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Abstract: Damage detection of civil and mechanical structures based on measured modal parameters
using model updating schemes has received increasing attention in recent years. In this study, for
uncertainty-oriented damage identification, a non-probabilistic structural damage identification
(NSDI) technique based on an optimization algorithm and interval mathematics is proposed. In order
to take into account the uncertainty quantification, the elastic modulus is described as unknown-but-
bounded interval values and the proposed new scheme determines the upper and lower bounds of
the damage index. In this method, the interval bounds can provide supports for structural health
diagnosis under uncertain conditions by considering the uncertainties in the variables of optimization
algorithm. The model updating scheme is subsequently used to predict the interval-bound of the
Elemental Stiffness Parameter (ESP). The slime mold algorithm (SMA) is used as the main algorithm
for model updating. In addition, in this study, an enhanced variant of SMA (ESMA) is developed,
which removes unchanged variables after a defined number of iterations. The method is implemented
on three well-known numerical examples in the domain of structural health monitoring under single
damage and multi-damage scenarios with different degrees of uncertainty. The results show that the
proposed NSDI methodology has reduced computation time, by at least 30%, in comparison with
the probabilistic methods. Furthermore, ESMA has the capability to detect damaged elements with
higher certainty and lower computation cost in comparison with the original SMA.

Keywords: slime mold algorithm; non-probabilistic structural damage identification; model updating
method; uncertainty quantification

1. Introduction

Structural systems in civil and mechanical engineering are subjected to damage and
deterioration during their service life. Damage is defined as a weakening of a structure
that may result in undesired displacements, stresses, strains, or vibrations, resulting in
unexpected and catastrophic consequences. Therefore, early detection of damage can
improve safety and extend serviceability of infrastructures [1].
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Modal parameters of a structure are usually used to detect structural damages [2–10],
since modal parameters (modal frequencies and mode shapes) are functions of the physical
parameters (mass and stiffness). As a result, the presence of damage causes changes in the
structure’s modal characteristics. Modal parameters can also be monitored conveniently
and precisely. The experimentally obtained modal parameters are considered accurate and
deterministic in conventional applications of model updating for damage detection [11–18].
However, there are always uncertainties in the recorded modal parameters in real applications,
which can lead to unreliable and inaccurate structural damage assessments. As a result,
uncertainties in structural damage detection must be considered [19,20].

In the domain of damage detection, research addressing uncertainty has been con-
ducted utilizing probability analysis and fuzzy theory [21]. The randomness of the struc-
tural finite element (FE) model and the test data were employed by Xia et al. [22]. The
probability distribution characteristics of the FE model were determined using the Monte
Carlo technique and data perturbation. The structural damage probability was then cal-
culated using the interval estimation approach. Despite extensive studies that have been
performed, some problems have been identified by other scholars in the study of uncertain
damage identification. One major difficulty is that the existing uncertain damage detection
methods based on probability analysis and fuzzy theory typically require a large quan-
tity of sample data to explain the source of uncertainty [23]. However, the probability
model is commonly used to follow specific distributions in engineering practice because of
insufficient experimental information and limited cost [24].

As a result, the accuracy and reliability of approaches based on probability and fuzzy
theory cannot be guaranteed [25]. In interval analysis, uncertain parameters are represented
as interval numbers that only require the uncertainty parameters’ boundaries [26]. As a
result of its convenience and feasibility, the interval analysis approach is extensively used
in damage identification and other domains [27,28]. The interval optimization technique,
which combines interval analysis with an intelligent algorithm, is a new way to handle
interval problems [29]. Based on an auto-regressive model and interval optimization, Liu
and Mao [30] presented a non-probabilistic damage detection approach. To determine
interval bounds of uncertain variables, Ghiasi et al. [31] suggested a non-probabilistic Least
Square Support Vector Machine (LS-SVM) approach. The results show that the proposed
method can successfully identify the structural damage elements. However, the interval
optimization method is still immature and suffers from the problem of high computational
cost, especially when handling a large-scale structure.

In comparison with probabilistic methods, research on non-probabilistic uncertain
damage identification has been relatively limited. Scholars have used various algorithms
to raise the calculation precision of interval methods, but interval expansion is still a severe
problem [32]. Therefore, in this study, a non-probabilistic structural damage identification
(NSDI) approach based on a model updating scheme and interval mathematics is proposed
in order to address the aforementioned shortcomings.

Damage estimation strategies using modal data are mainly based on model updating
methods. These methods rely on a structure’s parametric model and the optimization of
the designated objective functions based on the differences between measured data and
model predictions [33,34]. The accuracy of the FE model, the quality of the modal tests, the
formulation of the optimization problem, and the capabilities of the optimization algorithm
all play a role in the success of the finite element (FE) model updating process. In this paper,
a new optimization algorithm is proposed.

Li et al. [35] recently developed SMA, a simple and effective continuous optimization
technique for optimization problems. The performance of SMA is improved in this study
by deleting unchanging variables after a certain number of iterations. This aspect increases
the approach’s adaptability for a larger range of practical applications while retaining the
fundamental SMA’s attractive features.

Based on the aforementioned discussion and in order to tackle the shortcomings of
non-probabilistic based schemes, the objective of this paper is to investigate the influence
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of uncertainty on damage identification of civil and mechanical structures. To consider the
uncertainties in the measurement data, a novel non-probabilistic approach is introduced.
Using this method, Young’s modulus, which acts as an elemental stiffness parameter
(ESP), is defined as a variable of the SMA algorithm. Moreover, damage indexes are
defined by utilizing the natural frequencies and mode shapes of the structure. Furthermore,
measurement noise of the structural responses is assumed to be coupled rather than
statistically distributed using the interval analysis approach [21]. It is worth noting that,
in previous work of the authors [31], LS-SVM acts as a non-probabilistic surrogate model
for damage detection of structures, whereas the exact FE model is implemented in this
work. Furthermore, ESMA acts as a metaheuristic search algorithm and is used as the main
algorithm of the model updating process.

A 31-bar planar truss, a 120-bar dome truss, and a four-story building of Phase II of
the IASC-ASCE SHM benchmark are used to demonstrate the robustness of the developed
procedure. The impact of various noise levels and damage severity levels on the damage
detection results are also investigated using parametric computations. The study’s main
contribution is to provide an effective strategy for implementing a damage detection
procedure that takes uncertainty into account, based on the interval optimization method
and ESMA.

The article is structured as follows. Section 2 presents the process of damage detection
using a correlation index. Interval analysis method is described in Section 3. The funda-
mental basis of SMA and proposed enhanced version are described in Sections 4 and 5.
Section 6 presents the main steps for the proposed damage detection method. In Section 7,
the merits of the algorithms are assessed by solving NSDI problems. Some concluding
remarks are provided in Section 8.

2. Multiple Damage Location Assurance Criterion (MDLAC)

Structural damage detection (SDD) techniques are generally classified into two main
categories. They are the dynamic and static identification techniques, which, respectively,
need dynamic and static test data. Furthermore, compared with static identification ap-
proaches, dynamic identification methods have proven to be superior [36]. Among the
dynamic data, the modal analysis information of a structure such as the natural frequencies
and mode shapes have been widely used for SDD [36,37]. The level of correlation between
measured and estimated natural frequencies and/or mode shapes can be used to locate
and evaluate structural damage. When the natural frequencies are employed to identify
the damage, two parameter vectors are defined. One parameter vector consists of the ratios
of the first n f natural frequency changes ∆F due to structural damage, i.e.:

∆F =
Fh − Fd

Fh
, (1)

where Fh and Fd denote the natural frequency vectors of the healthy and damaged structure,
respectively. Another parameter vector can be defined similarly as:

∆F(ESP) =
Fh − F(ESP)

Fh
, (2)

where F(ESP) is a natural frequency vector that can be predicted from an analytic model and
elemental stiffness parameters (ESPs) ESP = [E1, . . . , Ei, . . . , En]

T, which represents a damage
variable vector containing the elasticity modulus of structural elements (Ei, i = 1, . . . , n) of
all n structural elements.
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There are numerous approaches to evaluate the level of correlation given a pair of
parameter vectors. The multiple damage location assurance criterion (MDLAC), which is
presented in the following form, is an effective technique to analyze a correlation index [38]:

MDLAC(ESP)F =

∣∣∆FT∆F(ESP)
∣∣2

(∆FT∆F)(∆FT(ESP)∆F(ESP))
, (3)

The MDLAC analyzes two frequency change vectors, one from the inspected structure
and the other from the analytical model. The MDLAC ranges from 0 to 1. It will be at
its maximum when the analytical frequency vector equals the frequency vector of the
damaged structure, i.e.:

F(ESP) = Fd, (4)

In addition to using the natural frequencies to identify structural damage, the mode
shape vectors have been used in several studies. [39,40]. In this case, the correlation
coefficient of Equation (3) can be expressed as:

MDLAC(ESP)ϕ =

∣∣∆ϕT∆ϕ(ESP)
∣∣2

(∆ϕT∆ϕ)(∆ϕT(ESP)∆ϕ(ESP))
, (5)

where ∆ϕ is the vector of the measured mode shape changes that have a dimension equal
to the product of the number of measured modes and sensor locations; and ∆ϕ is the
vector of the analytical mode shape changes with the same dimension as ∆ϕ. In this
paper, an objective function is defined based on a combination of MDLAC(ESP)ϕ and
MDLAC(ESP)F.

3. Interval Analysis Method for Consideration of Uncertainties

The updated ESP is prone to uncertainty since uncertainties (noises) in the obtained
vibration data are unavoidable. The uncertainties in the measured modal data are consid-
ered to be independent, normally distributed random variables with zero means and a
particular covariance, as indicated in [19]. As a result, the eigenvalues and mode shapes
may be written in the following [19]:

λE
i = λE

i,0(1 + Xλi), i = 1, 2, . . . , nm, (6)

φE
i = φE

i,0
(
1 + Xφi

)
, i = 1, 2, . . . , nm, (7)

where the subscript 0 represents the true values, Xλi and Xφi indicate relative random
noises in the measured frequencies and mode shapes, respectively. The mean value of
vector X is zero and the standard deviation indicates the noise level.

The interval bounds can provide supports for structural health monitoring under
uncertain conditions [41]. To account for epistemic and aleatory uncertainties, the main con-
cept of interval mathematics is implemented by providing the upper and lower boundaries
of input parameters to generate the upper and lower boundaries of the output parameters.
The stiffness reduction factor (SRF) represents the changes in the stiffness parameter for
each element of the structure, as given in:

SRF = 1− αd
αu

, (8)

where αd is ESP value of the damaged state and αu is ESP value of the undamaged state.
The intervals of the ESPs, including the natural frequencies and mode shapes, for the
undamaged and damaged state, can be formulated as follows [42]:

[α] ≈
[
λ; φ

]
= ESP value lower bound, (9)
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[α] ≈
[
λ; φ

]
= ESP value upper bound, (10)

Therefore, the interval bounds for each parameter can be derived as:

λI
c =

[
λI

c, λI
c

]
=
{

λI
c1, λI

c2, · · · , λI
ci

}T
, λI

ci =
[
λI

ci, λI
ci

]
, (11)

φI
c =

[
φI

c , φI
c

]
=
{
(φI

c1)
T

, (φI
c2)

T
, · · · , (φI

cj)
T}T

, φI
cij =

[
φI

cij, φI
cij

]
, (12)

αI
c =

[
αI

c, αI
c

]
=
{

αI
c1, αI

c2, · · · , αI
ck

}T
, αI

ck =
[
αI

ck, αI
ck

]
(13)

where the subscript c is the index of damage cases, the subscripts i, j and k are the number
of modes, the number of structural nodes, and the number of segments of structures,
respectively. The middle values of the parameters are denoted as:

xc = m(x) =
(x + x)

2
, (14)

where x denotes the exact values of the modal parameters (frequencies and mode shapes)
and the output parameters (ESPs). The upper and lower bars, respectively, represent the
upper and lower boundaries of x.

The uncertainties are coupled with the natural frequencies (λ) and mode shapes (φ) in
terms of the interval bounds. The ESPs are used as variables of the optimization algorithm,
and natural frequencies and mode shapes are used as in MDLAC as damage indexes.
Thus, two ESMA models, which include the lower bound and upper bound analyses, are
provided. The expressions are summarized in Table 1.

Table 1. Model input and output variables.

Model Model Input Output

ESMA 1
(Lower Bounds)

λci = λci − λci(ωλ) αck
φcij = φcij − φcij

(
ωφ
)

ESMA 2
(Upper Bounds)

λci = λci + λci(ωλ) αckφcij = φcij + φcij
(
ωφ
)

The variable ω represents the modal data’s level of uncertainty, with varying values
for natural frequencies and mode shapes. The + and − values of the uncertainty in two
separate ESMA models—ESMA 1 and ESMA 2—are used to apply the boundaries (lower
and upper bounds) of the input parameters of MDLAC. α and α are the values of the
variables of the optimization algorithm after its execution and represent the lower and
upper bounds of the predicted ESPs of damage case c.

After determining the lower and upper bounds of the ESPs, the possibility of damage
existence (PoDE) is computed, and the damage severity is determined using the damage
measure index (DMI).

αI
u =

{
αI

u1, αI
u2, . . . , αI

uk

}T
, (15)

αI
d =

{
αI

d1, αI
d2, . . . , αI

dk

}T
, (16)

where αI
u shows the interval bound for the undamaged ESP

([
αuk, αuk

])
and αI

d shows the

interval bound for the damaged ESP
([

αdk, αdk

])
. A detailed explanation of these indexes

is presented in the next section.
The intersection of the intervals of the damaged and undamaged ESPs on the same axis

is depicted in Figure 1, with the shaded region indicating the PoDE. The PoDE ranges from
0 to 100%, with 100% indicating a relatively high possibility of damage to that particular
element and 0% indicating no damage.
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Figure 1. Schematic plot of PODE.

Figure 2 depicts the regions of damaged and undamaged ESP on two different axes. A
single rectangle depicts the probable damage region, with the failure plane for both states
being equal. The shaded region reflects the ESP damage. Since the ESP damage is greater
than that of the undamaged ESP, the PoDE is defined as the ratio of the area of damage
region to the total area of the entire region. As a result, the quantitative measurement of
the PoDE can be described as below [43]:

PoDE =
Adamage

Atotal
× 100%, (17)
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Figure 2. Space for damaged and undamaged ESP.

The interval value of damaged and undamaged ESP will have large variances in reality.
As a result, relying just on PoDE will not give an accurate estimation of the damage. As a
result, the damage measure index (DMI) is developed [26]:

DMI = SRF× PoDE (18)

4. Brief Description of the Slime Mold Algorithm

Chen et al. [35] presented the slime mold algorithm (SMA) based on the oscillation
mode of slime mold in nature. The suggested SMA contains a number of unique features,
including a mathematical model that uses adaptive weights to simulate the process of
producing positive and negative feedback in slime mold propagation waves. These charac-
teristics are based on a bio-oscillator, which creates the best path for connecting food with
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high exploring ability and exploitation tendency. For complete details, please refer to the
paper published by [35]. An overview of the slime mold algorithm is provided below.

4.1. Approach Food

The following rule is given to represent the approaching behavior of slime mold as a
mathematical equation to replicate the contraction mode:

−−−−−→
X(t + 1) =


−−→
Xb(t) +

−−→
vb ·

(
→
W·
−−→
XA(t)−

−−→
XB(t)

)
, r < p

−→vc ·
−−→
X(t) , r ≥ p

(19)

where
→
W is the weight of slime mold,

→
vb is a parameter with a range of [−a, a],

→
vc decreases

linearly from one to zero. t represents the current iteration,
→
Xb represents the individual

location with the highest odor concentration currently found,
→
X represents the location of

slime mold,
→

XA and
→
XB represent two individuals randomly selected from the swarm,

→
W

represents the weight of slime mold. The formula of p is as follows:

p = tanh|S(i)− DF| (20)

where i ∈ 1, 2, . . . , n, S(i) represents the fitness of
→
X. The best fitness acquired in all

iterations is denoted by the DF. The
→
vb formula is as follows:

→
vb = [−a, a], (21)

a = arctanh
(
−
(

t
max_t

)
+ 1
)

, (22)

The formula of
→
W is organized as follows:

−−−−−−−−−−−−→
W(Smell Index(i)) =

 1 + r· log
(

bF−S(i)
bF−wF + 1

)
, condition

1− r· log
(

bF−S(i)
bF−wF + 1

)
, others

(23)

Smell Index = sort(S), (24)

where condition represents that S(i) ranks first half of the population, r denotes the random
value in the interval of [0, 1], bF and wF denotes the optimal and worst fitness obtained in
the current iterative process, respectively. Smell Index represents the sequence of fitness
values sorted (ascends in the minimum value problem).

4.2. Wrap Food

The following describes the updating position of slime mold:

→
X∗ =


rand·(UB− LB) + LB, rand < z
−−→
Xb(t) +

→
vb·
(

W·
−−→
XA(t)−

−−→
XB(t)

)
, r < p

→
vc·
−−→
X(t) , r ≥ p

(25)

where LB and UB represents the lower and upper boundaries of the searching range, rand
and r denote the random value in [0, 1].
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4.3. Grabble Food

As the number of iterations increases, the value of
→
vb oscillates randomly between

[−a, a] and gradually approaches zero. The value of
→
vc oscillates between [−1, 1] and

eventually tends to zero.
The logic of SMA is shown in Figure 3 and its pseudo-code is presented in Algorithm 1.

Algorithm 1. Pseudo-code of SMA.

Initialize the parameters popsize, Max_iteraition;
Initialize the positions of slime mould Xi(i = 1, 2, . . . , n);
While (t ≤ Max_iteraition)

Calculate the fitness of all slime mould;
Update bestFitness, Xb

Calculate the W by Equation (23);
For each search portion
Update p, vb, vc;
Update positions by Equation (25);
End For
t = t + 1;

End While
Return bestFitness, Xb;
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5. Enhanced Slime Mold Algorithm

This paper proposes an enhanced version of SMA to improve its capability to handle
problems with a large array of variables. For structural damage evaluation, there may
be a large number of variables to consider. Damaged elements and damage extents are
evaluated by an optimization procedure in an optimization-based SDD problem, such
that the response of a hypothesized damaged structure equals that of an actual damaged
structure. The number of elements (variables) in a real structure increases when a large-
scale structure such as bridge or space structure is considered. [44]. As a result, when the
optimization technique seeks to minimize the objective function, it must be able to handle a
large number of variables, which may slow down the convergence speed of the algorithm.
To resolve this issue, this study presents a strategy as presented in the following.

When the initial population is generated, each slime mold has a location vector that
reflects its position in an n-dimensional space. The elasticity modulus of the structural
components is represented by each variable in this vector. The number of variables in
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initial stage of the SMA algorithm is considered as the total number of elements. Then,
the algorithm will converge to the exact locations and severity of damages by eliminating
all intact elements at each stage. A non-zero value for a variable indicates that the i− th
element of the structure is damaged, whereas a zero value indicates that the i− th element
of the structure is intact. If the variables with near zero values (SRFi ≤ 0.05) remain
the same for 10 iterations, it can be concluded that these variables belong to the intact
elements set and therefore these near-zero variables will be eliminated in the next iteration
of the SMA.

The objective function is defined as an unconstrained optimization problem, as follows:
Find : ESPi = {E1, E2, E3, . . . ., En}

Minimize : F(ESP) = ‖1−MDLAC‖2

Where Emin ≤ E ≤ Emax

(26)

F(ESP) is the minimization problem, whereas Emin and Emax are the damage vector’s
lower and upper limits, respectively. The structure’s physical behavior necessitates the use
of boundaries. The damage variables are estimated using an optimization approach and by
solving Equation (26).

6. Main Steps of the Proposed NSDI Method

The following are the main steps in the suggested NSDI approach utilizing the
ESMA algorithm:

(a) Create two parallel ESMA model based on Table 1 and set the initial number of
variables equal to the total number of elements in structure.

(b) Employ the ESMA to determine the optimal solution.
(c) Determine the total number of intact elements using finding i as Xi

∼= 0 for all
components of the damage vector.

(d) Reduce the number of variables from the optimization problem by removing the intact
elements from the damage vector.

(e) Run ESMA again, this time using the revised optimization size from d.
(f) Check the convergence by computing 1− MDLAC based on Equation (26). If the

two response vectors are almost identical, save the results and end the optimization
process; otherwise, go to the step c.

(g) Based on determined damage variables, calculate PoDE and DMI based on
Equations (17) and (18).

7. Numerical Results of NSDI

Three structures are used as numerical examples in this work to illustrate the robust-
ness and accuracy of the proposed NSDI approach. These structures are:

1. 31-bar planer truss,
2. 120-bar dome truss, and
3. four-story steel structure model.

Damage to the structure is modeled as a relative reduction in the elasticity modulus
of each individual element, with the mass matrix assumed to remain constant. For the
optimization process, the number of slime molds for ESMA was fixed to 20 for each run
along a maximum of 100 iterations. The fit-test design in the current iteration is compared
to that of 20 prior iterations as a measure of convergence for engineering optimization
problems. As a result, if the difference between these two results is smaller than a certain
tolerance value, it is recorded as converged. The desired value for this example is set as
10−3. If the converge does not occur, the algorithm will be terminated by implementing a
fixed maximum number of iterations.
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7.1. 31-Bar Planar Truss

The standard finite element (FE) approach is used to model the 31-bar planar truss
in Figure 4 without internal nodes, resulting in 25 degrees of freedom [45]. The first five
vibrating modes are used for NSDI in this case. The elasticity modulus and density of
the material are 70 GPa and 2770 kg/m, respectively. Two distinct damage scenarios are
implemented in the structure, as shown in Table 2, and the suggested approach is evaluated
in each case.
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Table 2. Damage scenarios of the planar truss.

Case 2 Case 1

Element Number SRF Element Number SRF

11 0.25 1 0.30
25 0.15 2 0.20

The impact of noise on the accuracy of NSDI based on modal data is studied in this
section. The uncertainties of the measured mode shapes of structures are typically larger
than the uncertainties of the frequencies in modal testing [1]. In this study, uncertain
frequencies and mode shapes are considered as the normal distributed random variables
defined in Equations (6) and (7). The mean values of the relative random noises Xλi are
zeros, and standard deviations ξλ indicate the noise level.

Tables 3 and 4 show PODEs and DMIs of the damage scenarios 1 and 2, respectively.
The noise level is set as 2% and 5% in the frequencies and mode shapes, respectively. In
scenario 1, higher PoDE values are obtained at element numbers 1 and 2 compared to the
undamaged elements. Moreover, the PoDE values of elements 1 and 2 are higher than
those of the undamaged elements. The DMI value of element 1 is similarly higher than that
of element 2; both of these elements are correct damage locations with varying severity
conditions. The same condition can be seen for scenario 2, where higher PoDE values
observed at segments 11 and 25 and the DMI values are also higher at the elements with
higher severity.

Table 3. PoDEs and DMIs of case 1 for the 31-bar planar truss.

Element Number ESMA (PoDE) % ESMA (DMI) %

1 100.00 30.00
2 96.00 19.10
10 0.00 0.00
18 7.00 1.00

Total time (s) 195 -
Root Mean Square Error

(RMSE) 1.1× 10−3 -
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Table 4. PoDEs and DMIs of case 2 for the 31-bar planar truss.

Element Number ESMA (PoDE) % ESMA (DMI) %

10 0.00 0.00
11 100.00 25.00
12 8.00 0.80
14 2.00 0.50
25 95.00 14.20

Total time (s) 175 -
RMSE 1.2× 10−3 -

To further prove the capability of the proposed method, Tables 5 and 6 compare the
PoDE values obtained by the proposed method with the PDE values for the same damage
cases calculated using a probability-based method developed by Ghiasi et al. [33,46].

Table 5. PoDEs and PDEs of case 1 for the 31-bar planar truss.

Element Number ESMA (PoDE) % ESMA (PDE) %

1 100.00 98.00
2 96.00 96.00
10 0.00 7.00
11 0.00 0.00
12 0.00 1.00
18 7.00 0.00
19 0.00 5.00
22 0.00 10.00
26 0.00 3.00

Total time (s) 195 313
RMSE 1.1× 10−3 1.2× 10−2

Table 6. PoDEs and PDEs of case 2 for the 31-bar planar truss.

Element Number ESMA (PoDE) % ESMA (PDE) %

10 0.00 7.00
11 100.00 96.00
12 8.00 20.00
13 0.00 0.00
14 2.00 0.00
24 0.00 5.00
25 95.00 92.30
26 0.00 12.00

Total time (s) 175 301
RMSE 1.2× 10−3 1.0× 10−2

Ghiasi et al. [33] uses the probability density function of the existence of undamaged
and damaged states to determine the probability of damage existence (PDE). The main
algorithm consists of three interconnected loops based on coupling metamodeling tech-
niques with a metaheuristic optimization algorithm for probability-based damage detection
(PBDD) of structures.

These results show that the proposed technique outperforms the PBDD method by
providing a more meaningful damage severity indicator than the statistical surrogate
model method, which simply displays damage severity in terms of the probabilities. [21,26].
Furthermore, compared to the aforementioned surrogate methods [33,47], the proposed
non-probabilistic method provides an advantage since it does not require surrogate models
to predict the upper and lower boundaries of the ESP values. Surrogate models impose
some uncertainties on the process, which increase the prediction error. The standard
deviation of the probability density function (PDF) used to calculate the probability of
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damage existence is typically increased by the prediction error in the statistical surrogate
model (PDE) [47]. This higher standard deviation may result in lower probability values
when detecting damage in structures.

On other hand, in both scenarios, the PoDE is demonstrated to be a more accurate
damage index and results in smaller errors. For example, in scenario 1, the suggested
approach reveals a 0% PoDE value in element 10, which is undamaged, compared to a
7% PDE value. In scenario 2, the undamaged element 26 shows 0% damage, whereas
the probability-based technique predicts 12% damage. It is also observed that for both
scenarios, the proposed method provides higher PoDE values at the damaged elements
compared to the PDE value. The main reason is that the proposed non-probabilistic method
utilizes only two models to predict the upper and lower boundaries of the ESP values.
Furthermore, it implemented the exact FE model. In comparison, the probabilistic method
for the same example needs four surrogate models to calculate the probability density
function of the damage [47], which leads to greater prediction errors. Furthermore, as can
be seen in Tables 5 and 6, the proposed methodology reduces the computation time by at
least 37%.

7.2. 120-Bar Dome Truss

The second example is a 120-bar dome truss, as illustrated in Figure 5 [48].
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The dome’s diameter and height are 31.78 m and 7 m, respectively. A seamless steel
pipe with a modulus of elasticity of 30,450 ksi (210,000 MPa) and material density of 0.288
lb

in3 (7971.810 kg
m3 ) is used. The pipes have an external diameter of 0.2 m and a thickness of

0.006 m. For FE modeling and analysis, OpenSees software [42] was used. As described in
Table 7, two damage scenarios are considered. Figures 6 and 7a and Tables 8 and 9 show
the performance of the proposed method. It is worth noting that the noise level is set as 2%
and 5% in the frequencies and mode shapes, respectively.

Table 7. Damage scenarios for the 120-bar dome truss.

Case 1 Case 2

Element Number SRF Element Number SRF

12 0.30 4 0.35
38 0.20 30 0.20
53 0.25 51 0.35
79 0.2 58 0.25
- - 89 0.2
- - 105 0.40
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Figure 6. Probability of damage existence for damage case 1 of the dome truss.

The results show that although the measured modal data were noise corrupted, the
proposed approach provides a reliable prediction of damage occurrence. Furthermore,
ESMA can effectively find the correct locations and severity of the damage. For a larger
noise level, that is ξλ = 10%, the resultant PoDE values of damage scenario 2 are shown in
Figure 7b and Table 10.
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Figure 7. Probability of damage existence for damage case 2 of the dome truss. (a) Probability of
damage existence with noise level 5%. (b) Probability of damage existence with noise level of 10%.
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Table 8. PoDE for damage case 1 of the dome truss.

Element Number PoDE PDE

10 2% 9%
11 0% 4%
12 98% 94%
13 0% 8%
37 0% 4%
38 95% 96%
39 10% 14%
51 0% 3%
53 98% 95%
78 3% 8%
79 95% 85%
80 0% 10%

Table 9. PoDE for damage case 2 of the dome truss.

Element Number PoDE PDE

2 0% 3%
3 1% 2%
4 99% 96%
30 100% 90%
31 1% 10%
32 4% 9%
50 7% 7%
51 100% 95%
52 0% 2%
58 97% 80%
88 5% 4%
89 94% 95%
90 7% 9%

104 1% 4%
105 95% 90%
106 7% 27%

The numerical results show that the proposed method performs well in detecting the
location and severity of the damage scenarios even with a large noise level. The PoDE
values of the damaged elements are higher in NSDI approaches, whereas the PoDE values
of the undamaged elements are lower.

Table 10. PoDE for damage case 2 of the dome truss with ξλ = 10%.

Element Number PoDE PDE

2 0% 3%
3 7% 2%
4 88% 83%
5 0% 1%
30 92% 78%
31 2% 10%
32 4% 9%
33 10% 0%
50 7% 10%
51 87% 80%
52 14% 12%
56 0% 1%
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Table 10. Cont.

Element Number PoDE PDE

57 8% 5%
58 88% 68%
87 0% 3%
88 5% 14%
89 85% 74%
90 16% 25%

103 0% 1%
104 7% 9%
105 95% 88%
106 11% 35%

7.3. 4 Story Steel Structure Model

The third example is a 3D modular structure based on Phase II of the IASC–ASCE
SHM benchmark four-story building [49,50]. As illustrated in Figure 8, the model is built
without side braces along the four floors. The structure has 12 degrees of freedom (DOFs)
and 84 members. This structure has a base plan of 2.5×2.5 m and height of 3.6 m. The
members are hot rolled grade 300 W steel with a nominal yield stress 300 MPa (42.6 kpsi).
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This complex model can effectively illustrate the efficiency of structural damage
tracking using the proposed non-probabilistic method. As indicated in Figure 9, one
damage situation is considered by replicating the damage in element 7 by reducing its
Young’s modulus by 25%.
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Table 11 show PODEs, DMIs, and PDEs for the damage scenario. Furthermore, a com-
parison between the proposed ESMA and the original SMA is shown. Herein, the simulated
mode shapes and frequencies consist of 5% and 2% measurement noise, respectively.

Table 11. PoDEs, PDEs, and DMIs for the four-story steel structure.

Element
Number

ESMA
(PoDE) %

ESMA
(PDE) %

ESMA
(DMI) %

SMA
(PoDE) %

SMA
(PDE) %

SMA
(DMI) %

1 2.00 4.00 0.24 0.00 5.00 0.00
7 100.00 99.00 25.00 100.00 98.00 25.00
12 0.00 0.00 0.00 4.00 0.00 0.32
13 8.00 14.00 0.96 10.00 14.00 1.2
18 10.00 10.00 1.00 16.00 17.00 2.50
28 0.00 0.00 0.00 3.00 9.00 0.15
39 0.00 9.00 0.00 13.00 5.00 2.60

Total time (s) 202 612 - 370 815 -
NFEs 1250 1800 - 1730 2000 -
RMSE 6.00 ×10−3 7.00 ×10−2 - 8.11 ×10−2 9.21 ×10−2 -

The maximum numbers of function evaluations (NFEs) shown in Table 11 indicate
that determining the global optimum with ESMA is substantially less computationally
costly than with SMA.

Based on the results displayed in Table 11, it can be determined that SMA has the
ability to detect damaged elements with high certainty, whereas the resulting PDE, PoDE,
and DMI for the undamaged elements is higher in comparison with ESMA. Furthermore,
as can be seen in Table 11, the proposed methodology reduces the computation time by at
least 30%.
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8. Conclusions

Using the most recently introduced optimization algorithm (SMA), a unique approach
for NSDI was proposed in this study as a one-stage procedure. There are always uncer-
tainties in the measured modal parameters in typical applications of health monitoring
approaches, which can lead to unreliable and inaccurate structural damage prediction. As
a result, uncertainties are included in the developed NSDI process. An SMA method is
updated to increase its performance in dealing with problems involving a large number
of variables. An interval analysis is adopted for use with the ESMA to consider the un-
certainties using the interval bounds of the uncertainties in the damage variables of the
metaheuristic optimization model.

The numerical results demonstrate that the proposed approach is capable of accurately
detecting the location and severity of various damage scenarios. Based on the results it can
be concluded that the proposed interval optimization method procedure can obtain accu-
rate PoDE and DMI and can provide robust damage identification results. In summary, the
proposed non-probabilistic method is able to provide accurate damage detection results and
has a small prediction cost since it does not require the utilization of surrogate models. De-
spite these advantages, this approach may need further improvements to be implemented
in the real-time recorded response of a structure, such as adding the structural identifi-
cation (SI) stage, in order to convert the acceleration response to the frequency response.
Consideration of uncertainty in loadings will be pursued in our upcoming papers.
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Nomenclature

Symbol Property
αd ESP value of the damaged state
αu ESP value of the undamaged state
∆F Vector of natural frequency changes
Fh Natural frequency vectors of the healthy structure
Fd Natural frequency vectors of the damaged structure
E The elasticity modulus of structural element
∆ϕ Vector of the mode shape changes
Xλi Relative random noises in the measured frequencies



Appl. Sci. 2022, 12, 1876 19 of 21

Symbol Property
Xφi Relative random noises in the measured mode shapes
λ Natural frequencies
φ Mode shapes
W Weight of slime mold
Xb Individual location with the highest odor concentration
X The location of slime mold
vb Parameter with a range of [−a, a]
t The current iteration
bF Optimal fitness
LB The lower boundaries of the searching range
UB The upper boundaries of the searching range
Emin The lower bounds of the damage vector
Emax The upper bounds of the damage vector

Abbreviations

Abbreviation Explanation
DMI Damage Measure Index
DOFs Degrees of Freedom
ESP Elemental Stiffness Parameter
ESMA Enhanced Slime Mold Algorithm
FE Finite Element
LS-SVM Least Square Support Vector Machine
MDLAC Multiple Damage Location Assurance Criterion
NSDI Non-probabilistic Structural Damage Identification
NFEs Numbers of Function Evaluations
SMA Slime mold Algorithm
SDD Structural Damage Detection
SRF Stiffness Reduction Factor
PoDE Possibility of Damage Existence
PDE Probability of Damage Existence
PBDD Probability-Based Damage Detection
PDF Probability Density Function
RMSE Root Mean Square Error
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