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Abstract: This paper proposes an approach to the classification of respiration states based on a neural
network model by visualizing respiratory signals using a spectrogram. The analysis and processing
of human biosignals are still considered some of the most crucial and fundamental research areas
in both signal processing and medical applications. Recently, learning-based algorithms in signal
and image processing for medical applications have shown significant improvement from both
quantitative and qualitative perspectives. Human respiration is still considered an important factor
for diagnosis, and it plays a key role in preventing fatal diseases in practice. This paper chiefly deals
with a contactless-based approach for the acquisition of respiration data using an ultra-wideband
(UWB) radar sensor because it is simple and easy for use in an experimental setup and shows high
accuracy in distance estimation. This paper proposes the classification of respiratory states by using a
feature visualization scheme, a spectrogram, and a neural network model. The proposed method
shows competitive and promising results in the classification of respiratory states. The experimental
results also show that the method provides better accuracy (precision: 0.86 and specificity: 0.90) than
conventional methods that use expensive equipment for respiration measurement.

Keywords: respiration status; UWB radar; respiratory signal; classification; deep neural network

1. Introduction

Biosignals have played an important role in the diagnosis and treatment of diseases,
and they have also played a key role in preventing further severe diseases. In practical
fields, wearable devices have recently been developed to diagnose cardiac fibrillation or
other diseases using biosignals acquired from the human body using specific types of
sensors [1]. In general, biosignals are categorized into four groups: heart rate, blood pres-
sure, body temperature, and breathing rate. From among the four aforementioned signals,
respiratory signal has gained less attention than the others. Representative biosignals are
divided into two types [2]: Electrical signals generated by the human body and can be
measured with an electrocardiogram (ECG), which includes the electrical activity of the
heart; an electroencephalogram (EEG), which is based on the brain; and an electromyogram
(EMG), based on nerves and muscles. There are also non-electrical signals in the body,
which include blood flow (hematocele), temperature, and respiration rate. Among these,
the respiratory status is an important factor that can represent the status of respiratory
organs or related ones. It also plays an important role in carbon dioxide emission and
energy generation. Respiration is divided into two phases: internal and external respira-
tion. Internal respiration is an interaction inside the body, and external respiration occurs
between the body and the external environment. There are internal respiration processes
in which oxygen transfer takes place in cells through interactions within the body and
the production of carbon dioxide occurs, and there are external respiration processes in
which oxygen is obtained and carbon dioxide is released through interactions between the
environments inside and outside the human body. Apnea causes ventilatory disorders
resulting from changes in the amount of ventilation in the alveoli and airways, and it is
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accompanied by chronic alveolar hypoventilation, hypertension, and cardiac arrhythmias.
It also increases the long-term mortality rate of patients. In fact, patients with apnea have
twice the risk of developing hypertension compared to those with normal respiration
activities [3].

There are two main approaches to biosignal acquisition: a contact-based method and a
contactless (or non-contact)-based method. Contact-based methods usually employ a device
that is attached to the human body, located near a respiratory organ. The contact-based
method acquires respiratory signals using a device that measures human respiration with
high quality (because the noise is removed or reduced with signal processing techniques)
compared to the non-contact based method. The latest technology uses smart steering
wheel, smart seat belt, and equipment that acquire electrical signals such as EEG analysis [4].
Although the contact-based methods acquire biosignals with low noise, it is sometimes not
suitable for patients such as children, the disabled, or severely damaged persons because
it can be difficult to attach a device for respiration acquisition and to monitor respiratory
states in a continuous and real-time manner. Contrary to the contact-based methods, non-
contact-based methods can be an alternative to the contact-based ones and have advantages
in monitoring respiratory states in a continuous and real-time manner in addition to its
simplicity and ease of use in the acquisition of measurements. Research on human behavior
and health status through biosignals and the use of non-contact-based methods employing
the technologies of computer vision, image processing, and signal processing is being
extensively performed [5,6]. The non-contact-based method is easy and simple to use, and
measuring devices have become accurate and low-cost compared to those used for the
contact-based method. However, the non-contact-based method is still considered less
accurate and less stable in practical fields. Eye tracking using a Charge Coupled Device
(CCD) video camera, image processing to determine drowsiness using face direction and
eyelid movement, and visualization and analysis of audio signal characteristics using
MFCC (Mel-Frequency Cepstral Coefficient) based on signal processing techniques have
been proposed [7]. Feature visualization is used for the classification of speech signals and
vibration analysis. Existing apnea diagnosis studies analyze characteristics by decomposing
data with continuous values into frequency components in the time domain [8]. On the
other hand, the feature visualization method visualizes regional features in the time domain
by periodically dividing the data in it. Compared with the time and frequency domains,
which express the features in one dimension, it is possible to analyze the local features
in two dimensions [9,10]. Radar acquires data with relatively low noise in environments
of low-light conditions, in rainy and cloudy circumstances, or other conditions which
usual image sensors suffer from. Radar applies to diverse fields such as defense, medicine,
vehicle, surveillance, etc., and it achieves a high precision in distance measurement [11].
Even though respiratory status is important, it has gained less attention compared to other
biosignals. Research on the diagnosis of apnea using ECG-based electrical signals acquired
by PSG (Polysomnography) that can provide various information about human biosignals
has long been of interest in the research and industrial fields. As deep learning algorithms
have shown significant improvements in detection, recognition, and classification in the
areas of signal processing, image processing, etc., recent studies on the detection of the
apnea status of humans based on a neural network model—e.g., long short-term memory
and deep neural network—have been performed [12,13]. Existing work has focused on
the classification of respiratory signals in the frequency domain, and recently, a learning-
based classification using an artificial neural network has been proposed [14]. In this
paper, we present a learning-based respiration state classification algorithm using a feature
visualization method that visualizes and classifies frequency changes in respiratory data.

This paper classifies the respiration states using a feature visualization method and
an artificial neural network model. Respiratory signal is acquired by UWB radar sensor,
and the signal is transformed into the frequency domain. In the Fourier domain, the
signal that is defined in one-dimensional (1D) space is transformed into 2D space using a
spectogram. Analyzing biosignals in the image domain has been introduced in a recent
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work. In the work by Modak et al. [15], the EEG signal is represented in the time-frequency
domain using a cross wavelet transform followed by the convolutional neural network
(CNN)-based feature extraction and classification of EEG signals. EEG is a popularly
used tool that provides assistance in the detection of epileptic seizures by analyzing EEG
signals [16]. In the work by Naz et al. [17], a new deep learning approach has been proposed
to predict ventricular tachyarrhythmia (VTA) using ECG signals that are converted into
binary images. Deviating from the existing research method using electrical biosignals, non-
electrical biosignals are acquired using an Ultra Wide Band (UWB) radar sensor. The aim
of this study is to propose a learning-based respiration status classification algorithm using
a feature visualization method that classifies respiration conditions, particularly detecting
abnormal respiration such as in apnea. The rest of the paper is organized as follows.

Section 2 describes the necessity of this study and related work on the detection of
abnormal respiration. In addition, the difference between the biosignals obtained via the
contact method and the non-contact method is explained. This section presents the accuracy
according to the data set and classifier used in the previous study. In addition, the method
and type of feature visualization used in mechanical engineering and speech and acoustics
are presented. Section 3 presents the algorithm used in the proposed method. We present
the structure of a convolutional neural network (CNN) and the hyperparameters used
for the feature visualization of respiration states using signal processing techniques and
image classification. Section 4 presents the experimental environment and the results of the
algorithm verification. The equipment for acquiring the respiratory state, the measured
environment, and the measurement object are described, and so is the respiratory state
data set used in the experiment. The experimental results verify the algorithm presented in
this paper by comparing the results of the proposed method with the methods presented
in previous studies. Finally, in Section 5, the conclusion of this paper and future research
plans are presented.

2. Related Research

The diagnosis of apnea using biosignals has been actively carried out in the past
decades [18–20]. It is divided into a method of diagnosing apnea using electrical biosignals
obtained through PSG and a method of diagnosing apnea using ECG obtained via PSG. A
scalogram-based convolutional neural network was introduced to detect sleep apnea using
single-lead ECG signals [21]. In the work by Shen et al. [13], the detection of sleep apnea
employs a multiscale, dilated-attention, one-dimensional convolutional neural network
and a weighted-loss time-dependent classification model. It reports that the combination
of the weighted cross-entropy loss function and the hidden Markov model alleviated the
problem of data imbalance. Furthermore, it improved the classification accuracy. PSG is a
data acquisition method used for apnea diagnosis with electrical biosignals such as EEG,
ECG, eye movement, and muscle movement. Usually, one needs more than a day in the
laboratory to acquire vital signals. The obtained electrical biosignals are directly attached to
the body to obtain low-noise data. PSG, a biosignal acquisition method designed for apnea
diagnosis, has been actively studied in the past [22]. Although low-noise data are obtained
by the method of acquiring electrical biosignals, there are restrictions on its use such as
the cost of maintaining the experimental space and equipment and the time required for
accurate diagnosis of more than one day. To alleviate this problem, ECG-based apnea
diagnosis is being actively studied. ECG is one of the electrical biosignals obtained from
PSG and refers to the electrical biosignals obtained from the heart. ECG is one of the means
of diagnosing physical abnormalities such as arrhythmia, cardiac arrest, and apnea by
analyzing the pattern of the heartbeat. ECG has partially relieved the limitations of PSG
and enabled real-time diagnosis [23]. The method using ECG verified with similar accuracy
compared to the method using various electrical biosignals acquired with PSG, and the cost
and time constraints of the existing method were relaxed [24]. A flowchart that describes
existing research about the detection of abnormal respiration states (e.g., apnea) is shown
in Figure 1.
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Figure 1. Flowchart of existing research in apnea detection.

Studies on ECG-based apnea diagnosis only classify ECG from values measured in
PSG or use a data set provided by the National Institutes of Health (NIH) [25,26]. Improve-
ments such as optimizing the hyperparameters of the classifier are actively improving the
performance of apnea diagnosis. Logistic regression (LR) was used to discriminate against
apnea [27]. Logistic regression is used for regression and classification problems in the
areas of image processing, pattern recognition, computer vision, etc. Although the learning
speed and prediction are fast, it is difficult to interpret the weights by multiplying them.
Xi is the input signal, B is the regression coefficient, and ε is the error term. A quadratic
discriminant analysis (QDA) was used to detect the resting state of respiration [28,29].
You can set the variance matrix for each class that you need to classify, but it requires
a lot of data. A decision boundary between classes is constructed, with the mean value
corresponding to the kth class ∏k and the variance matrix µk. The k-nearest neighbor
algorithm (k-NN: k-Nearest Neighbor) is a method of classifying data using k classes
located in adjacent locations. In this case, there are two methods of estimating the distance:
Euclidean distance and Manhattan distance. There is no restriction on the distribution
of data, but it requires a lot of data. Bidirectional Long Short-Term Memory (Bi-LSTM)
solves the unidirectional limitation of the existing Long Short-Term Memory (LSTM) with
a reverse LSTM layer. Shouldice et al. showed an accuracy of 84% with the quadratic
discriminant function method [28]. Mendez et al. showed 88% accuracy using the k-nearest
neighbor algorithm and the artificial neural network [29]. Recently, Bi-LSTM showed an
accuracy of 82% using the data set provided by NIH [26]. This has also been shown from
related studies using various classifiers such as SVM, LDA, TVAM, and ELM [30–34]. In
the time domain, every waveform is actually a sum of sinusoids. Existing studies analyze
the singularity by decomposing the global time for the feature into the frequency domain.
When the length of the signal feature is long, a singularity that occurs with a low frequency
in a local area may not appear in the results of analyzing the singularity for the entire
signal. In mechanical engineering and acoustics, data characteristics are divided into local
units and analyzed, and features appearing in the region are predicted and diagnosed. A
spectrogram decomposes singularities by dividing the time domain into regions. The x-axis
is the time domain and the y-axis is the frequency domain that visualize the characteristics
of the data. In mechanical engineering, it has been used for predicting and diagnosing
engine failures and failures of vehicle parts [35]. In the Mel spectrogram, the x-axis is the
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frequency domain and the y-axis is the amplitude domain, and it is used in acoustics and
phonetics such as in speech and sound recognition, detection, and classification. Human
emotions were predicted and diagnosed through voice [36]. In the past, MFCC was used
to analyze voice and acoustic signals. However, Mel spectrogram is used to achieve an
improved computational processing power compared to the conventional spectrogram of
recent computer systems. In this paper, the spectrogram is used to process the signal for
the rate of change of the human thorax. The flowchart for visualization and analysis of
input data is shown in Figure 2. The input data are characterized as a two-dimensional
value on the x-axis and y-axis using data visualization tools such as the spectrogram and
the Mel spectrogram.

Figure 2. Existing research on the visualization method.

Alternative to the methods explained above, contactless-based methods have been
of interest for the measurement of respiratory states since contact-based methods have
limitations in that long-term and continuous monitoring is sometimes difficult because
devices that measure respiration need to be attached to respiratory organs. Severely injured
persons, children, or other people suffer from or have difficulties in the attachment of a
sensing device to their body. Unless patients are not comfortable with attaching a sensing
device to the body, an accurate measurement of respiration may be difficult. Recently,
the Coronavirus disease 19 (COVID 19) has inspired a necessity for the measurement of
respiratory states, and the early detection and isolation of potential patients has been one
of the most important factors that could reduce the severity of the disease. In addition,
due to the limited number of hospital wards, contactless-based methods of respiratory
measurement have gained a lot of attention in the areas of medicine and medical engineer-
ing. In contactless methods, ultra-wideband (UWB) radar is widely used because of its
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simplicity, and it enables us to monitor respiratory states in a long-term and continuous
manner. However, another recent work has shown a deep learning model using an IR-UWB
radar to propose a real-time apnea-hypopnea (AH) event detection [37]. The UWB radar
shows robustness against factors in the external environment such as the existence of dust,
temperature changes, etc. When using UWB radar sensors for respiration measurement,
patients (or persons who need measurements to be taken) do not have inconveniences
in attaching the device. The UWB radar sensor provides a high signal-to-noise ratio and
accuracy of measurement [38]. If the reflected signal is not pre-processed, various types of
filters such as the Kalman filter, bandpass filter, median filter, etc., are employed to enhance
the quality of the signals.

3. Proposed Method

The proposed method visualizes the signal of the respiration state obtained from the
UWB radar in both the time and the frequency domains and classifies the respiration state
using an artificial neural network. The overall flow chart for apnea detection and respiration
classification based on a convolutional neural network considering the visualization of
respiration consists of three steps, as shown in Figure 3.

Figure 3. Suggested respiration state classification—overall flow chart.

First, a visualized data set is created based on the time domain and the frequency
domain through the segmentation, overlap, and frequency analysis of the respiration state
signal input in the pre-processing process. Through the frequency analysis of the divided
time domain, it is possible to extract features that consider both the local and global features
of the respiration signal and visualize it. Second, in the parameter estimation step, learning
is performed based on a training set. Finally, in the last step, the respiration state is classified
as a validation set in the state estimation step. The classifier uses a CNN suitable for image
classification. In the proposed method, we present the difference between the method of
system transformation of the entire feature presented by previous studies and the method
of feature visualization presented in this paper. The visualization of the respiratory state
periodically represents the frequency change in the input respiratory state signal. The
respiratory conditions used were normal breathing, apnea, and normal breathing during a
speaking activity. The actual image that visualizes the characteristics of the respiration state
acquired by the radar sensor for 60 s is shown in Figure 4. The difference in the visualization
image can be confirmed according to the characteristics of the respiration state. The feature
visualization method used a spectrogram. As shown in Figure 4, the color red represents a
high level of signal power, and the color blue stands for a low level of signal power. Thus,
the spectrogram shows the distribution of signal power of different frequencies.
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Figure 4. Spectrograms of three respiratory states: (a) Normal respiratory state (b) Abnormal (Apnea)
state (c) Normal breathing during a speaking activity.

If the amount of variation in the respiratory signal is small (or no variation), it means
that the signal has a low-frequency value or it is close to 0, and it is determined as apnea.
Normal respiration, a visualization model with relatively high-frequency values, is shown
in Figure 4a. In the case of the existence of apnea, a spectrogram is shown in Figure 4b.
In Figure 4c, the low-frequency values are distributed as similar in the case of normal
respiration. The visualized respiration states show a difference in the frequency domain
and a pattern of change with time when apnea occurs. For this manner of apnea detection,
it is important to change the frequency value over time and not to conduct just a simple
frequency analysis. The proposed method constructs a learning-based classifier using a
visualization method that considers the regional characteristics of the respiration status
and classifies apnea detection and respiration status. Section 3 describes the process in
detail, from feature visualization to respiration state classification. A Fourier transform
(FT) decomposes an input signal into a sum of sine waves. It is a technique actively used to
analyze specific signals in signal and image processing as well as communication fields.
The frequency domain Fourier transforms the respiration state for the input time domain
into an input value in the frequency domain. The proposed method uses a fast Fourier
transform that reduces the number of operations based on the Fourier transform. The fast
Fourier transform equation used in the input signal of the respiration state is as follows (1):

X( f ) =
N−1

∏
n=0

x(t)e−i2π f t (1)

The respiration signals in the time domain used in the experiments are also represented
in the frequency domain using the fast Fourier transform. As shown in Figure 5, normal
respiration has a peak value of around 13 Hz, apnea has a peak of around 20 Hz, and
speaking respiration has a peak of around 3 Hz. µ is the average frequency of respiration
states in the frequency domain.
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Figure 5. Frequency analysis of signals in the respiratory states.

A series of processes, from inputting the respiration state to the visualization of the
frequency change, using the fast Fourier transform is shown in Figure 6. First, the input
respiration state divides the entire signal into regions using the window function. In
addition, a region adjacent to the window divided by an overlap is used overlappingly, and
the frequency is transformed by fast Fourier transform. In contrast, the x-axis visualizes
the signal of the respiration state as a time domain and the y-axis as a frequency value.

Figure 6. Frequency analysis of signals in the respiratory states.
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The window function divides the input data into units of a specified length and
divides the signal. When the start and end values of the divided signal are not 0, signal
discontinuity occurs. The Hamming window minimizes the discontinuity for each window
in order to reduce frequency distortion. Equation (2) is the Hamming window equation. N
is the number of input data, and in the case of the present work, it is 60 (respiration signal
is sampled with 1 Hz, 60 samples per 1 min).

h(n) = 0.54− 0.46cos(
2πn

N − 1
), 0 ≤ n ≤ N (2)

The overlap uses adjacent data utilized in the previous time window as the starting
value for the current window. The input signal is divided into divided windows, and the
discontinuity between the generated windows is minimized. In Equation (3), L is the length
of the window used (L = N), and p (here, p = 0.5) is the percentage of adjacent data to be
used. A number for overlapped data is written by:

o(p) = L− (L ∗ p) (3)

Visualized feature values are generated in 224X224X3 RGB format. The respiration
state is visualized with a spectrogram, which is one of the visualization methods. The x-axis
represents the time domain, and the y-axis represents the frequency domain, indicating the
frequency domain of the respiration state according to the time domain. The spectrograms
for normal, apnea, and speaking, which represent respiration for each input situation, are
explained in Figure 4.

The CNN analyzes and classifies visual images by applying filtering techniques to
artificial neural networks. It consists of an input layer, a convolution block, a fully connected
(FC) layer, and a softmax layer, as shown in Figure 7.

Figure 7. Brief structure of Convolutional Neural Networks.

The input image data generate a feature map through convolution block, filter, stride,
and padding processes, and the output value of the neural network is used with the
activation function. The channel for the input image is determined by the input layer, and
the filter extracts the features of the input data to generate a feature map. The convolution
block consists of convolution, batch normalization, activation function, and max pooling.
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Convolution is an operator that finds a new function with two functions. In fact, in the
convolutional neural network, the operation of the filter inversion process is omitted by
cross-correlation. The convolution operation shows a loss in the size of the feature map.
Padding fills the edges of the input matrix with specific values and prevents the loss of the
feature map size caused by the convolution operation. In the proposed method, a zero-
padding, which fills the value with “0”, is applied. The batch normalization of artificial
neural network models is the process of normalizing input values with the mean and
variance of the data in the classifier learning process. It is used in convolutional or post-FC
steps, and it speeds up learning by reducing additional tasks such as a dropout to prevent
overfitting and the determination of initial weights according to data distribution. The
difference in learning accuracy according to batch normalization is shown in Figure 8. It can
be seen that the convolutional neural network to which batch normalization was applied is
10% more accurate than the convolutional neural network to which it was not applied.

Figure 8. Comparison of the accuracy of classification of respiratory states with batch normalization.

µβ = 1
m ∏m

i=1 xi

δ2 = 1
m ∏m

i=1(xi − µβ)2

x̂ = xi−µβ√
δ2+ε

yi = γ + β = BNγβ(xi)

(4)

Equation (4) is the input data normalized to the mean of the data µβ, the standard
deviation δ, the number of data m, the mean 0 and the variance 1, the scale factor γ, the shift
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factor β, and prevents the value from being “0” x̂; the output value of batch normalization
yi is represented by the following equation:

y =

{
0.01x(x ≤ 0)
0.01x(x > 0)

}
(5)

y =

{
α(ex − 1)(x ≤ 0)

x(x > 0)

}
(6)

The Sigmoid function, Step function, Rectified Linear Unit function (ReLU), and
Hyperbolic Tangent function are activation functions used in artificial neural networks.
In the proposed method, ReLU, in which the input value is output as a threshold value
through a function, and Softmax, suitable for classification, are used as the activation
functions. The ReLU function solves the problem of the sigmoid function that occurs in
deep learning using deep layers. In deep learning, the sigmoid function has a vanishing
gradient problem in which the output value converges to “0”. The step function and
the sigmoid function have the problem of gradient extinction converging to “0” in deep
neural networks. Although we used a hyperbolic tangent function whose output value is
in the range of [−1, 1] and the center of the output value is “0”, the problem of gradient
disappearance still exists. In the proposed method, ReLU is used as an activation function.
Values for positive integers and “0” are maintained, and negative integers are treated
as “0”. This is used to solve the gradient annihilation problem. Although a leaky ReLU
function such as Equation (5) and an Exponential ReLU (Exponential ReLU) function such
as Equation (6) have been developed considering even negative values, in this proposed
method, the existing ReLU function is used and the number of layers, the Hyperparameter
optimization of artificial neural networks such as learning rate and activation comparison,
proceeds as a future study. Max pooling extracts the value with the largest feature from the
generated feature map and alleviates the overfitting problem by reducing the number of
features used for learning.

4. Experiment

In this paper, respiration states are classified by visualizing the respiration conditions
acquired through the UWB radar. Table 1 shows the experimental environment, the central
processing unit (CPU), the random access memory (RAM), and the graphic card of the
device used for the experiment.

Table 1. System Environment.

System Version

CPU Intel(R) Core(TM) i9-9900KF CPU @ 3.60GHz 3.60 GHz
RAM Samsung DDR4 32GB(16GB X 2) PC4 21300

Graphic Card Gigabyte Geforce RTX 2080 UDV WF3 D6 8G

Table 2 presents specific information about the UWB radar used in the experiments.

Table 2. Specifications of the UWB radar.

Manufacturer Novelda X4 [39]

Frequency 4.1–10.3 GHz

Bandwidth 1.7–3.1 GHz

TX peak power −40 dBm/50 MHz

TX min power −60 dBm/MHz

Power consumption 180 mA

Respiration range 5 m



Appl. Sci. 2022, 12, 1895 12 of 17

A total of 10 adults participated in the experiments (9 males, 25–28 years old; 1 female,
35 years old). Every person generated both normal and abnormal respiration, and each
respiration was generated for 60 s. Computation time was 5 min for training and 2 min for
testing. The radar sensor that acquired the respiratory signal was about 30 cm far from the
person who generated the respiration signal. Prior to conducting the experiments, all of the
participants determined the type of respiration, normal, abnormal (apnea signal is emulated
by the pausing of respiratory activity for a few seconds). The visualized respiration data
set is used as training data for the classifier in the parameter estimation step. The data set
is divided into a training set and a validation set. The training set uses 70% of the entire
data set to train the classifier. The validation data set is used to evaluate the performance of
the trained classifier. Figure 9 shows the time domain data acquisition process for the rate
of change of the rib cage using the UWB radar.

Figure 9. The process of obtaining a respiratory state signal using the UWB radar.

The UWB radar can measure distance and position using pulse signals close to nano
or picoseconds. In this paper, the rate of change in the rib cage caused by the contraction
and relaxation of the diaphragm and the external intercostal muscles is acquired as a signal
of the respiration state. The rate of change of the chest refers to the distance between the
radar and the chest. The signal used in the experiment is the time series data obtained with
a sampling frequency of 10 Hz for a 60,000 ms section of the rate of change of the chest.
There are three types of signals acquired: normal breathing, apnea, and normal breathing
during a speaking activity. In medical institutions and domestic and foreign research fields,
a case in which breathing does not occur for more than 10 s is estimated as apnea [40–44].
The total number of data sets used for training is 3000, which include normal breathing
(1000), normal breathing with speaking activity (1000), and apnea (1000). For accuracy
verification, training data and verification data are divided at a 7:3 ratio, and 2100 training
data and 900 verification data are used.

Data input in size is trained with hyperparameters specified for each layer. The structure
of the convolutional neural network uses three convolution blocks, as shown in Figure 10,
and the hyperparameters of each layer are shown in Table 3. The number of filters used
in the neural network layer is K, the filter size is M, the pooling size is MP, Stripe is S,
and the activation function is K. The activation function in the convolutional layer is the
ReLU function, and the soft max function is used in the output layer for respiration state
classification. Dropout was not applied by adding a batch normalization layer. Batch
size is 128 and the stochastic gradient descent with momentum(SGDM) optimizer is used
for optimization.
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Figure 10. Structure of convolutional neural networks used in the experiment.

Table 3. Proposed convolutional neural network structure (learning rate = 0.001).

Layer Parameter

Conv2D K = 8, M = 3X3, S = 1, A = ReLU

Max Pooling MP = 2, S = 2

Conv2D K = 16, M = 3X3, S = 1, A = ReLU

Max Pooling MP = 2, S = 2

Conv2D K = 32, M = 3X3, S = 1, A = ReLU

Fully Connected layer A = Softmax

Table 4 presents the proposed method and the results of existing studies. We use a
convolutional neural network to classify visualized respiratory states. As an artificial neural
network model of a filtering technique, it is more suitable for image classification than
LSTM and RNN. True positive (TP) is when the classifier predicts an actual positive value
as positive, and true negative (TN: true negative) is when the classifier predicts an actual
negative value as negative. False positive (FP) is when the classifier classifies an actual
negative case as positive, and false negative (FN: false negative) refers to a case where
the classifier classifies an actual positive case as negative. Precision is the percentage of
positive values predicted by the classifier. Recall refers to the percentage of actual positives
predicted by the classifier to be positive. Specificity indicates the percentage of false values
classified as false by the classifier. Accuracy refers to the ratio that the classifier predicts a
true value as true and a false value as false. The F1 Score is an index that considers precision
and recall using a harmonic mean.

Previously proposed algorithms have diagnosed apnea based on ECG, which relieve
the constraints of PSG-based biosignals such as the high cost of equipment and the space
and time constraints of the experiments. In this study, the respiratory state is classified
using the non-electrical biosignal, the respiratory state. The proposed method cannot be
simply compared with the existing methods. Existing studies have used ECG, which is an
electrical biosignal, and mainly focus on the accuracy of counting the number of respirations
or the detection of apnea. On the other hand, this study focuses on the classification of
the state of respiration. Because the experimental environment and the data set used in
the previous studies are different, the performance of the classifier is compared with the
accuracy. The proposed method showed similar accuracy with that used by Raymond et
al., with a difference of 1% [45].

Apnea diagnosis and respiration status classification using non-electrical biosignals
were previously conducted using logistic regression. Table 5 presents the difference in
accuracy between previous studies and the proposed method. Based on the visualization
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data set, the accuracy using the artificial neural network was improved by 27% as compared
to the classifier based on the existing time domain.

Table 4. Comparison of existing research results with the proposed method.

Method Algorithm Precision Recall Acc F1-Score Specificity

Contact-based Raymond et al. [45] (2000) - - 0.81 - -
De Chazal et al. [30] (2000) - - 0.88 - -

McNames and Frasert [46] (2000) - - 0.92 - -
De Chazal et al. [47] (2003) - - 0.90 - -

Sadr and De Chazal[31] (2014) - 0.81 0.87 - 0.91
Garcia et al. [32] (2015) - 0.75 0.84 - 0.95

Sharma and Sharma [33] (2016) - 0.79 0.83 - 0.88
Song et al. [34] (2016) - 0.82 0.86 - 0.88

Prabodh et al. [26] (2021) 0.76 0.81 0.82 0.79 0.82
Contactless-based Proposed approach 0.86 - 0.80 0.75 0.90

Jiang et al. [6] (2020) - 0.90 0.84 0.85 0.76

Table 5. Comparison of domain-based experimental results for acquired data sets.

Algorithm Acc (%)

Park et al. [27] 53.0
Proposed (Data set in Visualized Domain) 80.0

5. Conclusions and Future Work

In this paper, we proposed a method of classifying the respiratory state using an
artificial neural network by acquiring the respiratory state signal through a non-contact
method with the use of a UWB radar. The convolutional neural network classified three
respiratory states into normal breathing, apnea, and normal breathing during a speaking
activity. In the feature visualization method, data with a vector length of 600 obtained in
the time domain is transformed into the frequency domain by dividing the data into 60 ms
periods. A data set in which the time domain and the frequency domain were visualized
was used as input data for the convolutional neural network. The convolutional block
consisted of three outputs, and the respiration state was classified through the softmax
activation function. The proposed method showed an accuracy performance similar to that
of the data set using the existing electrical signal with an accuracy of 80%, and improved
the accuracy by 27% in the non-contact method-based data set that acquired the respiratory
state with the UWB radar. The proposed method classified the human respiratory state
signal according to the situation, without the attachment of the measuring sensor to the
human body. The UWB radar sensor showed high measurement accuracy, but if there
existed barriers between human body and the sensor, the accuracy could be degraded.
We proposed a method of classifying respiratory states along with apnea diagnosis by
using a feature visualization method that alleviated the constraints on the body, which
change according to the body, as well as the constraints on the space of the experimental
environment that previous studies had and the need to acquire body signals for half a
day. The respiration state classifier using non-electrical biosignals was put alongside the
comparison of the accuracy results with the apnea diagnosis algorithm using the existing
electrical biosignals. Experiments were performed using CNNs with a basic neural network
structure. Future work is aimed at improving the accuracy of classifying respiratory states
by optimizing hyperparameters such as the learning rate, the hierarchical structure of the
artificial neural network, and the optimizer. In addition, as a future study, we plan to
acquire and classify changes in respiratory status, from emotions such as fear and anxiety
to mental disorders such as panic disorder, including the classification of respiratory states
for normal breathing, apnea, and normal breathing during a speaking activity.
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UWB Ultra-Wideband
ECG Electrocardiogram
EEG Electroencephalogram
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CCD Cahrge coupled device
MFCC Mel-Frequency cepstral coefficient
PSG Polysomnography
CNN Convolutional neural network
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