mass density
pm = 1000 kg/m?3, and Poisson’s ratio j,; = 0.49; the frame is made of acrylic with Young’s
modulus Ef = 3.2 x 10° Pa, mass density p r=1190kg/ m?3, and Poisson’s ratio y § =035
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Figure 1. (a) Structure of the AuMs. Each ApuM is a small square held within a larger lattice
frame. Each AuM has length r and thickness t; each cell of the lattice has width a and thickness b.
(b) Coordinate of an ApM cell used for calculating vibration.

As shown in Figure 1a, the investigated AuM was a 2D acoustic metasurface aiming
at blocking low-frequency waves propagating in the out-of-plane direction. Although
it is similar to a 2D crystal with a lattice parameter of (r + a), the presented work is not
a study of photonic crystals. Studies on phononic crystals investigate in-plane waves
that propagate along the crystal’s surface, in which wave-matter interaction (for example,
Bragg reflections) occurs when the operating wavelengths are comparable with the lattice
constant. In contrast, the AuMs here are used as a barrier for blocking incoming waves, in
which the interaction of the metasurface with the out-of-plane waves are considered, and
the lattice constant is much smaller than the operating wavelength.

The first step is to calculate the local response of each AuM cell. In this work, the
membrane is made of latex rubber, and the size of an AuM is so small that it can be
considered a thin plate when performing the calculation [22]. The reason for treating the
AuM as a thin plate is because the membranes in each cell are rather small compared to the
wavelength of the operating frequency. Such an assumption of thin plate approximation
was adopted and verified in our previous work [17]. Assuming a thin plate is vibrating
at a low frequency, the effective stiffness Kmem and effective mass Mmem of a AuM can be
obtained. For each ApM, the vibration amplitude can be written as [17,23,24]:
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where 7 is the vibration amplitude of the AuM at position (x,y); E is Young’s modulus;
u is Poisson’s ratio; p and t are the density and thickness of the AuM, respectively; and
P is the pressure on the AuM (for incident sound pressure p;, then P = 2p;) [17]. The
coordinate system is shown in Figure 1b. The average vibration amplitude can be calculated
by integration. Equating the kinetic energy calculated by lumping parameters and the sum
of the energy in each infinitesimal part of the AuM, the equivalent stiffness and mass of a
vibrating ApM can be written, respectively, as [17]:

8TER
Kmem = —r———— 2
mem 31’2(1 - ]/l2) 7 ( )
Mimem = 2.25tp1? . (3)

Now that the local response of each ApM with rigid boundaries has been obtained, the
next step is to calculate the vibration of the frame. The frame holds the whole membrane and
consists of (n + 2) x (n 4 2) horizontal and vertical beams, where 7 is assigned as shown in
Figure 2. To calculate the vibration of this arrangement of beams, a load distribution method
is introduced. The idea is to separate the force into horizontal (x-direction) and vertical
(y-direction) components. To calculate how the force is shared in different directions, we
suppose that the vertical force is unknown, and then solve the problem by obtaining the
balancing force required to produce equal displacement in each direction. Basically, this
method, treating the supporting frame of AuMs as a grille, is a common approach in the
force analysis of a grillage beam. The uniform load on the grille’s beams is equivalent to
the sum of the loads at the cross-points, while the loads at the cross-points can be further
decomposed into its x- and y-direction components. Interested readers can find details of
this method in Ref. [25]. Here, the horizontal forces are designated Fyq, Fip, ..., Fuu, as
shown in Figure 2. For the point (¢, {) in Figure 2, we obtain [25]:

FI
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where [U;] and [V;] are the matrices describing the displacement of a horizontal and a
vertical beam under unit load, respectively; [Fy;] and [Fjs| are the vectors describing load

distribution in the horizontal and vertical directions, respectively; and [Fi’g} is a vector

representing the force acting on each cross-point. Notice that this adopted method is valid
below the first resonant frequency of the supporting frame. Since our investigated AuMs
for noise insulation effectively work in the low-frequency range, it lies in the valid range of
the method presented here. In this paper, all the forces acting on a point are the same and
can be written as Pi% = (a+7)*- P. Then, by solving the set of equations, the value of the
unit force acting horizontally can be obtained.

The displacement of every cross-point caused by a horizontal force can be obtained by
the following equations

Le<Lp 7= ?gffL%f - (1+2L5)Lc) (1 - Lf)ng
FyiL

/ ®)
Le>Ly 1= 27 [(3 _2Lf)LC - Lf} (1= Lo)’L3 5

where the meanings of the variables are assigned as shown in Figure 3. In Equation (5),
Fy; is the force acting on a cross-point of the beam, L. is the point to be calculated, Ly is
the distance of the force from one side of the boundary, L is the length of the beam, E;
is the Young’s modulus of the frame, and [ is the inertia moment of the beam, for which
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I = (ab%)/12. For a certain cross-point (¥, ¢), the displacement can be obtained by adding
all the #; calculated from the horizontal-acting forces on every cross-point.

0 1 2 g n n+1
1 UF" 1 [F2 - >F"ﬁ = uF1 L
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Figure 2. The forces acting on each cross-point of the frame. The assignment of symbols follows the
numbering scheme shown.

]

calculation point

Figure 3. Horizontal force Fy; acting on a beam of length L. L and L. are, respectively, the distance
of the force and the calculation point from the left side of the beam.

The entire assembly of AuMs provides two paths for sound transmission: via the
AuMs and via the frame. Most of the works so far have considered the contribution from
the AuMs [14-17]. However, for large-size AuM assemblies [18], the contribution from
the frame cannot be ignored, and a lumped parameter method can be applied here since,
in this low-frequency range, the lattice constant of the frame is much smaller than the



Appl. Sci. 2022, 12,1950 50f11

operating wavelength. For the supporting frame, the displacements of each of the cross-
points can be calculated by Equations (4) and (5), and can be written as yz. Then, the
average displacement can be written as

1 n+1 n+1

Y e (6)

=—"os3
(n+2)? i;) =0

Based on Equation (6), the stiffness of the frame Ky can be further derived as

@)
Similar to Equation (3), the effect of the mass of the frame can be calculated as

2 2 2 2 Zgol Z;li()l ’7121‘
My = psb (12 =2 (n+1)") (n+2)*- ———— 8)
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where p; is the density of the frame material and My is its mass.

3. Response of the Supporting Frame

As shown in Figure 1, the whole membrane can be regarded as being composed of
a large number of independent ApMs within the frame. When the vibration of the frame
is small, it does not affect the ApMs much; hence, the response of the whole assembly is
given by Equations (2) and (3). This means that the TL of the whole assembly will be no
different from that of a single AuM, which holds for the case of a small assembly. However,
when the assembly is larger, the vibration of the lattice frame can no longer be ignored and,
in this case, the boundary of any two nearby AuMs cannot be regarded as rigid. So, now it
is the case of a membrane mounted on a compliant frame, in which the effective stiffness
Ke and effective mass M, need to be calculated.

First, the displacement of the cross-points of the supporting frame can be obtained
according to Section 2. Then, the averaged displacement of each ApM cell can be approxi-
mately evaluated as the sum of the displacement of an AuM given by Equation (1) (local
response) and the averaged displacement of the four cross-points of the surrounding frame.
With the number of AuMs assigned by their corner coordinates (top left corner) as shown
in Figure 2, the displacement of the ApM, numbered (¥, {), can be obtained as:

Mye 10w T v T E) o
1 = X)) - ©)

—/ =
Xy =X+

where ¥ is the average displacement of the AuM with rigid boundaries, 7;; is the displace-
ment of the frame at cross-point (i, j), and 7(w)(¢) is the average displacement surrounding
the AuM numbered (¥, ¢). In the calculation, the square of the force should be used, so
that ¥ should be based on Pr? and 17ij should be based on P(r + 11)2, where P is the unit
force acting on the component. In general, the effective stiffness K. can be written as the
force divided by the average displacement as

K - fwe _ P

= = . (10)
(*)(©) (#)(©)
Then, the effective mass M. can be obtained by calculating its kinetic energy as
9% /4 + 2XT] &) + 777
Mo = tor? Tne ™) (11)
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Up to this point, the equivalent stiffness and mass of each AuM mounted in a real
(compliant) frame are derived. The entire assembly consists of all ApMs and the supporting
frame. The transmission coefficient of sound energy (in STL) can be calculated by consider-
ing both the transmission path through the membrane cells (AuMs) and the supporting
frame. Therefore, the sound pressure over the two transmission paths can be written as py
for the frame and p;, for the AuMs, which are calculated, respectively, as follows:

2p;:R
pr = e , 12)
Rys+ 1/ (]was) + jwMgs + 2R,
2p:R
P Pita (13)

" Res + 1/(jwCes) + jwMes + 2R,

where p; is the incident sound pressure, Ry = Rf/Sf, My = Mf/Sf, Cfs = Sf/Kf,
Res = Re/Sm, Mes = Me/Sp, and Ces = S5,/ K, is the specific acoustic impedance of the
frame and AuMs. S f and S;; denote the area of the frame and of each AuM, respectively,
so that S¢ = L~ (n+ 1)21’2 and S,, = r2. R, is the characteristic impedance of air, so
Ry = poco, where py and ¢y are the density and sound velocity of air, respectively. p;,
represents the sound pressure of each AuM transmission path and can be written in terms
of the position of the AuM p,;, () (#). The transmission coefficient for sound pressure can
be expressed as tym = pim/p; and t,r = pir/pi. The total sound power transmission
coefficient t; and sound transmission loss TL can be eventually obtained as:

2 Sf n+1 n+1 2 )
fi = [ty '?*5;0 ;)‘tpm(‘f’)(é)‘ +Sm/L%, (14)
TL = 1010g(3) . (15)

So far, the sound insulation property (in TL) of an array of AuMs mounted in a lattice
has been obtained.

4. Global Response of the Assembly (AuMs Mounted within a Vibrating Frame)

In Section 3, the theoretical performance (in TL) of an array of AuMs was derived. To
test the accuracy of the theory, a finite element simulation software package, COMSOL
Multiphysics®, was adopted, and the assembly was simulated using the acoustic-shell
interaction module in the frequency domain. Figure 4a shows the numerical model of the
AuMs in COMSOL, where the ApMs assembly is mounted in a square-section tube and
blocking the acoustic waves propagating bottom-up. The generated meshes of the AuMs
shown in Figure 4b had dimensions smaller than one-sixth of the shortest wavelength
(corresponding to frequency of 2000 Hz). In the simulation, both upper and lower sides of
the assembly were occupied by air, and the air adjoined perfectly matched layers (PMLs),
which allowed the sound to travel outward without causing any reflection. On the lower
side of the assembly, a background sound field was created to investigate the sound
insulation properties as measured by the sound field generated on the other side.
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Figure 4. (a) The COMSOL simulation model with perfectly matched layers (PMLs) on each side of
the AuM assembly. A sound field was created on the lower side. (b) The model grid showing the
fixed constraint set by the frame (red line).

5. Results and Discussions

Given the practical arrangement of a partition (or a barrier) for which insulation is
required, the aim of this study was to prevent low-frequency sound transmission through
a fixed-size hole by inserting the partition (which here refers to the AuMs assembly). An
important factor is how the frame affects the sound insulation provided by the AuMs.
Here, we theoretically and numerically calculated the TL of a fixed-size ApM assembly
with different number of cells and the dimensions of the lattice. Figure 5 and Table 1,
show how a partition for a 10 x 10 cm square hole can be successively divided into smaller
parts. Here, the frequency range of interest ranged from 10 to 1000 Hz for estimating the
low-frequency acoustic behavior of the AuMs. In Figure 5a, the hole is composed of four
ApMs (n = 1), each having a comparatively larger size (r = 47.5 mm). Such a large AuM
cell is not stiff enough to provide sound insulation, and the TL curve quickly reverts to
the mass law region. The hole was then divided into 16 parts, as shown in Figure 5b, i.e.,
n = 3, but the stiffness of the AuM was still too small. Sound insulation occurs mostly in the
mass-control region. With the further increase in the cells in the frame, each ApM became
stiff enough to bring the structure into the stiffness-controlled low-frequency region, as
shown in Figure 5c for n = 7 and Figure 5d for n = 15. When the hole was divided into
16 x 16 parts (n = 15), the TL of the structure could reach more than 30 dB at 100 Hz, which
is in extreme contrast to the same hole divided into just a few parts shown in Figure 5a,b.
We found that the theoretical predictions (black solid lines) agree well with the numerical
ones (red dashed lines), especially at frequencies below the mass-control region. At higher
frequencies, the deviation of theory from the numerical results comes from the AuM
assembly vibrating in more complex, higher modes, which is the limitation of the currently
adopt theoretical model.

Figure 5e,f shows by simulation and calculation, respectively, how TL increases when
the number of AuM cells is doubled both in columns and rows. It can be seen that TL
increases by about 22 dB at 10 Hz, when n increases from three to seven (i.e., the number of
ApMs in a column increases from four to eight), but the increases become smaller as the
frequency increases. When # further increases from 7 to 15, it provides an additional TL of
about 24 dB over a relatively broad band of low frequencies. This result suggests that the
strategy is efficient for noise control at low frequencies.
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Figure 5. Sound transmission loss in a 10 x 10 cm hole as the number of AuM cells increases.

Thickness of frame b = 4 mm, width a = 1 mm, edge length of the AuM r = 8 mm, and thickness
of the AuM ¢t = 0.2 mm. The number of AuM cells is (a) 2 x 2, (b) 4 x 4, (c) 8 x 8, and (d) 16 x 16.
(e) Incremental TL (simulation result) when the number of AuM cells in a column is doubled.

(f) Incremental TL (calculation result) when the number of AuM cells in a column is doubled.
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Table 1. Displacements and resonant frequencies of the assembly when a 10 x 10 cm hole is
successively divided into smaller parts.

Average Displacement

Resonant Frequency (Hz) . Maximum
Number of ApM by Static Force (m) Displacement of
Cells Single Single Frame by Static
AuM Whole Frame AuM Whole Frame Force (m)
2x2 14 124 29%x107*P 38x10°8pP 8.6x10°8P
4 x4 58 202 1.7 x1075P 41x107°8P 14 x 1077 P
8x8 254 287 87 x1077P 25%x10°8P 98 x10°8P
16 x 16 1220 406 38x10°8P 14 x 1078 P 53 x10°8P

As indicated in Figure 5, a structure can be successively divided into more and more
parts so that, eventually, the hole could be made up of a plate made only of the frame
material. What would its TL be then? At that point, the TL would be high, but the weight
of the component should also be taken into consideration. Notably, as aforementioned, our
theoretical model considering the coupling of the membrane cells (ApMs) and supporting
frame is valid below the first resonant frequency of the frame, which is the big dip in the
STL curves in Figure 5b—d. So far, our theoretical model does not consider those higher
modes of the supporting frame, which correspond to those quickly changing sharp peaks
and dips of STL curves at higher frequencies (numerical results). Therefore, it is only
meaningful by comparing the theoretical and numerical results below the fundamental
resonant frequency of the frame. In this low-frequency range, the theoretical predictions
agree well with the numerical results. Moreover, we observed that at higher frequencies,
the theoretical results still show reasonable predictions of the general trend of the STL
curves compared to numerical ones, except those sharp peaks and dips.

Figure 6 shows another case comparison, which is the STL of a thin acrylic plate and
of a membrane-acrylic structure (ApMs) of the same weight. For a more practical use, the
solid plate is now 20 x 20 ¢cm in size and 2 mm in thickness. Then, the hole is divided
into 400 parts (20 x 20 cells): the thickness of the frame b is now 8.7 mm, the membrane
thickness t is 0.4 mm, the edge of each square r is 8.95 mm, and the width of the frame
a is 1 mm. The total weights of the two arrangements are kept the same. When using
the membrane—frame structure (i.e., the AuM assembly), the STL at a low frequency is
around 8.6 dB higher, as suggested by the simulated result, while the calculated result is
around 7.1 dB. The difference between the simulated and calculated results is caused by
errors in the TL calculation for a single acrylic plate. In this work, the modeling of each
membrane cell (AuM) is based on the thin plate approximation (i.e., shell model). This
model usually holds when the plate thickness is an order of magnitude smaller than its side
length. However, in this case, the plate thickness is 2 mm while its side length is 8.95 mm.
Therefore, errors mainly come from the thin plate treatment for this extreme case. However,
both methods indicate considerable advantages in terms of low-frequency insulation by
using AuMs.
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Figure 6. (a) The simulated and (b) the calculated Sound transmission loss of a 20 x 20 cm hole filled
with an acrylic plate of 2 mm thick (solid line) and of an AuM assembly (400 ApM cells supported by
an acrylic frame) (red dashed line). The weights of the two structures are the same (the acrylic frame
in the second case is 8.7 mm thick and the AuM 0.4 mm thick).

6. Conclusions

A theoretical model for calculating the transmission loss through an array of ApMs
mounted in a lattice frame was presented. To be exact, the model shows how the frame
affects the vibration and insulation properties of acoustic metamaterials (ApMs) at low fre-
quencies. In designing such an array, estimating the resonant frequency and displacement
of the frame is important but difficult. Both thickening and narrowing the frame can reduce
its vibration and improve the transmission loss of the entire structure. Sui et al. [14] put
forward a lattice-like frame, but the thickness of the frame was 25 mm, which produced a
limiting case because the frame was rigid. By comparison, our work is more realistic, using
a much thinner frame that is compliant and interacts with the motion of the AuMs.

Our results showed (Section 3) that both the frame and the AuMs affect each other’s
acoustic behavior. When the vibration of the frame is stronger than that of the AuMs,
increasing the stiffness of the AuMs can produce an extremely high TL of the assembly, and
vice versa. For the most common case, when the vibration of the frame is much smaller
than that of the ApMs, increasing the stiffness of the ApuMs can produce an extremely
high STL of the assembly. On the other hand, when the vibration of the frame is strong
(corresponding to a super-dense grille-type frame dividing the whole membrane into a
large number of ultra-small AuMs), increasing the stiffness of the frame will be the first
priority. Moreover, if the vibration displacements of the AuMs and the frame are about
equal, increasing the stiffness of either will have little effect on the TL of the whole assembly.
We found that it is important to calculate the vibration amplitude of both the frame and
the AuMs. Assuming that the aim of the study is to maximize the TL at low frequencies,
our approach describes how to match the AuMs and the frame so that the target TL can be
efficiently achieved.

In conclusion, AuMs have many advantages for low-frequency sound insulation. The
governing principle is to ensure that the frame is strong enough to provide rigid boundaries
for the AuMs, thereby ensuring that the insulation properties are controlled by the stiffness.
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