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Abstract: Early prediction of students’ learning performance and analysis of student behavior
in a virtual learning environment (VLE) are crucial to minimize the high failure rate in online
courses during the COVID-19 pandemic. Nevertheless, traditional machine learning models fail
to predict student performance in the early weeks due to the lack of students’ activities’ data in a
week-wise timely manner (i.e., spatiotemporal feature issues). Furthermore, the imbalanced data
distribution in the VLE impacts the prediction model performance. Thus, there are severe challenges
in handling spatiotemporal features, imbalanced data sets, and a lack of explainability for enhancing
the confidence of the prediction system. Therefore, an intelligent framework for explainable student
performance prediction (ESPP) is proposed in this study in order to provide the interpretability of
the prediction results. First, this framework utilized a time-series weekly student activity data set
and dealt with the VLE imbalanced data distribution using a hybrid data sampling method. Then,
a combination of convolutional neural network (CNN) and long short-term memory (LSTM) was
employed to extract the spatiotemporal features and develop the early prediction deep learning
(DL) model. Finally, the DL model was explained by visualizing and analyzing typical predictions,
students’ activities’ maps, and feature importance. The numerical results of cross-validation showed
that the proposed new DL model (i.e., the combined CNN-LSTM and ConvLSTM), in the early
prediction cases, performed better than the baseline models of LSTM, support vector machine (SVM),
and logistic regression (LR) models.

Keywords: imbalanced data distribution; explainable student performance prediction; feature
importance

1. Introduction

The World Health Organization (WHO) has advised all nations to restrict face-to-face
contact to prevent the transmission of COVID-19. This recommendation applies to the
formerly conducted classroom education, which has transformed into online teaching and
learning through a virtual learning environment (VLE) such as Moodle [1,2]. The abrupt
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transition from classroom to online teaching and learning created a sharp rise in the student
failure rate caused by the behavior problems and their interactions in the VLE, for instance,
some students lack of their ability in accessing learning material, assignment submission,
and interaction during a discussion in the VLE. Assisting students in engaging with the
VLE system is one of the critical factors for graduating from online courses [3]. The lack of
interaction with classmates and teachers is one of the obstacles in this learning transition [4].
Diminished engagement due to a quick transition to online learning during a pandemic
was another challenge [5]. Moreover, the investigation of student access to course materials
during digital education was reported in [6]. Then, the effectiveness of a distance learning
system was assessed using a comprehensive methodology in [7]. Therefore, early prediction
of student learning performance and analysis of initial student behavior in the VLE are
crucial to reduce the high failure rate in online courses during the pandemic.

The advancement of machine learning technology has received widespread attention
for forecasting student performance in earlier weeks of the teaching and learning process
in the VLE. The VLE records student interaction data such as course view, assignment
submission, resource view, quiz, and discussion. This VLE student data interaction was
employed to develop predictive models for various reasons, including predicting student
performance. For instance, a multi-layer perceptron (MLP) architecture was proposed to
predict student learning performance using the VLE database [8]. This early prediction
scheme enables teachers to intervene with an at-risk student with a high failure rate in the
online course. Furthermore, the machine learning analytics model can provide teachers
with statistical insight to aid teaching and learning.

Nevertheless, existing research on student learning performance prediction only
focuses on improving model prediction performance. This research goal will suffer from
the weakness of temporal feature challenges and imbalanced data set distribution, resulting
in poor performance and model prediction explainability in the prediction scenario of early
student learning performance. Firstly, the temporal feature challenges refer to a week-by-
week student learning performance prediction. For instance, the model could predict the
student learning performance as early as the sixth week within 16 weeks of the teaching and
learning process. However, the research on student performance prediction is ineffective
without the student’s activity data set captured in a whole week [8,9]. Secondly, the VLE
data set has a highly imbalanced class data distribution between the positive and negative
classes. Imbalanced class data distribution represents a data set in which some classes
have a significantly larger sample size than others. For instance, the number of samples for
failed students from the course was less than 3% compared to those who passed the course.
However, a model developed with an imbalanced label data distribution may significantly
degrade the prediction performance [9,10]. Finally, as for model prediction explainability,
the output of model prediction only showed the probability score of students passing or
failing. This probability score is complex for the teacher to explain the results to his or
her students. The model needs to explain its prediction results based on the importance
of student engagements in the VLE. Thus, allowing the teacher to intervene based on the
model explainability results is essential. Nevertheless, the research focused on predicting
student learning performance in superiority on one of these issues rather than considering
them in their entirety. For instance, previous studies proposed a hybrid sampling strategy to
improve the model performance with an imbalanced VLE data set [9,11,12], while the others
focused on machine learning performance by investigating various model architectures
such as the decision tree, naïve Bayes, and MLP on student learning performance [8,13,14].

To address the issues mentioned earlier, an intelligent predictive framework for ex-
plainable student performance prediction (ESPP) is proposed in this paper. It is a novel
approach that addresses the above issues holistically. First, the proposed framework built a
week-wise students’ activity data set based on student interaction via clickstream activities
in the VLE during the COVID-19 pandemic. After constructing the new week-wise stu-
dents’ activity data set, a hybrid sampling method with a synthetic minority over-sampling
technique (SMOTE) and random under-sampling (RUS) was employed to balance the data
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set. Then, the prediction model was constructed by using a convolutional neural network
(CNN) and long short-term memory (LSTM) layers for student performance prediction.
By integrating the convolutional and LSTM mechanisms, the proposed deep learning (DL)
model could accurately extract the spatiotemporal features of students’ activities’ data.
Finally, the explainability of the best prediction model will be generated by visualizing
the students’ activity features maps and the feature importance contributing to the model.
The importance features are visualized by using the local interpretable model-agnostic
explanations (LIME).

In summary, the main contributions of our studies are four-fold. (1) Firstly, a new data
set for student learning performance prediction was proposed. The data set was student
interaction in the VLE collected during the COVID-19 pandemic arranged in a week-wise
timely manner. (2) Secondly, the effectiveness of the proposed models was evaluated and
compared with baseline models such as logistic regression (LR), support vector machine
(SVM), and LSTM when dealing with spatiotemporal features in predicting student learning
performance. (3) Thirdly, an insight into enhancing the school environment was introduced
by supporting decision makers in implementing early intervention techniques to reduce
the failure rate. For instance, the proposed method accurately forecasted student learning
performance early in the sixth week with an accuracy of 0.91. This result could help the
student improve his or her performance as early as possible. (4) Finally, an explainable DL
model was provided by visualizing and analyzing individual predictions, the importance
of features, and identifying typical predictions. This explainable instrument enables human
and DL model interactions to intervene in the student failure rate. Furthermore, the teachers
and students can focus on which features contribute to the poor performance. Thus, these
assessments could be used to enhance the user experience in the VLE.

After a brief introduction, this paper is structured as follows. Section 2 summarizes a
review of the present literature on student learning performance prediction and explainable
machine learning. Then, the data set and proposed methodologies are explained in Section 3.
Section 4 presents the findings. Finally, Sections 5 and 6 discuss the results and summarize
the current work, respectively.

2. Related Works

Various studies have considered the issue of predicting students’ academic achieve-
ment as a regression problem [15] or a classification problem [16]. In the first category,
the learners’ perspective results were forecasted, while in the second one, the learners’
outcome was estimated as a pass, fail, or dropout. In addition to using various data analytic
techniques, factors affecting student performance were also identified to predict student
performance [17]. Moreover, the study areas of predicting student performance can be
evaluated from several viewpoints, including prediction of early withdrawal from ongoing
courses, analysis of inherent aspects influencing their achievement, and the application of
statistical methods to evaluate student achievement. Early prediction is a relatively new
concept in this area. It encompasses techniques for assessing students in real time with the
intention of retaining them by providing appropriate procedures and interventions and
then monitoring and minimizing the failure rates.

Deploying machine learning methods in analyzing student learning patterns and
predicting at-risk students were conducted in some studies [16,18]. Research in ESPP
took a subsequent method to transform the class period into a series of weekly structures
and to measure the learning achievement based on students’ interaction with the VLE.
Machine-learning methods were used to predict students at risk based on attendance,
quizzes, and assignments, with the addition of mid-term exams in the ninth week [19]. In
another study, various data mining techniques, consisting of the decision tree, naïve Bayes
classifier, k-nearest neighbor, SVM, and multi-layer perceptron (MLP), were deployed to
predict at-risk students. Several studies employed LR as the baseline and identified the
best prediction modeling compared among them [20,21]. According to the result presented
in [22], KNN was the most accurate algorithm to classify successful or unsuccessful stu-
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dents and determine the performance metrics. Moreover, student engagement patterns
were effective in capturing students’ behavior and persuading a better impact on their
performance [23].

According to existing literature, deep learning on learning analytics to predict student
learning success is still in its early stages. Deep learning is a computational method
composed of several processing layers to study data representation using several levels
of abstraction [24]. Student interaction with the VLE was captured to predict his or her
learning performance deployed on a recurrent neural network (RNN) model. This DL
approach outperformed the machine learning baseline methods [16,25]. Additionally,
students’ learning success was predicted by using their attendance and behavior over log
data information [26]. By employing the RNN and LSTM models, this study could produce
student engagement and interaction patterns in the VLE database. These DL methods
were more effective in the early prediction of grades than conventional regression methods.
However, the more advanced the prediction model, the lower the interpretability. This
area of research has a small contribution in terms of the explainability of the results. Thus,
this study provides the explainability approach on an ESPP framework using the LIME
explainability model as proven by [27,28].

3. Methods
3.1. Implementing Teaching Design in the VLE System

The study case of this research was the Digital Transformation course at Gadjah Mada
University in Indonesia. During the COVID-19 pandemic, this course has been held online
using a VLE system. This research study was initiated by collecting teaching materials and
questionnaires from student in the previous academic year. Then, the VLE system was
designed and tested from September 2020 to January 2021. To achieve the aim of the study,
an ESPP framework was proposed. The development of the ESPP framework was divided
into three major phases, as illustrated in Figure 1.

First, phase 1 aimed to determine the main elements in the VLE system focusing on
four core areas below. The first core area is key subjects. The second core area is life and
career skills. The third core area is learning and innovation skills. Finally, the fourth core
area is information, media, and technology skills. The previous study suggested three
main elements: learning activities, learning resources, and learning support [29]. Each
element was carefully explained and managed using several learning objects, as displayed
in Figure 2. These learning objects are valuable features that can be used as input of the
prediction model. Then, the VLE system was developed and tested. After that, this VLE
system could be repurposed by adding and revising the content to improve the student
experience during online learning for the next academic years. Meanwhile, phase 2 aimed
to extract the data from the VLE database to create meaningful insights regarding student
performance. This phase involved data extraction, cleaning, anonymization, and labeling.

Finally, phase 3 showed the performance evaluation results of the baseline models of
machine learning (ML) and DL in classification tasks, especially in student performance
early prediction. In addition, this work provides an interpretability analysis by using the
LIME method in this paper. The output of the prediction model is the students’ final course
grade category, i.e., pass or fail. The framework will extract the trained data set from the
VLE repository. A hybrid-sampling method was implemented to the data set in order to
reduce the overfitting and misclassification of imbalanced data distribution in multi-class
prediction tasks. Then, the proposed model was designed by using several traditional
modern machine learning classifiers as the baseline model for evaluating the performance
by using their performance metrics. Finally, the importance features of the results were
visualized by using the XAI method via LIME. In the following sections, a brief description
of the results is presented. The works mentioned above were developed using Python
programming, Tensor flow, and LIME libraries.



Appl. Sci. 2022, 12, 1885 5 of 16

Figure 1. The proposed framework of ESPP. An Intelligent Framework for Explainable Student Per-
formance Prediction consisted of three phases: (1) Implementing Teaching Design in VLE System; (2)
Dataset Acquisition, Cleaning, Anonymization, and Labeling; (3) Data Pre-processing, AI Modeling,
Performance Analysis, and Explainable AI Component.

Figure 2. Teaching design in a virtual learning environment (VLE) system involves relationships
among the major elements including learning activities, learning resources, and learning support.
Learning features are denoted as F1, F2, F3, F4, F5, F6, F7, and F8, corresponding to the assignments,
files, forums, homepages, labels, pages, quizzes, and URLs, respectively.
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This proposed framework simultaneously predicts student performance and generates
the interpretability from the student side and the VLE point of view. The interpretability
technique is useful for explaining what the results had been shown. In addition, it could
explain why the results will follow the predicted results at the end of the semester. On
the other hand, from the point of view of the VLE system, the interpretability technique
becomes a general evaluation material to improve the features that do not play a role in
balancing the learning process so that the VLE system can be revised and improved for
learning in the next academic year.

3.2. Designing the ESPP Data Set

The data set was recorded from a 16-week, fully online “Digital Transformation”
course at Gadjah Mada University in Indonesia from September 2020 to January 2021. The
course was conducted through Moodle, a learning management system containing eight
learning objects. The first materials were released at the beginning, updated every week,
and available to students until the end of the course. The data set consisted of two different
types: data on student achievements during the course and interaction data on students
accessing materials and doing activities in the VLE. The learning process was designed
using three major learning elements and was implemented using eight learning features as
described in Figure 2 including assignment (F1), file (F2), forum (F3), homepage (F4), label
(F5), page (F6), quiz (F7), and URL (F8). During the learning process, students navigated
through the website to read the module, discuss in a forum, send files for assignments,
or complete quizzes. The clickstream data (i.e., log of users when navigating in VLE
webpages) were recorded. These were valuable data that could be used to generate insights
regarding student performance in the final week of the course. More than 202,000 logs of
977 students for this data set were obtained and used as inputs for the prediction model.
Meanwhile, final course scores were formerly maintained alphabetically. However, this
prediction study converted the final scores into a categorical binary representation. The
classification was conducted by differentiating students with the “passed” (1) if the final
score ≥ 50. In contrast, the “failed” and “withdrawn” (final score < 50) were combined in
the class “0,” indicating at-risk students.

3.3. Prediction Model Based on the LSTM Network

An LSTM-based model and its derivative models (i.e., CNN-LSTM and Conv-LSTM)
were applied in this study. Specifically, the LSTM can be employed to extract temporal
patterns in nonlinear time-series data [30]. The LSTM utilized two gates (i.e., forget gate
and input gate) to control the value of the cell state Y. The forget gate f determined the
value of the current cell state by retaining the previous cell state, while the input gate i
determined the value of the current cell state by maintaining the network input. First, the
forget and the input gates calculated the current input xt, previously hidden state ht−1,
weight w, and bias b using a ‘sigmoid’ activation function γ.

ft = γ
(

w f ·(ht−1, xt) + b f

)
(1)

it = γ(wi·(ht−1, xt) + bi) (2)

Next, Equation (3) formulated a new candidate value of cell state Ỹt, i.e., calculated
using a ‘tanh’ activation function θ. Finally, the old cell state Yt−1 was updated to the
current cell state Yt using Equation (4).

Ỹt = θ(wc·(ht−1, xt) + bc) (3)

Yt = ft·Yt−1 + it·Ỹt (4)

Three models, including LR, SVM, and LSTM, were selected as the baseline models for
performance comparison because they performed well in time-series data prediction [31,32].
The goal was to evaluate which model could generate the highest accuracy in classifying
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at-risk students in the early week of the semester. The architectures of the LSTM, CNN-
LSTM, and Conv-LSTM are depicted in Table 1. The models were constructed using several
deep hidden layers (HL) with a number of trainable parameters integrating two main
components: feature extraction and predictor. First, the baseline LSTM contained three
layers, i.e., an LSTM layer, a dropout layer, and a fully connected network (FCN) or dense
layer that propagated the inputs to the outputs. The number of neurons in each layer was
equal to the input sample, and the number of outputs was two, representing the categorical
label (i.e., “Fail” and “Pass”). Second, CNN-LSTM consisted of the CNN layer combined
with LSTM as feature extraction and the FCN layer as the classifier. The feature extraction
module was constructed using two layers of CNN1D, a pooling layer and a flatten layer.
The output of the feature extraction module was in one dimension. Then, an LSTM layer
(with 16 LSTM cells) was utilized. On the classifier, an FCN layer was employed. Because
of the relatively small sample size of educational data (i.e., covering 16 weeks), the more
sophisticated deep CNN architecture could not further improve the prediction performance.
Thus, this model was proposed with a simplified concept. Third, the design of the Conv-
LSTM model was detailed as follows. A feature extraction module was employed using a
ConvLSTM2D layer. Subsequently, a flatten layer was applied. Finally, the FCN layer was
implemented. This design provided a simple layer construction with a moderate number
of parameters while maintaining good accuracy.

Table 1. An overview of the proposed LSTM, CNN-LSTM, and Conv-LSTM architectures provide an
early prediction system for at-risk students.

Layer LSTM CNN-LSTM Conv-LSTM

Parameters d = 0.2; Y = 2; c = 8;
α = 0.001; e = 200; b = 20

d = 0.2; Y = 2; c = 8; r = 1; s = 2;
o = 8; k = 3; p = ‘same’; w = 2;
α = 0.001; ε = 200; b = 20

d = 0.2; Y = 2; c = 8; r = 1; s = 2
o = 8; k = (3, 3); p = ‘same’;
α = 0.001; ε = 200; b = 20

Input x [N, T, c] x [N, s, t, c] x [N, s, r, t, c]

Feature
Extraction

HL1 LSTM(N) TimeDistributed(CNN1D(o, k, p)) ConvLSTM2D(o, k, p)

HL2 Dropout(d) TimeDistributed(CNN1D(o, k, p)) Dropout(d)

HL3 - TimeDistributed(MaxPooling(w)) Flatten

HL4 - Flatten -

HL5 - LSTM(N) -

HL6 - Dropout(d) -

Classifier Dense(N) Dense(N) Dense(N)

Output Dense(Y) Dense(Y) Dense(Y)

Number of trainable
parameters 1906 3714 1978

The inputs of LSTM, CNN-LSTM, and Conv-LSTM models were denoted in the
following order x [N, T, c], x [N, s, t, c], and x [N, s, r, t, c], respectively, where c, N, T,
t, r, and s represent the number of features (channels), the number of samples taken by
the prediction model to capture the temporal patterns, time-step, subsequence (columns),
rows, and the number of samples, respectively. In both CNN-LSTM and Conv-LSTM
architectures, the number of sequence data (i.e., time-step T) was split into subsequence
t using a divider s; hence, T = s × t. The number of samples N were 6, 8, 10, 12, and 16,
indicating the week-wise data sequence. The detailed setting can be seen in the layer setting
in Table 1. A constant number of features, dropout rate d, filter o, kernel size k, pooling
window w, learning rate α, epoch ε, and batch size b were used. Padding parameter p
was set to ‘same’. These three designs were compared in terms of performance matrices
using early sets and a full set of data, the efficient number of parameters, and the model
interpretability.
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3.4. Explainable AI Model

Explainable AI (XAI) was described specifically to exploit the local explainability of
time series data [33]. Explainable AI collectively refers to methods that can exploit the
interpretability of a given decision-making process, such as traditional and modern ML
models. An enormous potential is shown from this branch of AI study that can unbox the
modern ML ‘black-box’ model [34]. LIME is powerful because it provides accessibility and
simplicity [35]. LIME inherits the basic idea of model agnosticism to explain any given
supervised learning model by treating it as a ‘black-box’ separately. LIME provides a
local explanation by weighting adjacent observations. Local explanations mean that LIME
gives locally faithful explanations within the surrounding observations of the sample being
explained. A local linear model based on the adjacent weighted observations was trained
to achieve these explanations. LIME minimizes the objective function ξ using Equation (5),
where f is the prediction model, x is the specific observation, g is a local explanation, which
is the element of G, πx is the proximity of the adjacent observations around x, and Ω(g) is
the complexity of g, which is kept low.

ξ = argarg L( f , g, πx) + Ω(g) argarg L (5)

The LIME explainer was trained using the LIME tabular explainer function. For each
observation, LIME outputted importance values from data feature x [N, T, c] for each
week-wise data. As week-wise individual observations were ineffectual, this study focused
on the global observations of feature c with LIME. Nevertheless, the study also presents the
local explanations and represents the inputs’ data set, thus making the comparison more
sensible.

4. Experiments

This study evaluated the performance of baseline ML models and LSTM-based models
in classification tasks, especially in student performance early prediction. In addition, this
work performed an interpretability analysis by using the LIME method. In the following
sections, a brief description of the results is presented.

4.1. Performance Evaluation

For the first experiment, a real-world clickstream data set was collected containing
records of 977 students who took an online course. There were eight features for each
student in the data set and 16 monitoring weeks. The following eight features were
used as data input for this experiment: assignment, file, forum, homepage, label, page,
quiz, and URL. Meanwhile, the final student grade category (i.e., pass and fail) was
employed as the classification label. Table 2 presents the statistical analysis of the real-
world data set in terms of the normalized standard deviation (NSD), normalized mean
(NM), skewness, and kurtosis. The NSD measured how close the data distribution was to
the mean value. Skewness measured data asymmetry around the mean value. Normal
distribution, ideally symmetric, had a zero skewness. Meanwhile, kurtosis indicated the
distribution susceptibility to outliers. The ideal kurtosis value of the normal distribution
was close to 3. Based on statistical analysis, the NSD and NM of the class label were the
highest, with a value of 0.332847 and 0.873503, respectively. From here, the data set was
imbalanced with most decisions going to the majority class (i.e., grade: pass). On the
other hand, similar data characteristics were observed for the eight features. The features
had a positive value of skewness. The kurtosis of the features also deviated from 3 when
compared with the class label. Because the kurtosis was higher than 3, the distribution of
the eight features had a heavier tail and a sharper peak than that of the normal distribution.
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Table 2. The evaluated data sets and their characteristics.

Instance NSD NM Skewness Kurtosis

Assignment 0.071788 0.016286 3.655578 16.921989
File 0.049630 0.006317 7.398770 70.913583

Forum 0.056196 0.016364 14.388217 247.806282
Homepage 0.114323 0.042051 9.775106 136.711158

Label 0.068407 0.011654 7.995445 78.579698
Page 0.080140 0.011738 8.452196 79.764197
Quiz 0.055256 0.006360 11.052219 143.488354
URL 0.054987 0.006173 12.353567 179.174638

Class label (target) 0.332847 0.873503 −2.246093 3.046236

Correspondingly, this imbalanced data set was investigated in terms of performance
comparison, as depicted in Table 3. The imbalanced data set will become a major problem,
for example, for an imbalanced data set with a 10% at-risk rate. Hence, a classification
model may successfully make a prediction with a 0.9 accuracy for all students. However,
in this case, the classification model failed to predict any at-risk students. To make detailed
investigations, the baseline approaches of LR, SVM, and LSTM were evaluated. Then, a
hybrid sampling technique was performed on the data set. This technique synthesized
new examples from minority classes using the SMOTE algorithm. SMOTE worked by
selecting minority examples being close in the feature space, drawing a line between the
examples, and then determining a new sample at a point along that line. After that, a
random under-sampling was performed on the majority class. This hybrid (i.e., SMOTE-
RUS) sampling technique achieved better results, as stated in [36]. Table 3 signifies that the
hybrid sampling method improved the performance of the prediction model, especially on
precision, recall, and F1-score matrices, increasing to more than 90% than those without
any sampling strategy. Meanwhile, accuracy was comparable for both with and without
hybrid sampling.

Table 3. Summary of the baseline model’s performance using a 16-week-wise data set.

Feature
Extraction

Classification
Model Oversampling Accuracy Precision Recall F1-Score

None LR None
hybrid SMOTE

0.920
0.910

0.775
0.900

0.955
0.915

0.830
0.910

None SVM None
hybrid SMOTE

0.930
0.930

0.840
0.925

0.840
0.935

0.840
0.930

LSTM FCN None
hybrid SMOTE

0.938
0.934

0.855
0.948

0.845
0.930

0.845
0.930

4.2. Characteristic of the Convolutional Neural Network Model

The second experiment explored whether the proposed convolutional deep neural
network models (i.e., CNN-LSTM and ConvLSTM) could achieve better than baseline
NN models (i.e., LSTM) for weight convergence in feedforward neural networks. In the
LSTM approach, the 128 vector lengths with absolute values were constructed into one-
dimensional data for data recognition to identify at-risk students. On the other hand,
in both the CNN-LSTM and the ConvLSTM approaches, the 128 vector lengths were
composed into two-dimensional 16 × 8 data to improve spatial feature recognition between
adjacent data values.

An LSTM model architecture with an LSTM layer as feature extraction and a fully
connected network (FCN) layer as a prediction model enabled the architecture to learn more
complex long short-term representations for classification tasks. Each layer propagated the
output of the previous layer as its input, providing comprehensive learning by training
the weights to reach a convergence state. A dropout layer was used between HLs to
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avoid interdependency between the LSTM and Dense layers, reducing overfitting and
underfitting during the training process. In the training phase, the data were computed at
each epoch using several scenarios, i.e., from the first week to i-th week, where i = 6, 8, 10, 12,
and 16. The week-wise sequences were converted to equal-length normalized input vectors.
Then the vectors were padded into the input layer. A fixed Adam optimizer was applied
with a dropout rate of 0.2 and categorical cross-entropy as the loss function. Multiple
evaluations were performed to discover the optimal epoch, batch size, and learning rate,
ranging from 10 to 300, 10 to 100, and 0.01 to 0.0001, respectively. The hyper parameter
setting was decided after several experiments with the final epoch e = 200, the batch size
b = 20, and the learning rate α = 0.001.

The results in Figure 3 illustrate the efficacy of the proposed (a) LSTM, (b) CNN-LSTM,
and (c) Conv-LSTM models by representing the training improvement after 200 epochs. The
figure presents three kinds of neural network models, i.e., LSTM, CNN-LSTM, and Conv-
LSTM, to predict students’ performance. Generally, on the left side of Figure 3, the loss
accuracy progressively decreases from the early weeks to the late weeks. In contrast, on the
right side of Figure 3, the accuracy progressively increases from the initial weeks to the final
weeks. As a sufficient and conclusive data set could not be obtained in the initial weeks,
especially in the first week, where the previous instance was unavailable, the experiment
provided the loss and accuracy correction from week 6. Figure 3 exhibits the progress for
accurate earlier prediction using the testing subset. On average, for three LSTM-based
models, the accuracy scale ranged from 0.865 in the sixth week to 0.879 achieved in the
eighth week up to 0.942 obtained in the last, 16th, week. A gradual improvement in the
accuracy was observed since the 10th week, indicating the efficiency of the deployed model
in learning the distinct multivariate patterns of students’ performance with accuracy over
0.871, especially using both CNN-LSTM and Conv-LSTM. The figure depicts that the loss
values continuously degrade, signifying a progressively smaller difference between the
target class label and the predicted class label. In addition, overfitting became another
challenge in the Al model. Therefore, how well the proposed models perform on a new
data set cannot be known unless tested on actual data. To address this issue, a 10-fold
cross-validation was performed on separate training and testing subsets, as illustrated in
Figure 4. In general, the 10-fold cross-validation accuracy of CNN-LSTM and Conv-LSTM
from week 6 to the final week was higher than those of the LSTM model. The longer the
data set, the better the performance of the proposed models with an accuracy of more than
0.950 when using a 16-week-wise data set.

4.3. Early Prediction of At-Risk Students

The third experiment aimed to investigate the average performance of the proposed
models compared to the baseline models when making an early six-week-wise prediction.
Table 4 compares the performance of the models using the average values of the 10-fold
cross-validation. The results revealed that the CNN-LSTM and the Conv-LSTM performed
better than traditional machine learning models (i.e., LR and SVM) and regular LSTM
models for all measurement matrices. On average, the LR, the SVM, the LSTM, the CNN-
LSTM, and the Conv-LSTM had a recall rate of 0.64, 0.77, 0.84, 0.88, and 0.91, respectively.
These results indicate that the LR and the SVM encountered difficulties in dealing with
many input variables without vectorization. The classic machine learning methods had
difficulties in extracting a more complex pattern. On the other hand, the LSTM-based model
achieved better results with its massive learning capability. Specifically, the CNN-LSTM
and Conv-LSTM models performed more superiorly than the LSTM model by 4.7% and
8.3% in the overall F1-score, respectively. Moreover, the Conv-LSTM model achieved the
highest performance from all tested models with a moderate number of parameters.
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Figure 3. Week-wise validation loss and accuracy of three neural networks-based approach: (a) LSTM,
(b) CNN-LSTM, and (c) Conv-LSTM.

Figure 4. Boxplot of the 10-fold cross-validation of validation accuracy.

Table 4. Summary of the early prediction of model performance using a six-week-wise data set.

Feature Extraction Classifier Accuracy Precision Recall F1-Score

Loss Function LR 0.64 0.64 0.64 0.64
Loss Function SVM 0.80 0.78 0.77 0.79

LSTM FCN 0.85 0.84 0.84 0.84
CNN-LSTM FCN 0.88 0.88 0.87 0.88
Conv-LSTM FCN 0.91 0.91 0.91 0.91

4.4. Interpretability Analysis

The last experiment unveiled that both LSTM-based approaches could provide explain-
ability of the results comparable to the traditional methods in the early warning prediction.
However, due to the complexity of both models, it was hard to identify the important
features of both models. However, several local features could be identified in the feature
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importance visualization in Figure 5. The visualized data set regions between the successful
and at-risk students could be distinguished. Furthermore, the LIME method could describe
that students should notice several areas because of the importance of these activities,
which could strongly affect the final results. The students could use this explainability to
improve and put their efforts into the mentioned activities; thus, they would be successful
at the end of the course.

Figure 5. The visualized data set of two types of student performance with its interpretability: (a) ‘Fail’
and (b) ‘Pass’.

5. Discussion
5.1. Findings from the ESPP Experiment

Our experiment revealed that the LTSM and its derivative model outperformed base-
line models, including LR and SVM. The baseline ML models could not capture any at-risk
students at the end of the sixth week in a 16-week course with F1-scores below 0.8. On
the other hand, the LSTM-based models (i.e., LSTM, CNN-LSTM, and Conv-LSTM) could
effectively extract the temporal patterns inside the VLE data set with F1-scores of 0.84, 0.88,
and 0.91, respectively. The traditional ML experiment had poor validation performance
due to serious overfitting during the training phase, as exhibited in Table 4, especially when
the data set was highly imbalanced. From the aspect of interventions, the combination of
convolutional and LSTM layers had greater potential in both research and implementation,
especially in spatiotemporal data processing. Nowadays, more and more end devices such
as IoT that connect to the network might be utilized to track students’ learning in real time.
This DL architecture can be used to generate intelligent predictive modeling that improves
the VLE learning process in the future.

The major purpose of this study was to improve the performance in early prediction
cases while maintaining the explainability of the prediction results. Two promising models
were revealed from the experimental results, namely, CNN-LSTM and Conv-LSTM. CNN-
LSTM has proven to produce higher accuracy but with a trade-off of an increasing number
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of training parameters. On the other hand, the Conv-LSTM provided the highest perfor-
mance but with a slightly increasing number of trained parameters. The total parameters
used in the training phase for LSTM, CNN-LSTM, and Conv-LSTM were 1906, 3714, and
1978, respectively. The more parameters used in a predictive model, the longer the training
process because all parameters were calculated in propagation learning. However, only
an inference process was performed in the implementation phase. Thus, the difference in
time execution could be minimized. If given the limited data set, traditional ML methods
are insufficient to extract the temporal patterns inside the data set, resulting in overfitting
learning. Therefore, this research supports the development of intelligent predictive VLE
with two proposed LSTM-based model architectures improving prediction performance.

5.2. Insights from the XAI Experiment

The current study used a well-characterized student performance data set to ex-
ploit modern ML methods to interpret the prediction results. Both types of modern ML
methods (i.e., CNN-LSTM and Conv-LSTM) demonstrated the best and the second-best
performances from the experiments. This work shows that modern DL techniques are not
necessarily black boxes. Descriptive knowledge can be presented to explain the assess-
ments of features regarding future results, especially in the context of the presented study,
i.e., student performance early prediction. From the students’ point of view, black-box
understanding might be unacceptable because they need reasons to categorize them as
at-risk students [37]. Therefore, an explainable prediction could improve student experi-
ence during learning in the VLE. Accuracy of the prediction model can be essential but
explainability is more important [38]. Explainability is a must-have feature on AI-based
prediction systems without limiting the accuracy. Nonetheless, explainability is a feature
that supports the development of ESPP but does not replace the role and assessments made
by teachers.

As depicted in Figure 5, the local explanation does not completely represent the global
explanations. To simplify the local explanations, global feature importance needs to be
calculated. The instructor can use the feature importance to improve the study experience
in the VLE by assessing the ESPP globally. A basic idea to summarize local explanations
provided by LIME is by calculating local predictions for many samples and assessing the
mean value assigned to each feature importance. Figure 6 illustrates the feature importance
rating derived from the explainability methods for the LSTM prediction model. The bar
heights denote mean values and error bars indicate standard deviation over data samples.
These values were normalized to the range 0 to 1. The model rated assignment consistently
as the most important feature. The model pointed out forum, label, file, and homepages
with a comparable importance score for important moderate features. For less important
features, the results were insignificant for URL, page, and quiz.

Figure 6. The global feature importance from the data set involving recorded activities of all students.

Given the trade-off between performance and explainability, the general performance
of modern ML techniques outperformed traditional ML techniques. The results revealed
that the proposed CNN-LSTM and Conv-LSTM models provided comparable explainabil-
ity while achieving higher accuracy than the baseline models. These promising predictive
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models have greatly accelerated the development of explainable VLE. However, as dis-
played in Figure 5, technical presentations of at-risk activities might be less sufficient. A
translated at-risk activity in the easy-to-understand ranking (e.g., from “at-risk” to “fair”
to “outstanding”) might provide a better understanding. In addition, the security aspect,
specifically in the federation of the VLE system, could be further analyzed as the federated
learning approach could be used to securely train anonymous data sets [39]. This study
also encourages future research to evaluate hybrid learning (i.e., online and offline learning)
with detailed-class labeling, improving the user experience during the learning process.

6. Conclusions

The advancement of machine learning technologies has received great attention in
the development of VLE for predicting student performance in earlier weeks of the teach-
ing and learning process. In early prediction cases, traditional machine learning models
fail to predict student performance due to insufficient data, imbalanced data sets, and a
lack of understanding about how the models predict the results. This study provides an
intelligent framework for explainable student performance prediction using two innova-
tive prediction models called CNN-LSTM and Conv-LSTM to simultaneously improve
the predictive models’ performance and explainability. The prediction performance was
evaluated by comparing the proposed CNN-LSTM and Conv-LSTM models with three
baseline LSTM, SVM, and LR models, resulting in F1-scores of 0.91, 0.88, 0.84, 0.79, and 0.64,
respectively. The proposed prediction models offer many improvements including a lower
misclassification rate, a higher sensitivity rate, and explainability features for instructors
to improve the VLE activities. There are two potential extensions of the research in the
VLE. One possible extension is to conduct experiments on hybrid learning strategies with
deep convolutional prediction models. The other extension is to inspect the student’s
performance if the instructor intervention is imposed during learning activities.
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