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Abstract: Accurately evaluating the construction risk of deep foundation pit projects is crucial
to formulate science-based risk response measures. Here, we propose a novel construction risk
assessment method for deep foundation pit projects. A construction risk evaluation index system
based on a work breakdown structure-risk breakdown structure matrix was established to deal with
the complex risks of deep foundation pit construction. The projection pursuit method optimized by
particle swarm optimization was used to extract the structural features from the evaluation data to
obtain objective index weights. The calculation method of the five-element connection number in
the set pair analysis was improved to evaluate the static construction risk. The partial derivatives
of the five-element connection number were utilized to assess the dynamic construction risk. The
Qi ‘an Fu deep foundation pit project in China was selected as a case study. The results show
that the construction risk was acceptable and decreased during the construction period, which
was consistent with actual conditions, demonstrating the effectiveness of this novel method. The
proposed model showed better performance than classical methods (analytic hierarchy process,
entropy weight method, classical set pair analysis, fuzzy comprehensive evaluation, gray clustering
method, backpropagation neural network, and support vector machine).

Keywords: deep foundation pit project; construction risk; risk assessment; WBS-RBS; projection
pursuit; set pair analysis

1. Introduction

Construction projects are vital for the economy of developing countries, and deep
foundation pit projects are an important component of the construction sector. Deep
foundation pit projects are characterized by complex project management, substantial
technical difficulties, and environmental influences, resulting in complex construction risks.
Many deep foundation pit construction accidents have occurred worldwide in the past
decade [1,2], causing property losses and casualties. Therefore, the objective evaluation
of construction risks of deep foundation pit projects and the science-based formulation of
response measures are research hotspots in civil engineering and management.

Deep foundation pit engineering refers to projects with an excavation depth of 5 or
more meters. Projects with depths of less than 5 m are considered deep foundation pit
projects if the geological and environmental conditions are complex, and underground
pipelines are involved [3]. The main components of foundation pit engineering include an
engineering survey, design of supporting structures and construction, earthwork excava-
tion and backfilling, groundwater control, information development, and environmental
protection [4].

Risk factor identification is a key aspect of risk research. Deep foundation pit projects
are characterized by many types of construction methods, complex construction technology,
and high technical integration. Traditional risk identification methods typically focus
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on single aspects of the construction risk factors of deep foundation pit projects, such
as risk loss [5] or risk sources [6]. This approach is one-sided and prone to subjectivity.
A work breakdown structure–risk breakdown structure (WBS-RBS) matrix considers the
entire construction process and decomposes and classifies various risk factors involved in
construction projects. Therefore, using the WBS-RBS for construction risk identification
in deep foundation pit projects can substantially improve risk identification accuracy [7].
In addition, this method minimizes risk omission and reduces the subjectivity of risk
identification [8].

The weight calculation of the risk indicator is the second key step in risk research.
Many researchers used the analytic hierarchy process (AHP) [9] or the entropy weight
method [10] to calculate the weights, but these two methods are not suitable for calculating
the weight of the risk indicators of deep foundation pit projects. The AHP uses the risk
assessment data of deep foundation pit construction, and although the data are easy to
interpret, the results are influenced by expert opinion. The entropy weight method has high
calculation accuracy but relatively low interpretability because it does not make full use of
the evaluation data. The projection pursuit method (PP) obtained the objective weights
from the structural characteristics of the risk evaluation data, which avoids the adverse
effects of expert opinion and ensures the interpretability of the calculation results [11].

The calculation of the risk level is the third key step of risk research. Researchers have
used fuzzy comprehensive evaluation (FCE) [12], the gray clustering method (GCM) [13],
backpropagation neural networks (BPNNs) [14], and support vector machines (SVMs) [15].
Traditional risk assessment methods, such as the FCE and the GCM, cannot predict the
risk evolution dynamically. The BPNN or SVM methods require many sample data,
which is a problem in risk assessment. It should be emphasized that none of these four
methods use both qualitative and quantitative indicators. In contrast, set pair analysis (SPA)
uses qualitative and quantitative indicators and the concepts of identity, difference, and
opposition to describe the uncertain relationship of risks. The partial connection number
and set pair potential of multiple connection numbers can reveal the evolution of the risk
factors [16]. However, it is difficult to objectively describe the uncertainty of the data near
the index grade interval in the traditional SPA.

Risk management is hierarchical, and different levels of risk management have differ-
ent objectives, methods, and depths. In this paper, we evaluate the risk of the whole deep
foundation pit project from the view of project decision-makers, and various construction
risk factors should be considered. The research results of this paper are not closely related
to a specific risk factor in the project. However, the research to find the overall risk level
and key risk factors of the project is valuable.

Therefore, we propose a novel construction risk assessment method for deep foun-
dation pit projects. The main contributions of this paper are as follows. (1) An index
system is established based on the WBS-RBS matrix to deal with the complex technology
and high technical integration of deep foundation pit projects. (2) The PP is employed to
obtain objective weights to avoid the adverse effects of expert opinion and obtain suitable
interpretability. (3) The SPA is used to analyze the construction risk of deep foundation
pit projects, providing a static and dynamic assessment of the construction risk level. We
improved the calculation method of the five-element connection number at the evaluation
level to obtain an accurate estimate of the uncertainty of the evaluation indices of different
risk levels. (4) Qi ‘an Fu in Huanggang City, China, was selected as a case study. The results
provide a new perspective for related research on foundation pit projects.

The rest of this paper is organized as follows. Section 2 summarizes the related
research. Section 3 describes the establishment of the construction risk evaluation index
system of deep foundation pit projects. Section 4 presents the novel construction risk
assessment method of deep foundation pit projects based on the PP and the improved
SPA. Section 5 describes the case study of the deep foundation pit project of Qi ‘an Fu
in Huanggang City, China. Section 6 provides the discussion, and Section 7 concludes
the paper.
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2. Related Research

Zhou and Zhang [5] analyzed the construction safety accidents of typical deep foun-
dation pit projects in recent years and constructed an evaluation index system from the
perspective of risk loss. However, this study only focused on large risk loss and used no
indices for high incidence. Meng et al. [6] investigated the construction risk factors and risk
sources of deep foundation pit projects but did not consider the construction complexity.
Wu and Wang [17] analyzed the waterlogging disaster risk in the construction stage of
a deep foundation pit. The authors considered the disaster vulnerability and exposure
to disaster risk during construction, but not the construction process. Zhang et al. [2]
determined the risk factors leading to a foundation pit collapse. This index system had low
generalization ability because it was designed for a specific disaster.

Wang [18] improved the comprehensiveness and objectivity of the cost risk identifica-
tion results of power grid construction projects by increasing the dimensions of the analysis.
Qu et al. [19] improved the WBS-RBS to identify the water inrush risk in coal mines under
complex geological conditions and excavation methods. The improved WBS was used to
decompose the coal excavation method, and the improved RBS was used to decompose the
risk factors caused by geological conditions. Jeong and Jeong [20] researched construction
safety accidents in India and South Korea using statistical hypothesis testing and demon-
strated the applicability of the WBS-RBS for construction safety risk management. Joubert
and Pretorius [21] used the WBS-RBS to establish a risk index system for port construction
projects. This index system included 215 risk factors, providing insights for similar projects.

Feng et al. [9] used the AHP to calculate the weights of the safety risk indices of deep
foundation pit projects. However, the AHP did not deal well with the influence of expert
opinions on the weight calculation results. The index weights differed for different experts.
Li et al. [10] used the entropy weight method to calculate the weights of the risk indices of
a reconstruction project. The empirical research results showed that the entropy weight
method had satisfactory calculation accuracy and stability and was not influenced by the
subjective opinions of experts. However, the entropy weight method results are often not
suitable for practical engineering projects. Zhang et al. [11] constructed a PP evaluation
model and improved it using information entropy to obtain the index weights. Wu and
Wang [17] used the PP model optimized by Particle Swarm Optimization (PSO) to analyze
the risk factors. This article provided the inspiration for our study.

Gehiwet and Luo [12] used the FCE method to determine the risk level of construction
projects. However, the FCE requires membership functions, and it is difficult to describe the
uncertainty of the risk factors. These two shortcomings limit the application of the FCE for
risk management of deep foundation pit projects. Lee et al. [13] used the GCM to predict the
risk level of unsafe behaviors of construction workers and achieved satisfactory prediction
results. However, the GCM can only provide a static risk level, not a dynamic risk level.
Deng et al. [14] used a BPNN to evaluate the construction risk of tunnel construction
projects. Li et al. [15] used a least-squares (LS)-SVM to predict the safety risk of bridge
construction. BPNNs and LS-SVMs require a large sample size, which is difficult to obtain
in deep foundation pit projects. Chen et al. [16] regarded the tunnel collapse risk grade
and evaluation data as a set pair and established a tunnel collapse risk evaluation model
based on the SPA for the dynamic prediction of construction risk. Empirical research has
demonstrated the feasibility and effectiveness of SPA for risk evolution. Sui et al. [22]
constructed an SPA-based occupational health and safety risk assessment method for
nuclear power plant construction projects. The method effectively dealt with the high
uncertainty and complexity of nuclear power plant construction projects. However, it is
difficult to objectively describe the uncertainty of data near the index grade interval in the
traditional SPA.

Despite many research achievements in risk assessments of deep foundation pit
projects, the following challenges remain and are solved in this study.
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(1) The construction risk of deep foundation pit projects is complex and diverse. Most
risk factor identification methods are subjective and one-sided. Thus, an objective and
comprehensive risk factor identification method is required.

(2) The traditional weight calculation method is not suitable for risk assessments of
deep foundation pit projects. A quantitative weight calculation method that provides
weights with strong interpretability and high accuracy is needed.

(3) Construction risk assessments of deep foundation pit projects are characterized by
an incompatibility between qualitative and quantitative indices, a small sample size, and
fuzzy features. Therefore, a science-based method is needed for an accurate assessment of
the risk level.

3. Construction Risk Evaluation Index System of Deep Foundation Pit Projects
3.1. Introduction of the WBS-RBS

The WBS and RBS form a systematic method to identify risks in deep foundation
pit construction projects. The WBS decomposes complex deep foundation pit projects
into several construction procedures [8] and project management plans, and organizes the
construction process [2,18]. The RBS decomposes the risks of deep foundation pit projects.
After predicting the risk factors that may cause construction accidents, the project managers
decompose the project according to the risk status of the project and the surrounding
environment. The risk factors obtained by the RBS are easy to control. A representative
WBS-RBS is shown in Figure 1.

Figure 1. The WBS-RBS matrix.

The main construction risk identification steps of deep foundation pit projects based
on WBS-RBS are as follows:

Step 1: Determining the objectives of risk identification. The objectives and the scope
of risk identification should be determined according to the risk assessment requirements.

Step 2: Decomposition of construction work. The construction process of deep founda-
tion pit projects can be decomposed step by step according to the order of the project and
sub-projects. The project is decomposed into work units suitable for risk identification.

Step 3: Decomposition of construction risk. The risk sources are decomposed by
considering the project characteristics and expert investigation. Similarly, the decomposed
risk units must be suitable for risk identification.

Step 4: Identifying the main risk factors. All possible risk events and main risk factors
during the construction of the deep foundation pit project are analyzed to conduct a risk
assessment.
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3.2. WBS Decomposition of the Construction Process of Deep Foundation Pit Projects

According to Risk Management—Guidelines (ISO 31000:2018), the Code for the Design
of Building Foundations (GB 50007-2011), the Technical Standard for Monitoring of Building
Excavation Engineering (GB 50497-2019), and the Technical Code for Construction Safety
of Deep Building Foundation Excavations (JGJ 311-2013), the construction process of deep
foundation pit projects can be divided into Construction Preparation (W1), Earthworks
(W2), Support Construction (W3), Drainage Engineering (W4), and Monitoring (W5).

Construction Preparation (W1) includes Pipeline Migration (W11) and Site Leveling
(W12). Pipeline Migration (W11) refers to relocating or developing an on-site water supply,
drainage, power supply, heating trunk lines, main roads, and flood control projects. Site
Leveling (W12) refers to leveling the ground to prepare the site by excavating and filling.
This step includes the construction survey, earthwork allocation, construction machinery
selection, and filling and compaction.

Earthworks (W2) includes Earthwork Excavation (W21) and the Erection of Supports
(W22). Earthwork Excavation (W21) refers to excavation, filling, and transportation of
materials. The Erection of Supports (W22) describes the construction of temporary supports
for earthworks rather than supports for deep foundation pit construction.

Support Construction Engineering (W3) refers to the measures to support, reinforce,
and protect the sidewall and surrounding environment of the deep foundation pit to
ensure the safety of underground construction and the environment of the foundation pit.
Common supporting projects include an Underground Diaphragm Wall (W31), Bored Pile
(W32), Bolt Support System (W33), and other Supporting Structures (W34).

Drainage Engineering (W4) refers to dewatering projects to ensure that the foundation
pit remains dry during construction to prevent slope instability, foundation sand flow,
pit bottom uplift, pit bottom piping, and foundation bearing capacity decline when the
groundwater level is higher than the bottom of the excavation. Commonly used drainage
methods are the Open Ditch Plus Collection Well (W41), Light Well Point (W42), Jet Well
Point (W43), Electroosmotic Well Point (W44), and Tube Well Point (W45) methods.

Monitoring (W5) refers to deformation detection and stress detection of the supporting
structure system during the construction of the deep foundation pit. It includes the Mon-
itoring Method (W51), the Measuring Point Layout (W52), and Emergency Management
(W53).

3.3. RBS Decomposition of Construction Risk of Deep Foundation Pit Projects

The construction risk sources of deep foundation pit projects are divided into five risk
factors: Human (R1), Material (R2), Equipment (R3), Method (R4), and Environment (R5).

Human (R1) refers to the risk factors related to project managers and construction
operators. According to the accident causation theory, human factors are a leading cause
of safety accidents, for physical and physiological reasons and due to a lack of safety
knowledge, safe working habits, and safety awareness. Physical reasons include being
prone to fatigue, becoming sick, and getting hurt. Physiological reasons include physical
disabilities, a withdrawn personality, and lacking emotional control.

Material (R2) refers to risk factors related to construction materials, including poor
quality, poor physical properties, and insufficient material performance, which are hidden
dangers of construction safety accidents. Poor physical properties include unsatisfactory
strength, bending, compressive, and tensile properties. Insufficient material performance
means that the size, quantity, or type of material does not meet the safety requirements.

Equipment (R3) refers to risk factors related to construction equipment. Common
equipment used in the construction of deep foundation pits includes a rotary excavator,
excavator, jet grouting pile machine, crane, wall trenching machine, and a concrete jet
machine. Improper equipment, inadequate equipment loading and unloading, extensive
wear and aging of parts, delayed maintenance, and a lack of safety devices can result in
unsafe conditions and cause accidents in deep foundation pit construction.
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Method (R4) refers to risk factors related to construction methods. The support system
of deep foundation pit engineering is a temporary structure. However, technical risk factors
are present due to the long construction period. For example, if a support structure has
shifted due to measurement errors, displacement of the foundation pit soil may result,
resulting in potential collapse.

Environment (R5) refers to risk factors related to the construction environment. The
construction area typically has complex geology, different landforms, and high construction
risk. A narrow construction site, high building density, numerous underground pipelines,
and complex underground facilities contribute to high risk during the construction of deep
foundation pits.

The W1–W5 factors represent the rows and the R1–R5 factors represent the columns in
the WBS-RBS matrix.

3.4. Construction Risk Index System of Deep Foundation Pit Projects

A literature review, expert interviews, and other methods were used to identify the
secondary indices of the construction risk of deep foundation pit projects to create the
WBS-RBS matrix. Twenty experts with engineering experience in related fields were invited
to evaluate the secondary indices using a score of 0 or 1. Section 5 provides detailed
information on the 20 experts. We used the construction risk source as the primary index
and established the construction risk index system of the deep foundation pit project
(Table 1).

Table 1. Construction risk evaluation index system of deep foundation pit projects.

Primary Index Secondary Index
Risk Classification

I II III IV V

R1: Man

R11 : Risk awareness of managers (80,100] (60,80] (40,60] (20,40] (0,20]
R12: Rationality of risk management method (80,100] (60,80] (40,60] (20,40] (0,20]

R13 : Risk awareness of construction personnel (80,100] (60,80] (40,60] (20,40] (0,20]
R14 : Proportion of personnel with certificates for

special operations (%) (98,100] (95,98] (90,95] (85,90] (0,85]

R15: Technical disclosure rate of construction (%) (90,100] (80,90] (70,80] (60,70] (0,60]

R2: Material

R21 : Efficiency of material supply (80,100] (60,80] (40,60] (20,40] (0,20]
R22 : Concrete strength rating (%) (95,100] (60,80] (40,60] (20,40] (0,20]
R23 : Rationality of material price (80,100] (60,80] (40,60] (20,40] (0,20]

R24 : Welding steel strength rating (%) (95,100] (90,95] (85,90] (80,85] (0,80]

R3: Machine

R31 : Accuracy of mechanical installation (%) (95,100] (90,95] (85,90] (80,85] (0,80]
R32 : Safety rate (%) (95,100] (90,95] (85,90] (80,85] (0,80]

R33 : Maintenance conditions (80,100] (60,80] (40,60] (20,40] (0,20]
R34: Stability of power supply system (80,100] (60,80] (40,60] (20,40] (0,20]

R35 : Suitability of machinery operation (80,100] (60,80] (40,60] (20,40] (0,20]

R4: Method

R41 : Rate of column verticality (%) (95,100] (90,95] (85,90] (80,85] (0,80]
R42 : Accuracy of preliminary geological survey (80,100] (60,80] (40,60] (20,40] (0,20]

R43 : Suitability of detection method (80,100] (60,80] (40,60] (20,40] (0,20]
R44 : Safety rate of operation (%) (95,100] (90,95] (85,90] (80,85] (0,80]

R5: Environment

R51 : Distance from underground pipeline (km) (5,100] (1,5] (0.5,1] (0.1,0.5] (0,0.1]
R52 : Distance from surrounding structures (km) (5,100] (1,5] (0.5,1] (0.1,0.5] (0,0.1]

R53 : Hydrological conditions (80,100] (60,80] (40,60] (20,40] (0,20]
R54 : Geological conditions (80,100] (60,80] (40,60] (20,40] (0,20]

R55 : Severe climatic conditions (80,100] (60,80] (40,60] (20,40] (0,20]

R14, R15, R22, R24, R31, R32, R41, R44, R51, and R52 are quantitative indices, whose
scores were obtained using on-site statistics. The other indicators are qualitative indicators,
whose index scores were obtained from the questionnaire survey.
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A suitable evaluation system is crucial to ensure the authenticity and accuracy of the
evaluation results and is the basis for the scientific risk assessment of deep foundation
pit construction. Quantitative, practical, and scientific evaluation standards have been
established to assess the construction safety risk of deep foundation pit projects [1–3]. We
used the Technical Code for Construction Safety of Deep Building Foundation Excava-
tions (JGJ 311-2013) and the Safety Management Regulations for Dangerous Sub-projects
(Ministry of Housing and Urban-Rural Development Order [2018] No. 37) as construction
risk assessment standards of deep foundation pit projects (Table 1). Five risk classification
levels were used. I indicates no risk, with no need for any risk management measures. II
indicates tolerable risk, and the implementation of the risk management measures should
be checked. III indicates acceptable risk, but targeted risk measures should be taken. IV in-
dicates unacceptable risk, and immediate measures should be taken to reduce the risk level.
V indicates unacceptable risk, and the construction work should be stopped immediately
to rectify the problems.

4. Construction Risk Assessment Method of Deep Foundation Pit Projects

The risk assessment model proposed in this paper is mainly divided into five parts:
(1) data collection, (2) calculating the objective weights based on the PP optimized by PSO,
(3) determining the set pair model according to the risk management, (4) static analysis
based on the confidence, and (5) dynamic analysis based on the set pair potential.

4.1. Objective Weight Calculation Based on the PP

The principle of the PP is to find an optimal projection direction by analyzing the struc-
ture and characteristics of high-dimensional data and project the high-dimensional data
into a one-dimensional to three-dimensional space in the optimal projection direction [11].
The PP has advantages for small sample sizes and high-dimensional data. In addition, the
structural features (objective weights) of the data are obtained by projecting the data from
a high-dimensional space to a low-dimensional space [17].

The steps of calculating the index weight using the PP are as follows.
Step 1. Projecting high-dimensional data.
In the evaluation data

[
xij
]

n×m, xij represents the j-th index value of the i-th evaluation
object, n is the number of evaluation objects, and m is the number of indices. The evaluation
data

[
xij
]

n×m are in the form of a high-dimensional nonlinear matrix, which is difficult to
deal with when using traditional evaluation methods.

The objective of the PP is to project
[
xij
]

n×m to
→
α = {α(1),α(2), · · · ,α(m)} and obtain

the projection value of the low-dimensional space y(i) [11]:

y(i) =
m

∑
j=1

α(j)xij, (1)

where ∑m
j=1 α

2(j) = 1, and 0 < α(j) < 1.
Step 2. Constructing the objective function.
Different projection vectors correspond to different projection values. The optimal

projection value of the low-dimensional space y∗(i) should reflect the characteristics of the
high-dimensional space, i.e., the projection points in the low-dimensional space should be
clustered, but the projection points should be dispersed. The standard deviation and local
density of the projection points are used to define the optimal projection function [17]:

maxQ(α) = Sy
∣∣Dy

∣∣, (2)

Sy =
∑n

i=1|y(i)− E(y)|√
n− 1

, (3)
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Dy =
n

∑
i=1

m

∑
j=1

(
R− rij

)
u
(

R− rij
)
, (4)

where Sy is the standard deviation of the projection values. The larger the Sy, the more
scattered the projection points are in the low-dimensional space. Dy is the local density of
the projection values. The larger the Dy, the higher the density of the projection points is in
the low-dimensional space. E represents the average value of the projection values, rij is
the distance between the projection points, u

(
R− rij

)
is the unit step function, and R is the

radius of the observation window.
Step 3. Solving the objective function based on the PSO.
The PSO is selected to solve the objective function. It is a stochastic optimization

algorithm based on the iterative updating of the population. The particle constantly adjusts
its velocity (v) and position (s) by tracking the individual optimal solution (pbest) and
the population optimal solution (gbest) to approach the optimal solution of the objective
function [17]:

v(t + 1) = v(t) + c1r(pbest− v(t)) + c2r(gbest− v(t)), (5)

s(t + 1) = s(t) + v(t + 1), (6)

where c1 and c2 are learning factors, and r is a random number in the range of [0, 1].
Equation (2) is used as the fitness function of the PSO. The optimal solution is obtained

using Equations (5) and (6), and the optimal projection vector (
→
α∗) is obtained after reaching

the predetermined termination condition. The square of each element in the
→
α∗ is the

objective weight
{

ωj
}

of the corresponding index.

4.2. Static and Dynamic Risk Assessment Based on the Improved SPA

The concept of SPA is to regard two related data sets as a set pair and analyze the
correlation between them by considering the identity, difference, and opposite criteria. In
the risk assessment of deep foundation pit construction, the risk assessment data and the
preset risk assessment standard form a set pair. The risk level is assessed by the similarity
coefficient, difference coefficient, and opposition coefficient.

The SPA describes the certainty and uncertainty of the system and their mutual
transformation using the connection number. The expression of the ternary connection
degree is [16]:

µ = a + biµ + cjµ, (7)

where a, b, and c are the degrees of similarity, difference, and opposition of the set pair,
respectively. iµ and jµ are the difference coefficient and opposition coefficient, respectively.

However, in the classical SPA, the ternary connection degree expresses the similarity,
difference, and opposition separately. Therefore, the five-element connection number µ is
used to describe the fuzzy uncertainty of the set pairs more accurately [22]:

µ = a + bµ1iµ1 + bµ2iµ2 + bµ3iµ3 + cjµ, (8)

where a is the identity coefficient; bµ1, bµ2, and bµ3 are difference coefficients; iµ1, iµ2, and
iµ3 are difference coefficients; c is the opposition coefficient; jµ is the degree of opposition;
and a + bµ1 + bµ2 + bµ3 + c = 1.

Errors can occur in the evaluation index when the three-element or five-element con-
nection numbers are used. Therefore, we improved the SPA and applied the identity,
difference, and opposition attributes to the interval to describe the uncertainty and im-
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prove the risk assessment accuracy. The improved calculation method of the five-element
connection number µ is as follows:

µ =



1 x ∈ [D1, D0]
D1D2

(D1+D2)x + (D1−x)(x−D2)
(D1+D2)x iµ2 +

x
D1+D2

iµ2 x ∈ [D2, D1]
D2D3

(D2+D3)x iµ2 +
(D2−x)(x−D3)

(D2+D3)x iµ2 +
x

D2+D3
iµ3 x ∈ [D3, D2],

D3D4
(D3+D4)x iµ2 +

(D3−x)(x−D4)
(D3+D4)x iµ3 +

x
D3+D4

jµ x ∈ [D4, D3]

jµ x ∈ [D5, D4]

(9)

where D represents the upper or lower limit of the risk level, and x represents the evaluation
data.

After obtaining the five-element connection number from Equation (9), the weighted
five-element connection number function µ∗ is established:

µ∗ =
m

∑
j=1

ωjaj +
m

∑
j=1

ωjbjiµ2 +
m

∑
j=1

ωjcjiµ3 +
m

∑
j=1

ωjdjiµ4 +
m

∑
j=1

ωjej jµ (10)

We use the confidence concept to determine the static risk level of deep foundation pit
construction:

hk = ( f1 + f2 + · · ·+ fk) > λ, (11)

where f1 = ∑m
j=1 ωjaj, f2 = ∑m

j=1 ωjbjiµ2, . . . , fk = ∑m
j=1 ωjejiµk. The confidence λ is

generally 0.6, indicating a risk-averse attitude.
The partial derivatives of the five-element connection number reflect the evolution of

the construction risk of deep foundation pit projects.
The first partial derivative ∂µ is:

∂µ = ∂a + ∂bµ1 + ∂bµ2 + ∂bµ3 =
a

a + bµ1
+

bµ1

bµ1 + bµ2
+

bµ2

bµ2 + bµ3
+

bµ3

bµ3 + c
. (12)

The second partial derivative ∂2µ is:

∂2µ = ∂2a + ∂2bµ1 + ∂2bµ2 =
∂a

∂a + ∂bµ1
+

∂bµ1

∂bµ1 + ∂bµ2
+

∂bµ2

∂bµ2 + ∂bµ3
. (13)

The third partial derivative ∂3µ is:

∂3µ = ∂3a + ∂3bµ1 =
∂2a

∂2a + ∂2bµ1
+

∂2bµ1

∂2bµ1 + ∂2bµ2
. (14)

The fourth partial derivative ∂4µ is:

∂4µ = ∂4a =
∂3a

∂3a + ∂3bµ1
. (15)

The principle of SPA is to compare the similarity and difference coefficients. For
example, in the first-order partial derivative, Shi =

(
a

a+b

)
/
(

c
c+d

)
> 1 indicates the same

potential and a trend toward a lower risk level. Shi = 1 indicates a balanced potential, with
no change in the risk level. Shi < 1 indicates a contrary potential and a trend toward a
higher risk level. Project managers of deep foundation pit projects should focus on the risk
indicators with a contrary potential and implement targeted countermeasures.



Appl. Sci. 2022, 12, 1922 10 of 18

4.3. The Implementation of the Proposed Evaluation Model

The flow chart of risk assessment of deep foundation pit construction in this paper is
shown in Figure 2, and the detailed steps were as follows.

Figure 2. The flow chart of the proposed model.

Step 1: Collecting data. On-the-spot investigation and expert interviews were used to
collect evaluation data, and the reliability of the obtained data was analyzed.

Step 2: Calculating the weight. According to the collected evaluation data, the objective
function of the projection pursuit model was constructed by Equation (2), and it was solved
by Equations (5) and (6) in the solution space by using the powerful nonlinear solving
ability of the PSO. According to the index weight of the best projection vector, the objective
weight of the index was obtained.

Step 3: Constructing the set pair model. The sample data and risk assessment standard
of deep foundation pit construction were combined into a set pair. The five-element con-
nection number was calculated by Equation (9), and the weighted five-element connection
number was calculated by Equation (10).

Step 4: Static evaluation of risk. According to the risk attitude of managers, the
appropriate confidence coefficient λ was selected. By Equation (11), the risk level of the
project was statically determined.

Step 5: Dynamic evaluation of risk. According to Equations (12)–(15), the partial
derivatives would be obtained, and the risk evolution was analyzed according to set pair
potential.



Appl. Sci. 2022, 12, 1922 11 of 18

5. Case Study
5.1. Project Overview and Data Sources

The underground building area of the Qi‘an Fu project is 114,460 m2, the depth
is 18–22 m, and the circumference is about 950 m. The construction company of this
engineering procurement construction (EPC) project is the China Railway Construction
Group Co., Ltd., which has extensive experience in conducting EPC projects. This project
is the first complex urban project of this company in Huanggang City. Therefore, the
supply chain elasticity for construction machinery and construction materials is poor. The
project site is located on an alluvial–diluvial terrace with flat areas, gullies, and depressions.
The geological and geomorphic conditions are favorable, and the excavation of the deep
foundation pit is straightforward. The surrounding environment of the deep foundation
pit is complex. The distance from Baitan Lake (18 km2) is only 200 m. In addition, there are
many utility tunnels in the nearby deep foundation pit. These two unfavorable factors result
in high requirements for the construction quality of the support structures. The construction
period of the deep foundation pit is about 6 months and falls outside the Yangtze River
flood season. Therefore, the construction of the deep foundation pit is not affected by flood
disasters, and the flood control and drainage measures are relatively simple.

The information on the 20 experts evaluating the risks is listed in Table 2.

Table 2. Personal information on the 20 experts.

No. Work Unit Education Work Experience Participated in
This Project

(1) Scientific unit Doctor 21 Yes
(2) Scientific unit Doctor 8 No
(3) Scientific unit Doctor 17 Yes
(4) Construction unit Bachelor 5 Yes
(5) Construction unit Master 13 Yes
(6) Construction unit Associate College 28 Yes
(7) Construction unit Bachelor 4 Yes
(8) Construction unit Master 3 Yes
(9) Construction unit Associate College 32 Yes
(10) Construction unit Bachelor 14 Yes
(11) Construction unit Bachelor 13 No
(12) Construction unit Associate College 35 Yes
(13) Construction unit Bachelor 17 Yes
(14) Construction unit Master 5 Yes
(15) Construction unit Associate College 30 Yes
(16) Construction unit Bachelor 12 Yes
(17) Construction unit Bachelor 7 Yes
(18) Design unit Doctor 10 Yes
(19) Design unit Master 14 Yes
(20) Government Doctor 29 Yes

The experts work in engineering management; they include 14 experts from construc-
tion units, 2 from design units, 3 from scientific research units, and 1 from the government.
Sixteen experts have bachelor’s degrees or above, indicating that they have a solid the-
oretical foundation. Fourteen experts have more than 10 years of deep foundation pit
experience. Eighteen experts worked on this particular deep foundation pit project; thus,
they were familiar with the research. The Cronbach α coefficients of the questionnaire were
calculated; they exceed 0.7, indicating the reliability of the qualitative index scores [23].

The quantitative indices were obtained monthly using field investigations. The data
set
[
xij
]

6×23 used for the weight calculation and risk evaluation is listed in Table 3.



Appl. Sci. 2022, 12, 1922 12 of 18

Table 3. Evaluation data of the case study.

No. R11 R12 R13 R14 R15 R21 R22 R23 R24 R31 R32 R33

(1) 75 76 84 99 85 90 70 98 75 98 95 80
(2) 72 85 86 100 88 92 60 95 80 95 92 85
(3) 84 88 90 98 90 90 85 90 78 95 90 86
(4) 82 82 78 99 84 95 75 92 82 90 98 90
(5) 94 90 92 100 92 88 90 95 90 85 95 92
(6) 80 78 75 99 86 95 75 92 75 90 90 75

No. R34 R35 R41 R42 R43 R44 R51 R52 R53 R54 R55 -

(1) 86 75 100 80 85 95 0.2 0.15 95 90 45 -
(2) 75 80 98 80 75 98 0.2 0.15 95 85 50 -
(3) 70 86 99 80 80 98 0.2 0.15 90 85 30 -
(4) 85 90 100 80 90 100 0.2 0.15 85 70 35 -
(5) 90 92 95 80 85 100 0.2 0.15 75 75 40 -
(6) 75 75 98 80 78 100 0.2 0.15 70 70 70 -

5.2. Construction Risk Assessment of the Case Study

The evaluation data set
[
xij
]

6×23 was analyzed with MATLAB R2016a software using
a custom program. The calculation parameters of the PSO were as follows. The population
number was 100, and there were two learning factors. The iteration termination condi-
tion was 500 iterations or an error of less than 10–10. The optimum projection direction
→
α∗ = (0.1947, 0.1543, 0.1949, 0.2116, 0.2349, 0.2532, 0.1707, 0.2498, 0.1765, 0.2084, 0.2187,
0.2261, 0.1936, 0.2110, 0.2445, 0.2081, 0.2348, 0.2322, 0.1385, 0.1924, 0.1626, 0.2164, 0.2181).

We squared each element of the optimum projection direction (
→
α∗). The objective weights

of the indices are listed in Table 4.

Table 4. Index weights and weighted five-element connection numbers.

Index Weight Ranking Weighted Five-Element Connection Number Situation

R11 0.0379 16 0.423 + 0.302iµ1 + 0.204iµ2 + 0.071iµ3 + 0jµ Same
R12 0.0238 22 0.217 + 0.347iµ1 + 0.227iµ2 + 0.167iµ3 + 0.042jµ Contrary
R13 0.0380 15 0.156 + 0.279iµ1 + 0.203iµ2 + 0.198iµ3 + 0.164jµ Contrary
R14 0.0448 11 0.079 + 0.216iµ1 + 0.246iµ2 + 0.280iµ3 + 0.179jµ Contrary
R15 0.0552 4 0.127 + 0.236iµ1 + 0.246iµ2 + 0.217iµ3 + 0.174jµ Contrary
R21 0.0641 1 0.287 + 0.267iµ1 + 0.273iµ2 + 0.064iµ3 + 0.109jµ Same
R22 0.0292 20 0.297 + 0.341iµ1 + 0.241iµ2 + 0.077iµ3 + 0.044jµ Same
R23 0.0624 2 0.198 + 0.290iµ1 + 0.219iµ2 + 0.174iµ3 + 0.119jµ Same
R24 0.0312 19 0.250 + 0.274iµ1 + 0.179iµ2 + 0.169iµ3 + 0.128jµ Same
R31 0.0435 13 0.255 + 0.241iµ1 + 0.197iµ2 + 0.161iµ3 + 0.147jµ Same
R32 0.0478 8 0.188 + 0.231iµ1 + 0.264iµ2 + 0.149iµ3 + 0.168jµ Same
R33 0.0511 7 0.147 + 0.275iµ1 + 0.188iµ2 + 0.186iµ3 + 0.204 jµ Contrary
R34 0.0375 17 0.112 + 0.249iµ1 + 0.249iµ2 + 0.183iµ3 + 0.206jµ Contrary
R35 0.0445 12 0.097 + 0.217iµ1 + 0.210iµ2 + 0.298iµ3 + 0.178jµ Contrary
R41 0.0598 3 0.317 + 0.250iµ1 + 0.198iµ2 + 0.157iµ3 + 0.079jµ Same
R42 0.0433 14 0.214 + 0.238iµ1 + 0.274iµ2 + 0.142iµ3 + 0.132jµ Same
R43 0.0551 5 0.279 + 0.317iµ1 + 0.197iµ2 + 0.103iµ3 + 0.104jµ Same
R44 0.0539 6 0.167 + 0.248iµ1 + 0.246iµ2 + 0.216iµ3 + 0.124jµ Same
R51 0.0192 23 0.274 + 0.215iµ1 + 0.187iµ2 + 0.177iµ3 + 0.147jµ Same
R52 0.0370 18 0.234 + 0.228 iµ1 + 0.167iµ2 + 0.166iµ3 + 0.206jµ Same
R53 0.0265 21 0.187 + 0.219iµ1 + 0.250iµ2 + 0.198iµ3 + 0.146jµ Same
R54 0.0468 10 0.268 + 0.265iµ1 + 0.208iµ2 + 0.181iµ3 + 0.078jµ Same
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Table 4. Cont.

Index Weight Ranking Weighted Five-Element Connection Number Situation

R55 0.0476 9 0.246 + 0.227iµ1 + 0.240iµ2 + 0.230iµ3 + 0.058jµ Same
R1 0.1997 3 0.204 + 0.176iµ1 + 0.230 iµ2 + 0.224iµ3 + 0.166jµ Same
R2 0.1869 4 0.253 + 0.287iµ1 + 0.234iµ2 + 0.120iµ3 + 0.105jµ Same
R3 0.2244 1 0.161 + 0.243iµ1 + 0.220iµ2 + 0.195iµ3 + 0.180jµ Contrary
R4 0.2121 2 0.248 + 0.264iµ1 + 0.225iµ2 + 0.155iµ3 + 0.108jµ Same
R5 0.1771 5 0.244 + 0.235iµ1 + 0.212iµ2 + 0.193iµ3 + 0.117jµ Same
R 1 - 0.217 + 0.259iµ1 + 0.224iµ2 + 0.172iµ3 + 0.129jµ Same

We calculated the arithmetic averages of the evaluation data for the six months (Table 3)
and used them as the construction risk data. The result was used to obtain the five-element
connection number of the indices using Equation (9). We used the index weights to obtain
the weighted five-element connection number using Equation (10) (Table 4). The results
were used to determine the risk level of each index and evaluation object.

According to the confidence λ = 0.6, the risk level of the deep foundation pit construc-
tion was III (0.217 + 0.259 + 0.224 > 0.6).

The weighted five-element connection numbers in Table 4 were used in
Equations (12)–(15) in to obtain the first, second, third, and fourth partial derivatives
of each index and evaluation object (Tables 5 and 6).

Table 5. First and second partial derivatives.

Index First Partial Derivative Situation Second Partial Derivative Situation

R11 0.583 + 0.597iµ1 + 0.742iµ2 + 1.000iµ3 Contrary 0.494 + 0.446iµ1 + 0.426iµ2 Same
R12 0.385 + 0.605iµ1 + 0.576iµ2 + 0.799iµ3 Contrary 0.389 + 0.512iµ1 + 0.419iµ2 Contrary
R13 0.359 + 0.279iµ1 + 0.506iµ2 + 0.547iµ3 Contrary 0.383 + 0.533iµ1 + 0.481iµ2 Contrary
R14 0.268 + 0.579iµ1 + 0.468iµ2 + 0.610iµ3 Contrary 0.364 + 0.500iµ1 + 0.434iµ2 Contrary
R15 0.350 + 0.490iµ1 + 0.531iµ2 + 0.555iµ3 Contrary 0.417 + 0.480iµ1 + 0.489iµ2 Contrary
R1 0.382 + 0.536iµ1 + 0.558iµ2 + 0.679iµ3 Contrary 0.410 + 0.492iµ1 + 0.455iµ2 Contrary
R21 0.518 + 0.494iµ1 + 0.810iµ2 + 0.370iµ3 Same 0.512 + 0.379iµ1 + 0.686iµ2 Same
R22 0.466 + 0.586iµ1 + 0.758iµ2 + 0.636iµ3 Contrary 0.443 + 0.436iµ1 + 0.544iµ2 Same
R23 0.405 + 0.570iµ1 + 0.557iµ2 + 0.594iµ3 Contrary 0.416 + 0.506iµ1 + 0.484iµ2 Contrary
R24 0.477 + 0.604iµ1 + 0.515iµ2 + 0.569iµ3 Contrary 0.441 + 0.540iµ1 + 0.475iµ2 Contrary
R2 0.465 + 0.552iµ1 + 0.668iµ2 + 0.519iµ3 Contrary 0.569 + 0.573iµ1 + 0.680iµ2 Contrary
R31 0.514 + 0.551iµ1 + 0.550iµ2 + 0.522iµ3 Contrary 0.482 + 0.500iµ1 + 0.513iµ2 Contrary
R32 0.448 + 0.467iµ1 + 0.639iµ2 + 0.471iµ3 Same 0.490 + 0.422iµ1 + 0.576iµ2 Same
R33 0.349 + 0.594iµ1 + 0.502iµ2 + 0.477iµ3 Contrary 0.370 + 0.542iµ1 + 0.512iµ2 Contrary
R34 0.311 + 0.500iµ1 + 0.577iµ2 + 0.470iµ3 Contrary 0.383 + 0.464iµ1 + 0.551iµ2 Contrary
R35 0.309 + 0.507iµ1 + 0.414iµ2 + 0.626iµ3 Contrary 0.379 + 0.551iµ1 + 0.398iµ2 Contrary
R3 0.388 + 0.526iµ1 + 0.535iµ2 + 0.513iµ3 Contrary 0.421 + 0.497iµ1 + 0.510iµ2 Contrary
R41 0.559 + 0.558iµ1 + 0.558iµ2 + 0.665iµ3 Same 0.501 + 0.500iµ1 + 0.457iµ2 Same
R42 0.474 + 0.465iµ1 + 0.659iµ2 + 0.518iµ3 Same 0.505 + 0.414iµ1 + 0.560iµ2 Same
R43 0.468 + 0.617iµ1 + 0.658iµ2 + 0.497iµ3 Contrary 0.431 + 0.484iµ1 + 0.570iµ2 Contrary
R44 0.403 + 0.502iµ1 + 0.533iµ2 + 0.635iµ3 Contrary 0.445 + 0.485iµ1 + 0.456iµ2 Contrary
R4 0.478 + 0.540iµ1 + 0.598iµ2 + 0.584iµ3 Contrary 0.516 + 0.520iµ1 + 0.551iµ2 Contrary
R51 0.561 + 0.534iµ1 + 0.515iµ2 + 0.546iµ3 Same 0.512 + 0.509iµ1 + 0.485iµ2 Same
R52 0.507 + 0.578iµ1 + 0.501iµ2 + 0.446iµ3 Contrary 0.467 + 0.535iµ1 + 0.529iµ2 Contrary
R53 0.460 + 0.467iµ1 + 0.557iµ2 + 0.576iµ3 Contrary 0.496 + 0.456iµ1 + 0.492iµ2 Same
R54 0.503 + 0.560iµ1 + 0.534iµ2 + 0.699iµ3 Contrary 0.473 + 0.512iµ1 + 0.433iµ2 Contrary
R55 0.520 + 0.486iµ1 + 0.511iµ2 + 0.799iµ3 Same 0.517 + 0.487iµ1 + 0.390iµ2 Same
R5 0.508 + 0.527iµ1 + 0.522iµ2 + 0.638iµ3 Contrary 0.491 + 0.501iµ1 + 0.456iµ2 Contrary
R 0.442 + 0.536iµ1 + 0.576iµ2 + 0.584iµ3 Contrary 0.448 + 0.485iµ1 + 0.498iµ2 Contrary
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Table 6. Third and fourth partial derivatives.

Index Third Partial
Derivative Situation Fourth Partial

Derivative Situation

R11 0.526 + 0.511iµ1 Same 0.507 Same
R12 0.432 + 0.550iµ1 Contrary 0.440 Contrary
R13 0.418 + 0.526iµ1 Contrary 0.443 Contrary
R14 0.422 + 0.535iµ1 Contrary 0.441 Contrary
R15 0.465 + 0.495iµ1 Contrary 0.484 Contrary
R1 0.454 + 0.520iµ1 Contrary 0.466 Contrary
R21 0.574 + 0.356iµ1 Same 0.618 Same
R22 0.504 + 0.445iµ1 Same 0.531 Same
R23 0.451 + 0.511iµ1 Contrary 0.469 Contrary
R24 0.450 + 0.532iµ1 Contrary 0.458 Contrary
R2 0.501 + 0.451iµ1 Same 0.528 Same
R31 0.491 + 0.494iµ1 Contrary 0.499 Contrary
R32 0.537 + 0.423iµ1 Same 0.559 Same
R33 0.406 + 0.514iµ1 Contrary 0.441 Contrary
R34 0.452 + 0.457iµ1 Contrary 0.497 Contrary
R35 0.407 + 0.580iµ1 Contrary 0.412 Contrary
R3 0.458 + 0.494iµ1 Contrary 0.481 Contrary
R41 0.500 + 0.523iµ1 Contrary 0.489 Contrary
R42 0.550 + 0.425iµ1 Same 0.564 Same
R43 0.471 + 0.459iµ1 Same 0.506 Same
R44 0.479 + 0.515iµ1 Contrary 0.482 Contrary
R4 0.497 + 0.484iµ1 Same 0.507 Same
R51 0.501 + 0.512iµ1 Contrary 0.495 Contrary
R52 0.466 + 0.503iµ1 Contrary 0.481 Contrary
R53 0.521 + 0.481iµ1 Same 0.520 Same
R54 0.480 + 0.542iµ1 Contrary 0.470 Contrary
R55 0.515 + 0.555iµ1 Contrary 0.481 Contrary
R5 0.495 + 0.525iµ1 Contrary 0.485 Contrary
R 0.480 + 0.495iµ1 Contrary 0.493 Contrary

5.3. Analysis of Calculation Results
5.3.1. Analysis of Weight Results

As shown in Table 4, the equipment risk (R3) represents the highest risk. The experts
participating in the evaluation believed that although the China Railway Group has been
extensively involved in rail transit projects, it may not be familiar with the management
of large-scale machinery and equipment in deep pit projects. Delays in providing and
maintaining equipment and incorrect installation and positioning can occur in a tight con-
struction period. The management personnel of the construction machinery and equipment
and the construction safety management personnel of the unit are responsible for the use,
maintenance, and safety inspection of machinery and equipment. Since there are hidden
dangers when using large equipment, the operators, managers, and maintenance personnel
must be educated on the equipment operation and safety to improve their professional and
technical expertise and safety awareness.

The index weight of the Method (R4) ranks second, which is attributed to the char-
acteristics of the construction process and high technology level of deep foundation pit
projects. The excavation of a foundation pit follows the theory of the “time–space effect”.
The time when the foundation pit is unsupported should be minimized. Global positioning
system (GPS) data can be used to accurately locate the position of the supporting piles
and anchor cables to ensure the overall safety performance. When unique geological or
hydrological conditions are encountered, the slurry mix ratio can be increased to ensure
adequate grouting pressure and grouting time to prevent water inrush in overlapping
water-stop curtains.
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The weight of the environmental risk (R5) of this project is the smallest (0.1771),
which differs from previous research results [2,3,17]. However, the geological survey data
and field survey indicate no unfavorable geological landforms, and the deep foundation
pit construction did not occur in the flood season of the Yangtze River. Therefore, the
environmental risk of this project was low.

Among the secondary indicators, material supply efficiency (R21) ranks first, and
material price rationality (R23) ranks second. The possible reason is that the experts felt that
this project was the first civil construction project of the China Railway Construction Group
Co., Ltd. in Huanggang City, making it difficult for project managers to obtain low-cost
construction materials locally and in time. Project managers should focus on these key risk
management areas.

5.3.2. Analysis of Risk Assessment Calculation Results

Table 4 indicates that the construction risk level of this project is “III”, and the five-
element connection numbers have the same trend. This result demonstrates that the
construction risk of this project is low, and the risk level shows a downward trend over
time. The evaluation results are consistent with the actual conditions of the project. (1) No
safety accidents, quality problems, large cost overruns, or construction delays have occurred
in this project. (2) The project was inspected by the competent government department and
the owner unit many times during construction, and all evaluation results were excellent.

Among the first-level indicators, the equipment risk has the largest weight, and it
is the only indicator with an increasing risk level. Thus, the project managers should
take targeted risk measures. Among the five first-level indicators of equipment risk, only
the maintenance conditions (R33), the stability of the power supply system (R34), and the
suitability of construction machinery operation (R35) show a reverse trend, and the risk
level is increasing. Therefore, the project managers should establish a suitable maintenance
system of the construction machinery and equipment, implement a maintenance ledger
system, appropriately increase the generator reserve to improve the stability of the power
supply system, and improve the training of machinery operators to reduce risk.

The first-order partial derivates indicate that the construction risk is in the reverse
trend, and the five first-class indices and 78.26% of the second-class indexes are also in the
reverse trend, indicating an increasing trend of the construction risk. The second-order,
third-order, and fourth-order partial derivatives have similar rules, indicating an increasing
trend of the risk level. The results highlight the importance of project risk management.

6. Discussion
6.1. Comparison of Different Weight Calculation Methods

The AHP [9] and the entropy weight method [10] were used to calculate the index
weights to demonstrate the superiority of the PP for the weight calculation. The results are
listed in Table 7. The weights of the AHP were calculated using the Yaahp software.

The ranking of the first-level indicators is the same for the PP and AHP, but the
ranking order of R1 and R4 is different, i.e., 69.95% of the secondary indicators have the
same order, but only seven indicators (e.g., R54) have different orders of importance. The
index weights calculated by the AHP exhibit large differences, unlike those obtained from
the PP. When the evaluation matrix of the AHP does not match the test standard, the
evaluation and scoring must be repeated. This process is not required in the PP; thus, it has
better applicability.
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Table 7. Results of different weight calculation methods.

Index
PP AHP Entropy Weight

Weight Ranking Weight Ranking Weight Ranking

R11 0.0379 16 0.0150 23 0.0206 21
R12 0.0238 22 0.0258 22 0.0361 13
R13 0.0380 15 0.0408 15 0.0293 16
R14 0.0448 11 0.0494 8 0.0447 11
R15 0.0552 4 0.0665 2 0.0103 23
R21 0.0641 1 0.0668 1 0.0290 17
R22 0.0292 20 0.0297 20 0.0987 1
R23 0.0624 2 0.0445 10 0.0547 8
R24 0.0312 19 0.0414 12 0.0643 3
R31 0.0435 13 0.0411 13 0.0286 18
R32 0.0478 8 0.0587 4 0.0689 2
R33 0.0511 7 0.0446 9 0.0546 9
R34 0.0375 17 0.0528 5 0.0338 15
R35 0.0445 12 0.0376 16 0.0182 22
R41 0.0598 3 0.0632 3 0.0591 6
R42 0.0433 14 0.0316 18 0.0231 19
R43 0.0551 5 0.0368 17 0.0563 7
R44 0.0539 6 0.0421 11 0.0416 12
R51 0.0192 23 0.0292 21 0.0216 20
R52 0.0370 18 0.0410 14 0.0461 10
R53 0.0265 21 0.0302 19 0.0617 5
R54 0.0468 10 0.0496 7 0.0345 14
R55 0.0476 9 0.0498 6 0.0641 4
R1 0.1997 3 0.1975 2 0.1411 5
R2 0.1869 4 0.1824 4 0.2467 1
R3 0.2244 1 0.2347 1 0.2042 3
R4 0.2121 2 0.2079 3 0.1801 4
R5 0.1771 5 0.1775 5 0.2279 2

The weight of the environment (R5) ranks second for the entropy weight method.
However, the geological survey data and field survey showed no unfavorable geological
landforms and no flood threat. Therefore, there is a substantial difference between the
weight ranking obtained from the entropy weight method and engineering practice. The
entropy weight method uses the entropy as an indicator of the dispersion of an index. The
greater the degree of dispersion, the greater the influence of the index is on the overall
evaluation results. The greater the difference in the experts’ opinions, the greater the weight
of the index is, rather than the more important weight.

6.2. Comparison of Different Evaluation Methods

The Classic SPA [8], FCE [12], GCM [13], BPNN [14], and SVM [15] were selected
to calculate the risk level of the case to evaluate the advantages of the improved SPA.
The Classic SPA, FCE, and GCM calculate the index weights based on the PP. A sigmoid
activation function is used in the BPNN, and the minimum convergence error is 10−5. For
the SVM model, 10 groups of parameters are randomly selected, and the average of the
10 calculation results is used as the risk analysis result.

The FCE evaluation result of the case is [0.000, 0.172, 0.347, 0.343, 0.228]; therefore,
the construction risk level is IV. Although the two evaluation models provide different
levels of construction risk, the degree of membership of III and IV is relatively close. The
weights of some indicators substantially affect the evaluation results, and the weights of
some key indicators are large. Thus, they skew the result. The SPA method avoids this
problem, accurately reflects the differences between the evaluation units, and provides a
more accurate assessment of the uncertainty and risk of the project.
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The calculation results of the gray correlation degree of the risk levels obtained from
the GCM are listed in Table 8. The gray correlation degree of the case is 0.4956, and the risk
level is III. The evaluation results are consistent with the SPA method. The GCM prevents
ambiguity of the indices. However, the method is too subjective for this project because the
optimal values of the secondary indices are predetermined, unlike in the SPA method.

Table 8. The gray correlation degree obtained from the GCM.

Risk Level I II III IV V

Gray correlation degree (0.7812, 1] (0.6163, 0.7812] (0.4794, 0.6163] (0.3566, 0.4794] [0, 0.3566]

The results of the BPNN and SVM are listed in Table 9. The results differ substantially.
The reason may be that the sample size is too small to train the BPNN and SVM.

Table 9. BPNN and SVM results.

Training Set:Test Set 83.33%:16.67% 66.67%:33.33% 50.00%:50.00%

BPNN III II IV
SVM III II II

7. Conclusions

A novel construction risk assessment method for deep foundation pit projects is
proposed in this paper. The construction risk was assessed using the WBS-RBS method, the
PP model optimized by PSO was used to calculate the index weights objectively, and the
SPA was used for risk assessment of the deep foundation pit construction project. This new
method would better deal with the complexity, uncertainty, and dynamics of construction
safety risks of deep foundation pit projects, and provide more valuable suggestions for
managers and decision makers.

Empirical research showed that the risk assessment result was III, which was consistent
with the actual project conditions. Its risk was acceptable, but targeted risk measures should
be taken. The equipment risk represented the highest risk in the primary indicators; material
supply efficiency and material price rationality ranked the most important in the secondary
indicators. Project managers should devote major resources to the management of these
key risk factors. The method outperformed the analytic hierarchy process, entropy weight
method, classical set pair analysis, fuzzy comprehensive evaluation, gray clustering method,
backpropagation neural network, and support vector machine, providing theoretical and
practical references for the risk assessment of similar deep foundation pit construction
projects. In addition, this paper clarified the importance of risk management from the
dynamic evolution of risk of the case project, which was a valuable vision.

The main limitations of this paper are the non-universality of the index system and the
shortage of engineering data. A general risk index system for deep foundation pit should be
constructed in the future. Considering that the acquisition of engineering data has always
been the difficulty of research, how to fully mine the risk assessment information of small
sample data is also worth studying. In addition, this paper failed to describe and exactly
implement this new method in the specific risk factors of a real-time deep pit foundation
context, which was also a limitation.
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