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Abstract: Defect inspection is an important issue in the field of industrial automation. In general,
defect-inspection methods can be categorized into supervised and unsupervised methods. When
supervised learning is applied to defect inspection, the large variation of defect patterns can make
the data coverage incomplete for model training, which can introduce the problem of low detection
accuracy. Therefore, this paper focuses on the construction of a defect-inspection system with an
unsupervised learning model. Furthermore, few studies have focused on the analysis between the
reconstruction error on the normal areas and the repair effect on the defective areas for unsupervised
defect-inspection systems. Hence, this paper addresses this important issue. There are four main
contributions to this paper. First, we compare the effects of SSIM (Structural Similarity Index
Measure) and MSE (Mean Square Error) functions on the reconstruction error. Second, various kinds
of Autoencoders are constructed by referring to the Inception architecture in GoogleNet and DEC
(Deep Embedded Clustering) module. Third, two-stage model training is proposed to train the
Autoencoder models. In the first stage, the Autoencoder models are trained to have basic image-
reconstruction capabilities for the normal areas. In the second stage, the DEC algorithm is added to
the training of the Autoencoder model to further strengthen feature discrimination and then increase
the capability to repair defective areas. Fourth, the multi-thresholding image segmentation method is
applied to improve the classification accuracy of normal and defect images. In this study, we focus
on the defect inspection on the texture patterns. Therefore, we select the nanofiber image database
and carpet and grid images in the MVTec database to conduct experiments. The experimental results
show that the accuracy of classifying normal and defect patch nanofiber images is about 86% and the
classification accuracy can approach 89% and 98% for carpet and grid datasets in the MVTec database,
respectively. It is obvious that our proposed defect-inspection and classification system outperforms
the methods in MVTec.

Keywords: defect inspection; autoencoder; SSIM; DEC clustering algorithm

1. Introduction

Defect inspection is an indispensable process in the field of industrial automation. To
identify these defect regions, the defect area, color variation, and texture complexity are
important factors that can affect the accuracy of defect inspection. In recent years, due
to the development of deep-learning technology, many deep-learning models for defect
inspection have been proposed, mainly divided into supervised learning and unsupervised
learning. Supervised defect-inspection methods can be categorized into bounding-box-
based methods and pixel-based methods. The representative bounding-box-based methods
are the YOLO series [1–4]. For example, research in [5–9] used different versions of YOLO
architectures to detect the defect regions and their experiments show that both of the
classification and region locating are accurate. For the pixel-based method, SegNet [10]
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can segment the defect area precisely and distinguish the defect category. However, the
computing efficiency is low. Mask R-CNN [11] technology combines both bounding-box-
based and pixel-based methods. First, the defect region is located with the bounding box,
and then the precise defect region is segmented with high computational efficiency.

However, training a supervised model requires a large number of labeled defect im-
ages, and the data pre-processing will consume a lot of time and human resources. In
addition, the collection of defect images faces two major difficulties [12–14]. First, it is diffi-
cult to collect enough defect patterns to have high data coverage for model training; second,
because the occurrence of defects is unpredictable, it is difficult to determine whether the
collected samples cover all defect patterns. These problems can cause missing detection or
poor accuracy in defect inspection. Therefore, this paper focuses on unsupervised learning.

Most of the unsupervised learning techniques use the Autoencoder architecture [15]
shown in Figure 1 to learn from normal images. The general Autoencoder model only
has the capability to reconstruct normal images. However, it can only slightly repair the
texture or color on the defect region shown in Figure 2. Therefore, in addition to training
the Autoencoder model, it is also necessary to perform model training through methods
such as clustering of feature vectors (latent vectors), to improve the model’s capability to
repair the defect area.
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Figure 2. (a) A test defect image. (b) Reconstructed image through general Autoencoder.

For the related methods that combine Autoencoder and enhanced defect-detection
technologies, the works in [16,17] train the VAE model [18,19] with the KL-Divergence
function [20] to make the distribution of latent vectors approach Gaussian distribution.
Therefore, when the test image contains a defect region, the defect region can be repaired
with a correct texture pattern. However, it is found in experiments that it is difficult to
balance the Gaussian distribution parameters between the normal area reconstruction and
the defect area repair. As an extension of VAE technology [21], GMVAE [22] technology
produces a more obvious clustering effect on Latent vectors.

Literature [12] proposed a defect image classification method by randomly selecting
some images from the training dataset and generating feature vectors from the encoder as
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the reference samples. The feature vectors of the test images are generated in the same way.
The feature vectors of the reference sample and the test image are compared to confirm
whether the test image is a defect image. This method simply judges whether the test image
is a defect image, and does not discuss how to detect the defect region. The MS-FCAE [13]
technology uses a multi-scale architecture to simultaneously extract features across the
multi-scale feature maps. Furthermore, on each scale, the clustering algorithm [23] is
applied to train the model to have a better defect repair capability.

Most of the above papers focused on the detection and repair capabilities of defect
areas, and seldom discussed how to classify normal and defect images. MVTec [14] built a
database for defect inspection, including 5 types of texture images and 10 object images,
and evaluated the detection capabilities of 6 defect detection models for 15 types of images.
This paper proposes a classification method for normal and defect images, but its accuracy
is low. Therefore, in addition to improving the accuracy of repairing defect areas, this paper
also focuses on proposing effective methods to improve the accuracy of classification of
normal and defect images. Here, we use carpet and grid datasets in the MVTec database to
conduct experiments, and compare the performance between the proposed method in this
paper and the four models in MVTec [14].

As the Inception network architecture of GoogleNet [24–27] can provide multi-scale
feature-extraction capabilities, we refer to the Inception network to design a new Autoen-
coder model to improve the feature-extraction and texture-reconstruction capabilities. For
normal image reconstruction, we apply SSIM (Structural Similarity Index Measure) [28]
as the loss function for network training. For the repair of the defect region, we also use
the KL-Divergence function [13,23] for clustering Latent feature vectors, and enlarge the
distance among different clusters, so as to obtain better defect area repair capability. The
Inception Autoencoder and traditional Autoencoder networks proposed in this paper will
be trained in a two-stage manner. In the first stage, the Autoencoder model is trained with
normal images to obtain the basic image-reconstruction capability, and in the second stage,
the Autoencoder model combined with a clustering module is trained to obtain the defect
area repair capability. Hence, this paper has the following main contributions:

1. We construct four kinds of Autoencoder models by referring to the structures of
Inception architecture in GoogleNet [24–27] and combine the DEC clustering technol-
ogy [13,23] to strengthen the discrimination of the latent vectors. Then, the defect-
detection performance including the normal-area-reconstruction error and defect area
repair capability are analyzed. Furthermore, SSIM is applied to calculate the similarity
between the reconstructed image and the input image for acquiring the defect region.

2. An effective two-stage model training method is proposed to train the model with
high normal-area-reconstruction accuracy and defect-area repair capability. In the first
stage, the Autoencoder model is trained with a basic defect-reconstruction capability.
In the second stage, the DEC loss function is combined with the Autoencoder for
the clustering of latent vectors to further strengthen the feature discrimination and
increase the capability of repairing defect regions.

3. A novel defect-image-classification method between normal and defective images
is proposed by using the multi-thresholding image segmentation algorithm, which
outperforms the method mentioned in [14]. Furthermore, with the proposed method,
the defect region can be identified precisely.

The defect-image-inspection architecture is shown in Figure 3, which includes an
encoder module (feature extraction), a decoder module (image reconstruction), and a
feature-clustering module. The SSIM loss function is used to train both the encoder and
decoder, and is also used in the testing process for computing the difference between the
input and output images. Finally, the multi-thresholding module is proposed to classify
normal and defect images.
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Figure 3. Defect image detection architecture. The input defect image is reconstructed by the
proposed Autoencoder, and the defect area is repaired with the correct texture pattern. The SSIM
matching function is used to compute the difference between the input and output images, and then
the multi-threshold image segmentation algorithm is used to classify the normal and defect images.

2. Autoencoder for Normal Image Reconstruction

In order to improve the reconstruction accuracy of normal images, we proposed the
Autoencoder architecture with two different kinds of key modules as the unsupervised
learning model, as shown in Figure 4. In the following, we will introduce the proposed
Autoencoder in detail.
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2.1. Structure of Encoder

The encoder architecture designed in this paper is shown in the encoder part of
Figure 4. The encoder extracts and encodes image features in the latent space. The depth
of the model will affect whether the learned feature maps are discriminative. However, a
model that is too deep will make it difficult to retain image details, resulting in blurred
reconstructed images, and even overfitting. Therefore, the design of the model must strike
a balance between depth and detail preservation.

The encoder first applies a 1 × 1 filter to the input image to increase the depth from 3
to 16 to increase the feature capacity in the first layer. Then, downsampling and feature
extraction submodules are combined to form a basic module in the encoder, and this module
is repeatedly used to generate the Latent feature vectors. In addition, in the downsampling
process (dimensionality reduction), while the length and width of the feature map are
reduced by half, the depth is doubled to avoid excessive feature-loss to maintain the image
detail. Finally, the 1 × 1 Conv2d module is used to generate latent vectors.

The two submodules, feature extraction and downsampling are the core of the encoder,
and their architecture can be modified according to the image complexity. In this study, we
design the simple convolution module and Inception convolution module as the feature
extraction modules with different complexities. The feature-extraction module can be
constructed with a simple convolution module, shown in Figure 5a, by using only one
layer of the Conv2d module, or refer to the architecture of Inception v4 convolution
module [27], shown in Figure 5b. Compared with the simple convolution module, the
Inception convolution module is composed of four different branches designed to capture
features across different scales.
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The main function of the downsampling module is to decimate the size of the feature
map and increase the depth to twice the original. Figure 6a shows a downsampling module
with a relatively simple structure. For reasons of preserving image details, the Inception
downsampling module shown in Figure 6b uses three branches to reduce dimensionality
in different ways, and finally, outputs of summation of the feature maps.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 22 
 

The main function of the downsampling module is to decimate the size of the feature 
map and increase the depth to twice the original. Figure 6a shows a downsampling mod-
ule with a relatively simple structure. For reasons of preserving image details, the Incep-
tion downsampling module shown in Figure 6b uses three branches to reduce dimension-
ality in different ways, and finally, outputs of summation of the feature maps. 

 
 

(a) (b) 

Figure 6. (a) Simple downsampling module. (b) Inception downsampling module. 

The Conv2d module used in the above-mentioned feature extraction and the 
downsampling modules is designed as the structure shown in Figure 7, which includes 
the convolution, batch normalization, and Relu activation operations. 

 
Figure 7. Structure of Conv2d module. 

2.2. Structure of Decoder 
The architecture of the decoder is shown on the right part of Figure 4. Its structure is 

a mirror version of the encoder, and its function is to reconstruct the input image from the 
Latent feature map (16 × 16 × 10). First, the depth of the feature map is increased from 10 
to 128 through a Deconv2d module and then the deconvolution and upsampling modules 
shown in Figures 8 and 9, respectively, are used to reconstruct the input image iteratively. 
While reconstructing defect image, the length and width are gradually doubled in size, 
and the depth is gradually reduced by half. Finally, the Deconv2d module is used to gen-
erate the output image. The Deconv2d module used in the above-mentioned modules is 
shown in Figure 10. This module operates in the order of deconvolution, batch normali-
zation, and Relu activation. 

 
 

(a) (b) 

Figure 8. (a) Simple deconvolution module. (b) Inception deconvolution module. 

Figure 6. (a) Simple downsampling module. (b) Inception downsampling module.



Appl. Sci. 2022, 12, 1883 6 of 22

The Conv2d module used in the above-mentioned feature extraction and the down-
sampling modules is designed as the structure shown in Figure 7, which includes the
convolution, batch normalization, and Relu activation operations.
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2.2. Structure of Decoder

The architecture of the decoder is shown on the right part of Figure 4. Its structure is a
mirror version of the encoder, and its function is to reconstruct the input image from the
Latent feature map (16 × 16 × 10). First, the depth of the feature map is increased from 10
to 128 through a Deconv2d module and then the deconvolution and upsampling modules
shown in Figures 8 and 9, respectively, are used to reconstruct the input image iteratively.
While reconstructing defect image, the length and width are gradually doubled in size, and
the depth is gradually reduced by half. Finally, the Deconv2d module is used to generate
the output image. The Deconv2d module used in the above-mentioned modules is shown
in Figure 10. This module operates in the order of deconvolution, batch normalization, and
Relu activation.
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2.3. Model Training for Normal Image Reconstruction

In this study, first, we train Autoencoder with normal images to have a basic image-
reconstruction capability. Instead of the MSE function, the SSIM (Structural Similarity Index
Measure) function is used as the loss function for the model training. The reason is that the
MSE loss function belongs to the global analysis, and the local difference information is not
considered. In order to obtain the local difference between the reconstructed image and the
input image, SSIM [28] is chosen as the loss function to train the model. Here, we apply the
Adam [29] algorithm to update the model parameters. SSIM is defined as follows:

SSIM(X, Y) = l(X, Y)αc(X, Y)βs(X, Y)γ (1)

where l(X, Y), c(X, Y), s(X, Y) represent luminance, contrast, and structure similarity
measures, respectively, and α, β, and γ are the adjustment parameters. The three similarity
measure functions are defined as follows:

l(X, Y) =
2µXµY + C1

µ2
X + µ2

Y + C1
, c(X, Y) =

2σXσY + C2

σ2
X + σ2

Y + C2
, s(X, Y) =

2σXY + C3

σXσY + C3
. (2)

where µX and µY are the average values of the images X and Y, σX and σY are the standard
deviations of the images X and Y, and σXY is the cross covariance of the two images. C1, C2,
and C3 are all constants, which are used to adjust the weight of the three items. To simplify
Equation (2), the parameters are set as α = β = γ = 1 and C3 = C2/2, and then the following
simplified version can be obtained:

LSSIM = SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)(

µ2
X + µ2

Y + C1
)(

σ2
X + σ2

Y + C2
) . (3)

However, only using SSIM loss function to train the Autoencoder model without the
Latent vector clustering can have a good reconstruction capability for normal images, but
has a low repair capability for defective images.

3. Autoencoder Model for Repairing Defect Areas

The Autoencoder for repairing the defect area is established based on the clustering
of latent vectors. When a defect image is input to the model, the latent vectors within the
defect area can be corrected toward the specific cluster center of the normal image, thereby
repairing the defect area and highlighting the defect area. However, the optimization of
defect area repair (the degree of feature grouping) and normal image-reconstruction quality
are contradictory to each other. Therefore, the optimization of the two must be a trade-off
in order to achieve the best effect in defect inspection.

3.1. Autoencoder with Latent Vector Clustering

The Autoencoder model with a defective area repair capability is shown in Figure 11.
Three modules will be integrated, namely the encoder module, decoder module, and latent
vector clustering module. The encoder and decoder also follow the structure mentioned
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in the previous section, and the clustering module establishes the capability to repair the
defective area.
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Before using the clustering module to start training the model, the clustering module
needs to initialize the cluster centers with the K-means clustering algorithm. First, the
feature map (16 × 16 × 10) is segmented into 256 latent vectors with dimension 1 × 1 × 10.
However, the dimension of the latent vector is not necessarily limited to the size of 1 × 1
× 10. The dimension of the latent vector depends on the texture complexity of the input
image. In this paper, we randomly select 100,000 feature vectors to initialize the K-means
clustering algorithm, and the number of clusters is preset to 40 clusters.

3.2. Deep Embedded Clustering Algorithm

The purpose of feature clustering training using the DEC algorithm [23] is to concen-
trate the probability distribution of latent vectors from scattered to concentrated probability
distribution. The DEC algorithm uses the distance between the latent vector and the cluster
center to calculate the probability that the latent vector belongs to each cluster, and it is
called the source probability distribution. The source probability that the i-th latent vector
belongs to the j-th cluster is defined as Equation (4).

Sij =

(
1 +

∣∣∣∣ci − µj
∣∣∣∣2/α

)− α+1
2

∑j′

(
1 +

∣∣∣∣∣∣ci − µj′
∣∣∣∣∣∣2/α

)− α+1
2

(4)

where ci is the i-th latent vector and µj is the j-th cluster center. The value of α is used to
adjust the clustering degree of the source probability distribution Sij. The target probability
distribution defines the target that the source probability distribution approaches, as in
Equation (5).

Tij =
S2

ij/ f j

∑j′ S2
ij′/ f j′

, f j = ∑
i

Sij (5)

Finally, the KL-Divergence function defined in Equation (6) is used to describe the
difference between Sij and Tij as the loss function.

LDEC = KL(T| |S) = ∑
i

∑
j

Tijlog
Tij

Sij
(6)

Figure 12 illustrates the clustering effect for the latent vectors generated from the
encoder trained with the KL-Divergence function.
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latent vectors.

In order to make the Autoencoder model have both normal area reconstruction capa-
bility and defect area repair capability, this paper proposes a two-stage training method.
The first stage uses the SSIM loss function to train the encoder and decoder modules to
make them have normal area reconstruction capabilities. In the second stage of model
training, different combinations of loss functions are used to optimize each module to
make it have the capability to repair defective areas. The procedures of the model training
method are described in the following steps:

Step 1 Train Encoder Module + Decoder Module with LSSIM
Step 2.1 Train Encoder Module with αSSIM LSSIM + LDEC
Step 2.2 Train Decoder Module with LSSIM
Step 2.3 Train Clustering Module with LDEC

Since the encoder module needs to output the feature map to the decoder module and
the clustering module, it is necessary to use LSSIM and LDEC functions at the same time, and
use αSSIM to adjust the ratio between the two functions to optimize the training results. The
decoder module is only responsible for reconstructing the latent map back to the image, so
it only needs LSSIM function to train the decoder. Finally, the clustering module is trained
with LDEC function to update the cluster centers and KL-Divergence function.

3.3. The Classification of Normal and Defect Images

The flowchart of defect-image detection is shown in Figure 3. When a defect image is
input to the modified Autoencoder, the system will reconstruct the normal area and repair
the defect area with the texture of the normal image. Then, we use SSIM to calculate the
similarity between the input image and the output image to generate the difference image.
As there are still reconstruction errors in the normal and defect repairing areas within the
difference image, the pixel value distribution of the difference image is variated. Therefore,
it is very difficult to determine a fixed threshold to determine whether the input image is
normal or defective. In this study, we try a variety of methods to identify defect images, and
the analyses show that the multi-thresholding method can have the highest accuracy. Here,
we apply the Otsu [30,31] multi-thresholding method to calculate four thresholds, and
the position of the fourth threshold (the fourth red dotted line in the difference grayscale
distribution in Figure 3) is used to determine whether the input image is a normal or defect
image. If the position of the fourth threshold is larger than the specified threshold value,
then this image is classified into a defect image. If the input image is classified as a defect
image, the segmented areas on the difference image with third and fourth thresholds will
be fused together to determine the defect region shown in Figure 13.
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Figure 13. If the input image is classified as a defect image, the third and fourth thresholds will be
used to binarize the difference image to mark the defect area.

4. Experimental Results

In this study, we focus on the defect inspection of texture patterns. Therefore, we select
the Nanofiber image database [32] and carpet and grid images in the MVTec database [14]
to conduct experiments. The nanofiber image database provides fewer normal images
for training and testing. Therefore, data augmentation is needed to increase the normal
images. The MVTec database contains mainly 5 types of texture images and 10 types of
object images. In this study, we select two types of textures: carpet and grid to conduct
experiments. The details of these databases are described in Tables 1–3. In this section,
loss function analysis for normal area reconstruction and defective area repair, weighting
analysis between SSIM and DEC loss functions, accuracy analysis for classifying normal
and defect test images, subjective evaluation of defective area detection, and the comparison
between our proposed method and the SOTA methods in [14] are conducted to verify the
performance of the proposed method. Our system uses an NVIDIA TITAN Xp GPU, and
the computing efficiency is about 32 FPS.

Table 1. Dataset of nanofiber image.

Training Data Testing Data

Category Good Good Defect

Amount (frame) 4 1 40

Image size 1024 × 700 1024 × 700 1024 × 696

Table 2. Dataset of carpet image.

Training Data Testing Data

Category Good Good Color Cut Hole Metal Thread

Amount (frame) 277 28 19 17 17 17 19

Image size 1024 × 1024

Table 3. Dataset of grid image.

Training Data Testing Data

Category Good Good Bent Broken Glue Metal Thread

Amount (frame) 264 21 12 12 11 11 11

Image size 1024 × 1024

4.1. Loss Function Analysis for Normal Area Reconstruction and Defective Area Repair

In this experiment, the training effects of SSIM and MSE loss functions are compared,
and experiments are conducted on both the Simple Autoencoder and the Inception Autoen-
coder. Furthermore, SSIM and MSE are also used as the evaluation functions to compare
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their accuracy for reconstructing normal areas and repairing defective areas. Tables 4 and 5
are the simulation results of Simple and Inception Autoencoders for normal area recon-
struction. The experimental results show that whether using SSIM or MSE loss function for
training, in most cases, as long as the same function is used for testing, there will be good
performance. In addition, the data in Tables 4 and 5 show that the Inception Autoencoder
has better reconstruction accuracy on normal area, that is, it has a better capability to
preserve detailed textures.

Table 4. Analysis of reconstruction error using Simple Autoencoder for normal image.

Nanofiber Carpet Grid

Testing with
SSIM

Matching
Function

Testing with
MSE

Matching
Function

Testing with
SSIM

Matching
Function

Testing with
MSE

Matching
Function

Testing with
SSIM

Matching
Function

Testing with
MSE

Matching
Function

Training with SSIM
loss function 0.1440 479.05 0.1171 202.09 0.0361 21.50

Training with MSE
loss function 0.1739 458.81 0.1386 177.62 0.0554 29.77

Table 5. Analysis of reconstruction error using Inception Autoencoder for normal image.

Nanofiber Carpet Grid

Testing with
SSIM

Matching
Function

Testing with
MSE

Matching
Function

Testing with
SSIM

Matching
Function

Testing with
MSE

Matching
Function

Testing with
SSIM

Matching
Function

Testing with
MSE

Matching
Function

Training with SSIM
loss function 0.1287 403.63 0.1055 178.77 0.0322 19.92

Training with MSE
loss function 0.1400 348.88 0.1277 168.04 0.0455 23.70

Figures 14–16 show the subjective evaluation of the reconstruction quality using SSIM
and MSE as the training and testing functions on the normal images. In Figure 14, it can be
clearly seen that the reconstruction quality of SSIM is better than that of MSE for nanofiber
images. In Figures 15 and 16, the texture of the carpet and grid images is relatively simple,
and the reconstruction error is small. Therefore, there is no significant difference between
SSIM and MSE in the test.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 22 
 

 

Figure 14. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal nanofiber images. 

 

Figure 15. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal carpet images. 

 

Figure 16. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal grid images. 

Figures 17–19 show the subjective evaluation of defect-repair quality using SSIM and 

MSE as the training and testing functions on defect images. Figure 17 shows that using 

SSIM is better for texture repair in the defective area for nanofiber images. It is also obvi-

ous that the defective area can be clearly found using SSIM, but the defective area cannot 

be found using MSE. Figure 18 shows that selecting SSIM as the loss function has a better 

repair effect on the defective area on the carpet images, and furthermore, can mark the 

defect position more completely on the difference image. In Figure 19, the simulation re-

sults show that MSE and SSIM can provide good repair quality for the grid dataset. It can 

be observed from Figures 17–19 that the complexity of the image texture will affect the 

effect of repairing the defective area. The more complex the image texture, the worse the 

repairing effect of the defect area, as can be observed in Figure 17. The simpler the image 

texture, the better the repairing effect of the defect area, which can be observed in Figures 

Figure 14. The subjective evaluation of the reconstruction quality using SSIM and MSE as the training
and testing functions on the normal nanofiber images.



Appl. Sci. 2022, 12, 1883 12 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 22 
 

 

Figure 14. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal nanofiber images. 

 

Figure 15. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal carpet images. 

 

Figure 16. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal grid images. 

Figures 17–19 show the subjective evaluation of defect-repair quality using SSIM and 

MSE as the training and testing functions on defect images. Figure 17 shows that using 

SSIM is better for texture repair in the defective area for nanofiber images. It is also obvi-

ous that the defective area can be clearly found using SSIM, but the defective area cannot 

be found using MSE. Figure 18 shows that selecting SSIM as the loss function has a better 

repair effect on the defective area on the carpet images, and furthermore, can mark the 

defect position more completely on the difference image. In Figure 19, the simulation re-

sults show that MSE and SSIM can provide good repair quality for the grid dataset. It can 

be observed from Figures 17–19 that the complexity of the image texture will affect the 

effect of repairing the defective area. The more complex the image texture, the worse the 

repairing effect of the defect area, as can be observed in Figure 17. The simpler the image 

texture, the better the repairing effect of the defect area, which can be observed in Figures 

Figure 15. The subjective evaluation of the reconstruction quality using SSIM and MSE as the training
and testing functions on the normal carpet images.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 22 
 

 

Figure 14. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal nanofiber images. 

 

Figure 15. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal carpet images. 

 

Figure 16. The subjective evaluation of the reconstruction quality using SSIM and MSE as the train-

ing and testing functions on the normal grid images. 

Figures 17–19 show the subjective evaluation of defect-repair quality using SSIM and 

MSE as the training and testing functions on defect images. Figure 17 shows that using 

SSIM is better for texture repair in the defective area for nanofiber images. It is also obvi-

ous that the defective area can be clearly found using SSIM, but the defective area cannot 

be found using MSE. Figure 18 shows that selecting SSIM as the loss function has a better 

repair effect on the defective area on the carpet images, and furthermore, can mark the 

defect position more completely on the difference image. In Figure 19, the simulation re-

sults show that MSE and SSIM can provide good repair quality for the grid dataset. It can 

be observed from Figures 17–19 that the complexity of the image texture will affect the 

effect of repairing the defective area. The more complex the image texture, the worse the 

repairing effect of the defect area, as can be observed in Figure 17. The simpler the image 

texture, the better the repairing effect of the defect area, which can be observed in Figures 

Figure 16. The subjective evaluation of the reconstruction quality using SSIM and MSE as the training
and testing functions on the normal grid images.

Figures 17–19 show the subjective evaluation of defect-repair quality using SSIM and
MSE as the training and testing functions on defect images. Figure 17 shows that using
SSIM is better for texture repair in the defective area for nanofiber images. It is also obvious
that the defective area can be clearly found using SSIM, but the defective area cannot be
found using MSE. Figure 18 shows that selecting SSIM as the loss function has a better
repair effect on the defective area on the carpet images, and furthermore, can mark the
defect position more completely on the difference image. In Figure 19, the simulation
results show that MSE and SSIM can provide good repair quality for the grid dataset. It
can be observed from Figures 17–19 that the complexity of the image texture will affect
the effect of repairing the defective area. The more complex the image texture, the worse
the repairing effect of the defect area, as can be observed in Figure 17. The simpler the
image texture, the better the repairing effect of the defect area, which can be observed in
Figures 18 and 19. In general, compared with MSE, SSIM is more accurate in detecting the
defective area.
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4.2. Weighting Analysis between SSIM and DEC Loss Functions

The SSIM loss function affects the reconstruction similarity on the normal area and the
DEC loss function affects the repair effect on the defective area. The optimization directions
of the two for the model training are opposite. A higher weight of SSIM loss function
improves the reconstruction similarity on the normal area, but it will cause the defect area
to be unable to be repaired. This phenomenon is shown in Figure 20. Since the defect
area cannot be completely repaired back to the normal image as shown in Figure 20b, the
difference in the defective area is not obvious in the difference image shown in Figure 20c,
and then it will be judged as a normal image. Increasing the weight of the DEC loss function
improves the repair capability of the defective area but reduces the reconstruction effect of
the normal area, and many noisy regions, as shown in Figure 21, appear. It can be seen that
a balance needs to be struck between the weights of SSIM and DEC loss functions.
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(b) The reconstructed image for image (a). (c) The difference image between images (a,b) obtained by
SSIM function.
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Figure 21. Simulation result for higher weight of DEC loss function. (a) The defective carpet image.
(b) The reconstructed image for image (a). (c) The difference image between images (a,b) obtained by
SSIM function.

In Section 2, we show that the Inception Autoencoder has a much higher accuracy
in normal area reconstruction than the Simple Autoencoder. This also means that when
the Inception Autoencoder is used as a defect-inspection model, it must be assigned a
lower weight of SSIM loss function than the Simple Autoencoder to achieve better normal
area reconstruction and defect area repair effects. In Table 6, we suggest weighting ratios
between SSIM and DEC loss functions for Simple Autoencoder and Inception Autoencoder.

Table 6. Weighting ratios between SSIM and DEC loss functions for Simple and Inception Autoencoders.

Nanofiber Carpet Grid

Model SSIM:DEC

Simple AE 300:1 140:1 80:1

Inception AE 110:1 80:1 100:1

In addition, in the DEC method, the number of clusters has a significant impact on
the repairing effect on the defective area. In Figure 22, we illustrate the clustering effect for
different cluster numbers by using the latent vectors of carpet images. Figure 22a shows
that some large clusters can be further grouped into more clusters. However, Figure 22c
shows there are many empty clusters when the cluster number is too large. Hence, we set
the number of clusters k to 40 that can have a better repairing effect on the defective area.
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4.3. Accuracy Analysis for Classifying Normal and Defect Images

Most defect-inspection systems [13,16,17,22] are focused on the detection and repair
capabilities of defect areas, and it is seldom discussed how to classify normal and defect
images under image-reconstruction errors. Here, we use three kinds of datasets (nanofiber,
carpet, and grid) to conduct the experiments of classifying normal and defect patch images.
The Autoencoder models used in this experiment include Simple Autoencoder (SAE),



Appl. Sci. 2022, 12, 1883 15 of 22

Simple Autoencoder + DEC (SAE + DEC), Inception Autoencoder (IAE), and Inception Au-
toencoder + DEC (IAE + DEC). Since the proposed Autoencoder models use patch images
for model training and testing, the classification accuracy analysis of normal and defective
images comprises patch image analysis and complete image analysis. The classification
method for normal and defective images is described in Section 3.3, and the classification
thresholds for three datasets are listed in Table 7.

Table 7. Classification thresholds for three datasets.

Nanofiber Carpet Grid

Threshold 90 90 80

Tables 8–10 show the classification accuracy of each kind of dataset. The classification
method is determined by whether the fourth Otsu threshold exceeds the classification
threshold. If the threshold is greater than the classification threshold, it is a defective image,
and if it is less than the classification threshold, it is a normal image. The accuracy of
classifying good and defect images is similar to that of MVtec [14], which is defined as the
number of correctly classified test images divided by the number of test images. Observing
Tables 8–10, it can be found that SAE and IAE have better normal image classification
accuracy when the DEC loss function is not added, but the classification of defective
images is worse. After adding the DEC loss function, SAE and IAE can improve the
accuracy of normal and defective image identification, and the accuracy of defective image
classification can be significantly improved. However, on more complex nanofiber images,
the classification accuracy of normal images is reduced because the DEC loss function can
reduce the reconstruction capability on normal areas, as listed in Table 8. It is interesting
that SAE + DEC outperforms IAE + DEC on complex nanofiber images.

Table 8. Accuracy analysis of classifying normal and defect patch nanofiber images.

Model Good Defect

SAE 90.10% 65.13%

SAE + DEC 82.41% 90.79%

IAE 100% 67.31%

IAE + DEC 75.82% 86.68%

Table 9. Accuracy analysis of classifying normal and defect patch carpet images.

Model Good Color Cut Hole Metal Thread

SAE 100% 40.57% 92.50% 90.14% 93.54% 90.69%

SAE + DEC 99.19% 100% 100% 100% 100% 100%

IAE 99.19% 21.73% 88.75% 83.09% 91.93% 79.06%

IAE + DEC 99.59% 91.30% 100% 98.59% 100% 98.83%

Table 10. Accuracy analysis of classifying normal and defect patch grid images.

Model Good Bent Broken Glue Metal Thread

SAE 98.94% 88.23% 93.75% 82.75% 100% 98.57%

SAE + DEC 100% 100% 100% 100% 100% 100%

IAE 100% 85.29% 81.25% 58.62% 94.28% 91.42%

IAE + DEC 100% 100% 100% 96.55% 94.28% 100%
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In addition, we use the AUC (area under the ROC curve) to evaluate the classification
performance of the four models. Figure 23 shows the ROC curves for nanofiber, carpet,
and grid datasets computed by using different classification thresholds to compare with
the fourth Otsu threshold. As shown in Figure 23a, we can see that SAE + DEC has the
best performance in the nanofiber dataset, while the performance of IAE + DEC is not as
good as IAE. Figure 23b shows the ROC analysis for the carpet dataset in which both SAE +
DEC and IAE + DEC have nearly 100% accuracy, showing that the DEC loss function has a
positive effect on classification. The ROC analysis on the four models for the grid dataset is
shown in Figure 23c, and their accuracies are all equal to or close to 100%. The main reason
is that the grid image is regular and has an obvious defect pattern, so it is less likely to be
misjudged during classification.
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Figure 23. The ROC curves of patch image simulation for (a) nanofiber, (b) carpet, and (c) grid datasets.

In Tables 11–13, we analyze the classification accuracy for complete images that are
spliced from the patch images back to complete images. The classification method is similar
to the patch image classification. If a complete image includes a patch image classified
as a defect image, the complete image is a defect image. Here, we ignore the analysis of
classifying normal images for the nanofiber dataset because there is only one normal image
in the dataset. It is obvious that integrating the DEC loss function can make the classification
of normal images maintain a high classification accuracy, while the classification accuracy
of the defective image is greatly improved as a whole.

Table 11. Classification accuracy for complete nanofiber images.

Nanofiber

Good Defect

SAE - 95%

SAE + DEC - 100%

IAE - 100%

IAE + DEC - 100%

Table 12. Classification accuracy for complete carpet images.

Carpet

Good Color Cut Hole Metal Thread

SAE 100% 42.10% 100% 94.11% 100% 89.47%

SAE + DEC 89.29% 94.73% 100% 100% 100% 100%

IAE 96.50% 42.10% 100% 100% 100% 78.94%

IAE + DEC 96.50% 94.73% 100% 100% 100% 100%
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Table 13. Classification accuracy for complete grid images.

Grid

Good Bent Broken Glue Metal Thread

SAE 95.30% 100% 100% 90.90% 100% 100%

SAE + DEC 100% 100% 100% 100% 100% 100%

IAE 100% 100% 100% 72.72% 100% 100%

IAE + DEC 100% 100% 100% 90.90% 100% 100%

Figure 24 shows the ROC curves of the four models on the complete image of the carpet
and grid datasets. This experiment also uses different classification thresholds to compare
with the fourth Otsu threshold. In Figure 24a, the ROC curves show that classification
accuracy of integrating DEC loss function is higher than others without integrating the
DEC loss function. In Figure 24b, the AUC values of the four models in the grid image test
are all greater than 99% because the texture pattern is regular.
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Figure 24. The ROC curves of complete image simulation for (a) carpet and (b) grid datasets.

Using the multi-thresholding method to determine whether the image is a defect
image can avoid misjudgments caused by weak defective areas. For example, Figures 25c
and 26c show that there are quite large differences in the grayscale distribution on the
difference images shown in Figures 25a and 26a, but the classification results are correct,
shown in Figures 25b and 26b. The reason is that the multi-thresholding method calculates
the fourth threshold according to the image difference distribution. Therefore, even if the
image difference is not obvious, the defect area can be detected. It is difficult to obtain the
correct detection result by manually setting the threshold.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22 
 

   
(a) (b) (c) 

Figure 25. Analysis of using multi-thresholding to identify the obvious defect carpet image. (a) Ob-

vious difference image. (b) Apply Otsu multi-thresholding method to detect the defective area. (c) 

The result of multi-thresholding. 

   
(a) (b) (c) 

Figure 26. Analysis of using multi-thresholding to identify the weak defect carpet image. (a) Weak 

difference image. (b) Apply Otsu multi-thresholding method to detect the defective area. (c) The 

result of multi-thresholding. 

4.4. Subjective Evaluation of Defective Area Detection 

In addition to analyzing the classification accuracy, we also provide the subjective 

evaluation for the four kinds of Autoencoder models. In Figure 27, we compare the detec-

tion results of the four models on nanofiber, carpet, and grid datasets. Due to the assis-

tance of the DEC loss function, the IAE+DEC and SAE+DEC models can have good com-

pleteness of repairing defect areas. At the same time, by observing the output image, it is 

found that the IAE+DEC model has the best repair capability, and the detection of defec-

tive areas is also the best in the subjective evaluation. 

 
(a) 

 
(b) 

Figure 25. Analysis of using multi-thresholding to identify the obvious defect carpet image. (a) Obvi-
ous difference image. (b) Apply Otsu multi-thresholding method to detect the defective area. (c) The
result of multi-thresholding.



Appl. Sci. 2022, 12, 1883 18 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22 
 

   
(a) (b) (c) 

Figure 25. Analysis of using multi-thresholding to identify the obvious defect carpet image. (a) Ob-

vious difference image. (b) Apply Otsu multi-thresholding method to detect the defective area. (c) 

The result of multi-thresholding. 

   
(a) (b) (c) 

Figure 26. Analysis of using multi-thresholding to identify the weak defect carpet image. (a) Weak 

difference image. (b) Apply Otsu multi-thresholding method to detect the defective area. (c) The 

result of multi-thresholding. 

4.4. Subjective Evaluation of Defective Area Detection 

In addition to analyzing the classification accuracy, we also provide the subjective 

evaluation for the four kinds of Autoencoder models. In Figure 27, we compare the detec-

tion results of the four models on nanofiber, carpet, and grid datasets. Due to the assis-

tance of the DEC loss function, the IAE+DEC and SAE+DEC models can have good com-

pleteness of repairing defect areas. At the same time, by observing the output image, it is 

found that the IAE+DEC model has the best repair capability, and the detection of defec-

tive areas is also the best in the subjective evaluation. 

 
(a) 

 
(b) 

Figure 26. Analysis of using multi-thresholding to identify the weak defect carpet image. (a) Weak
difference image. (b) Apply Otsu multi-thresholding method to detect the defective area. (c) The
result of multi-thresholding.

4.4. Subjective Evaluation of Defective Area Detection

In addition to analyzing the classification accuracy, we also provide the subjective
evaluation for the four kinds of Autoencoder models. In Figure 27, we compare the
detection results of the four models on nanofiber, carpet, and grid datasets. Due to the
assistance of the DEC loss function, the IAE + DEC and SAE + DEC models can have good
completeness of repairing defect areas. At the same time, by observing the output image,
it is found that the IAE + DEC model has the best repair capability, and the detection of
defective areas is also the best in the subjective evaluation.
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4.5. Comparison with Methods in MVTec

Since there are no experimental data from other literature about the classification
accuracy on the nanofiber dataset, we only compare the classification accuracy of carpet
and grid datasets with other methods. The classification accuracy and the accuracy of
the detected defective area are analyzed by using the complete images. In this paper,
we compare our proposed method with the classification method in MVTec [14]. First,
MVTec [14] selects some normal images as the training set and defines the minimum
number of pixels for a defective area, that is, if the defect area is less than this number of
pixels, it is judged as noise. Second, to determine the classification threshold, the threshold
value is increased gradually from 0 to 255. When the maximum defect area in the training
images is just below the defined minimum defective area, this threshold is used as the
image classification threshold.

In Table 14, we compare the four proposed models with the models in [14]. In general,
our proposed models outperform the models in [14] on both classifications of normal
and defect images. Even if the DEC loss function is not included in the training model,
the classification accuracy of defect images is higher than 80%. Among the four models,
IAE + DEC has overall better performance. The main reason for improving the accuracy of
image classification is that the multi-thresholding image segmentation algorithms provide
adaptive thresholding for each test image to distinguish between normal and defective
images. The method used in [14] sets a fixed classification threshold for each image, so it is
difficult to have high classification accuracy.

Table 14. Comparison of the four proposed models with the models in [14].

Carpet Grid

Model Good Defect Good Defect
SAE 100% 85% 95% 98%

SAE + DEC 89% 98% 100% 100%

IAE 96% 84% 100% 94%

IAE + DEC 96% 98% 100% 98%

AE(SSIM) [14] 43% 90% 38% 100%

AE(L2) [14] 57% 42% 57% 98%

AnoGAN [14] 82% 16% 90% 12%

CNN Dict [14] 89% 36% 57% 33%

In Table 15, we analyze the accuracy of the detected defective area with the methods
in [14]. The method of analyzing the accuracy of the detected defective area is based on
the method in [14] shown in Figure 28. The green area indicates the defective area that is
predicted correctly, and the red area is the defective area that is missed in the prediction.
The accuracy of the detected defective area is calculated as the ratio between the correct
predicted area and the union of ground truth and predicted area.

Table 15. Analysis of the accuracy of detected defective area with the methods in [14].

Models Carpet Grid
SAE 56% 58%

SAE + DEC 76% 74%

IAE 48% 53%

IAE + DEC 78% 73%

AE(SSIM) [14] 69% 88%

AE(L2) [14] 38% 83%

AnoGAN [14] 34% 4%

CNN Dict [14] 20% 2%
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In Table 15, when the DEC loss function is not included, the highest accuracy of the
detected defective area among the proposed models has a detection accuracy of only 50%.
However, after the DEC loss function is included, the accuracy is increased to more than
70%, indicating that the DEC loss function improves the accuracy of the detected defective
area. Among the four methods used in [14], the AE (SSIM) method is the best. The accuracy
of the detected defective area for the grid dataset is 88% that is higher than our proposed
models. However, from the classification accuracy for normal images 38% and defective
images 100%, it can be seen that this model focuses on detecting defective images, but the
misjudgment ratio of normal images is too high.

4.6. Discussion

This study aims to construct a novel Autoencoder that can have both normal area
reconstruction and defective-area repair capabilities. Hence, a new model training method
with DEC and SSIM loss functions is proposed. The ablation studies for MSE and SSIM loss
functions and weighting analysis between SSIM and DEC loss functions are provided in
Sections 4.1 and 4.2. The simulation results show that using SSIM is better for texture repair
in the defective area for nanofiber images. It is also obvious that the defective area can be
clearly found using SSIM, but the defective area cannot be found using MSE. Furthermore,
in Table 6, the weighting ratio between SSIM and DEC loss functions for the Simple and
Inception Autoencoders is important for both normal area reconstruction and defect area
repair capabilities. However, on more complex nanofiber images, the classification accuracy
of normal images is reduced because the DEC loss function can reduce the reconstruction
capability on normal areas, as listed in Table 8. It is interesting that SAE + DEC outperforms
IAE + DEC on complex nanofiber images, and this result still needs to be further explored
and discussed.

In the following, the improvement of classifying defect and normal images is ad-
dressed by using the multi-thresholding method. The accuracy analysis for classifying
normal and defect test images, subjective evaluation of defective area detection, and the
comparison between our proposed method and the SOTA methods in [14] are conducted
to verify the performance of the proposed method from Sections 4.3–4.5. The experimen-
tal results in Table 14 show that our proposed methods outperform the methods in [14]
on both classifications of normal and defect images. The main reason for improving the
accuracy of image classification is that our proposed Autoencoder can have both normal
area reconstruction and defect area repair capabilities and the multi-thresholding image
segmentation algorithm provides adaptive thresholding for each test image to distinguish
between normal and defective images.

5. Conclusions

There are three main contributions in this study. First, we construct four kinds of
Autoencoder models and combine the DEC clustering technology to strengthen the dis-
crimination of the latent vectors. Second, an effective two-stage model training method is
proposed to train the model with high normal area reconstruction and defect area repair
capability. Finally, a novel defect image classification method between normal and defective
images is proposed by using the multi-thresholding image-segmentation algorithm. The
experimental results show that IAE + DEC has a better overall performance. Furthermore,
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the accuracy of image classification is greatly improved by using the multi-thresholding
image segmentation algorithms. The image classification accuracy for normal and defect
images can be higher than 96%. However, the accuracy of classifying normal and defect
patch images for the nanofiber dataset is lower than the regular patterns of grid and car-
pet images. This means the normal area reconstruction and defect area repair capability
for complex texture patterns can be improved further in the future. For example, the
self-attention mechanism can be integrated into the Autoencoder model to have higher
defect-inspection accuracy.
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