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Abstract: Ribonucleic acid Sequencing (RNA-Seq) analysis is particularly useful for obtaining insights
into differentially expressed genes. However, it is challenging because of its high-dimensional data.
Such analysis is a tool with which to find underlying patterns in data, e.g., for cancer specific
biomarkers. In the past, analyses were performed on RNA-Seq data pertaining to the same cancer
class as positive and negative samples, i.e., without samples of other cancer types. To perform
multiple cancer type classification and to find differentially expressed genes, data for multiple cancer
types need to be analyzed. Several repositories offer RNA-Seq data for various cancer types. In
this paper, data from the Mendeley data repository for five cancer types are analyzed. As a first
step, RNA-Seq values are converted to 2D images using normalization and zero padding. In the
next step, relevant features are extracted and selected using Deep Learning (DL). In the last phase,
classification is performed, and eight DL algorithms are used. Results and discussion are based on
four different splitting strategies and k-fold cross validation for each DL classifier. Furthermore, a
comparative analysis is performed with state of the art techniques discussed in literature. The results
demonstrated that classifiers performed best at 70–30 split, and that Convolutional Neural Network
(CNN) achieved the best overall results. Hence, CNN is the best DL model for classification among
the eight studied DL models, and is easy to implement and simple to understand.

Keywords: RNA-Seq; cancer; deep learning; gene expression data

1. Introduction

Cancer is a disease that starts with abnormal behavior and division of some cells,
causing damage to other, nearby cells, resulting in a clod or tumor which, in certain cases,
may cause death [1]. Early discovery and proper treatment can reduce the chances of
damage to other cells. The high mortality rate from cancer [2] is motivating researchers
to develop new methods for early cancer detection and classification. However, early
detection is very complicated, because cancer cells are disordered. RNA-Seq analysis is
extremely helpful in this regard.

RNA-Seq is a new and popular technique that is used to detect new isoforms and
transcripts by providing more normalized and less noisy data for prediction and clas-
sification purposes [3,4]. The most important function of transcriptome profiling is to
determine the differentially expressed genes occurring in a body or detect variations in
genes at different levels [5]. Identification and quantification in one place can be made using
RNA-sequencing [6]. RNA-Seq data are widely available from different databases, and are
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being used to classify diseases like breast invasive carcinoma (BRCA), colon adenocarci-
noma (COAD), kidney chromophobe, etc. [7]. However, analyses of RNA gene expression
data are quite complex because of their high dimensions, complexity, and the existence of
duplications in feature values [8]. Therefore, a need for automatic feature extraction exists,
which may be addressed through machine learning (ML) and deep learning algorithms [9].

Machine learning is a branch of artificial intelligence which is used to identify associa-
tions among data by finding underlying patterns using past experience and learning [10].
ML is becoming indispensable in the age of mass data, given that it is becoming increas-
ingly difficult for humans to find trends and patterns in data to predict future outcomes.
Hence, machine learning is replacing humans to identify underlying patterns in data and
make predictions for the future to make proper decisions. ML extracts features itself with
almost zero human intervention, and then uses these features to make predictions. ML is
being implemented almost everywhere. Its typical applications are in natural language
processing, forecasting, flight governance, and biology to detect sequences of proteins and
RNA [11,12].

There are certain limitations of ML-based algorithms in terms of selecting promising
features from biomedical images for classification. However, these limitations are being
overcome by deep learning. Deep learning is an emerging field based upon some advance-
ments in ML. It is a technique which, without considering the in-between steps of feature
extraction, tries to focus on making a conclusion based on raw data. This is why it is also
named “automated feature engineering” [13,14]. Deep learning is being actively used in
many research areas, including bioinformatics, computation medicine, image and graphical
information processing, etc. [7]. A convolutional neural network is a DL model for use
with a large number of graphical images. Using weighted distribution, subsampling, and
confined association techniques, CNN extracts the most relevant features and reduces the
complexity of the neural network [15].

Deep learning is being implemented in many disease identification processes, and is
improving machine learning performance in the field [16]. Multilayer perceptron (MLP)
is a modern technology known as a feed-forward neural network used in deep learning
to identify and classify different types of tumors [17,18]. A previous study lists instances
in which deep learning has been used as stacked denoising autoencoders (SDAE) to
transfer high dimensional noisy data to low dimensional data for the classification of
breast cancer [8]. Another study proposed and implemented a new approach named
convolutional neural network for coexpression (CNNC), and the task of gene relationship
inference in a supervised setting was performed [19–21].

The differential analysis is the most significant part of RNA-Seq analyses. Conven-
tional differential analysis methods usually match the tumor samples to the normal samples,
i.e., from the same tumor type. Such a method would fail in differentiating tumor types
because it lacks knowledge of other tumor types. To better understand the cause of various
tumors, detailed analyses using RNA-Seq data are required [22]. For the extraction of the
most relevant features, most analyses try to identify differentially expressed genes. So, it
is necessary to build a method that includes knowledge of multiple tumor types in the
analysis [16].

In spite of the fact that RNA-Seq data are beneficial for the detection of variations at
the gene level, it is challenging to work with RNA-Seq data due to their spatial features.
Eight DL approaches have been implemented in the present study for cancer classification
from gene expression data. In this study, we use RNA-Seq data of five tumors. The
numeric RNA-Seq values of multiple tumors are then converted to 2D images. Then most
relevant features from these images are extracted and selected using DL, and then classified
accordingly with eight DL models. The main objectives of our work are as follows:

• To investigate the impact of a preprocessing step on the classification accuracy.
• To examine the impact of feature engineering using DL at classification output.
• To investigate the performance of eight DL algorithms for the classification of multiple

tumor types, and to make comparisons with other state of the art methods.
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The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 describes the materials and methods. Section 4 presents our experimental results
and discussion, while Section 5 concludes the paper.

2. Related Work

Sterling Ramroach et al. [23] used different machine learning algorithms to classify
cancer. In their study, a dataset was downloaded from an online data portal, COSMIC,
for multiple cancer types. The applied machine learning models were random forest (RF),
gradient boosting machine (GBM), neural networks (NN), K nearest neighbor (KNN), and
support vector machine (SVM). The authors performed multiple experiments for various
cancer types and primary sites. Notably, RF achieved 100% accuracy in classification and
was easy to tune compared to other algorithms.

Yawen Xiao et al. [24] proposed a new deep learning-based, multimodel ensemble
approach that uses five machine learning algorithms, i.e., KNN, SVM, DT’s, RF’s, and
gradient boosting decision trees (GBDT). Their proposed strategy was applied to three
types of cancer: LUAD, stomach adenocarcinoma (STAD), and BRCA. This strategy was
implemented so that each classifier would be trained using the provided data to obtain
predictions individually; these predictions are then applied to a multimodel ensemble
approach using deep learning. This method provides more accurate results compared to
those generated by an individual classifier to predict cancer.

Dincer Goksuluk et al. [25] presented a new range of classifiers based on Voom,
named “voomNSC”, “voomNBLDA”, “voomPLDA”, as well as SVM classifiers for the
classification and evaluation of RNA-Sequencing data on cervical and lung cancer, as well
as aging datasets. VoomNSC is based on voom transformation with the NSC method to
build more accurate and robust classifiers. VoomDLDA and voomDQDA are not sparse
base, which means that they use all of the features provided in the model. In contrast,
voomNSC is a sparse base classifier and uses the only subset of features in the model.
The results were compared with PLDA, NBLDA, NSC, and it was found that voomNSC
produced the best results.

Paul Ryvkin et al. [26] presented a novel numerical approach for CoRAL (classification
of RNA by analysis of length). For this purpose, the authors took small RNA sequence
datasets and sequenced them. Then, multiple preprocessing steps were performed, i.e., the
dataset was passed to three trimmed adapter sequences, and a FASTQ file was generated.
By matching with a reference file, reads were aligned, and results were stored in a SAM
file. After this, the authors executed a mismatch rate on reads, and again, the results were
added to a SAM file. After these steps, aligned matched genes were converted to a BAM
file to be presented to CoRAL. CoRAL extracts important features and classifies multiple
types of RNA sequences. This method not only classifies small RNA sequences, but also
provides better guidance to the user.

Nour Eldeen M. Khalifa et al. [27] proposed a novel optimized deep learning approach
based on binary particle swarm optimization–decision tree (BPSO—DT) and CNN. The
dataset was used in their study to classify different types of cancer, i.e., kidney renal clear
cell carcinoma (KIRC), BRCA, lung squamous cell carcinoma (LUSC), lung adenocarci-
noma(LUAD), and uterine corpus endometrial carcinoma(UCEC). This approach comprised
three phases. The first was related to feature extraction, and BPSO was used to extract
relevant features. The second phase aimed to solve the problem of overfitting data to get
accurate results, and as such, was called the augmentation phase. The third and last phase
was the deep CNN phase, which was used the CNN architecture of connected layers to
classify types of cancer based on given data. This methodology produced more accurate
results than the CNN technique.

Hamid Reza Hassanzadeh et al. [28] put forward a new pipeline approach for predicting the
survival chances of cancer patients. The proposed technique used graph-based semisupervised
learning Laplacian support vector machines. This approach was used to predict the survival
of kidney cancer (KIRC) and neuroblastoma (NB) patients. It comprised four steps. The first
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is preprocessing, in which data are analyzed and stored in feature metrics. The second step
involves feature extraction, in which overfitting problems are removed. In the third, different
models are trained. The final step is the adoption of a generalization strategy to check and
give weight to each model according to its accuracy. This pipeline approach was compared to
supervised SVM and produced more accurate results.

Jiande Wu et al. [29] proposed the use of different machine learning algorithms for
the classification of triple-negative breast cancer from nontriple negative breast cancer.
For this purpose, RNA-sequencing gene expression data were downloaded from TCGA
for 110 triple-negative breast cancer samples and 992 nontriple negative samples. The
applied machine learning classification models were SVM, KNN, Naïve Bayes (NB), and
DT. Because of the high dimensions of the data, before classification, an extra step, named
feature selection, was performed to obtain the most relevant features. The accuracies of the
classification task were 90%, 87%, 85%, and 87%, respectively. It is clear from the results
that SVM performed better than the other approaches.

Léon-Charles Tranchevent et al. [30] proposed a new approach for feature selection
based on graphs combined with deep neural networks to anticipate the clinical outcomes
of neuroblastoma patients. This approach took patient data and applied the graph-based
method to extract the most relevant features. The extracted features were then used to
train the DNN model. Finally, the performance of the model was recorded. Its accuracy
was compared with other classifiers, namely, support vector machine and random forest,
trained on the same data. The proposed methodology outperformed these classifiers in
predicting patient clinical outcomes.

Joseph M. de Guia et al. [16] proposed a deep learning model using CNN. The method-
ology was used for the complex problem of classifying of different types of cancer. This
approach was applied to RNA-Seq data. The proposed CNN comprised an input layer,
where input nodes with their specific weights were fully connected to three hidden layers,
and output layers were connected to the in-between, hidden layers. This methodology pro-
vided better results compared to existing classification models like GA/kNN, BaselineCNN,
random forest, and support vector machine.

Adam McDermald et al. [31] proposed a machine learning-based tool named GeneQC
(gene expression quality control) to estimate the reliability of expression levels in accurately
fromRNA sequence datasets. The authors used 95 RNA sequencing datasets from a total of
seven plant and animal species. GeneQC took three types of information as input. The first
mapping reads a SAM file, the second a reference genome FASTA file, and the last a species
specific annotation file. GeneQC implements two processes, i.e., feature extraction through
Perl and mathematical representation of the features extracted thereby in the R package.
Lastly, GeneQC classifies the category of reading alignment of every single genome.

Yawen Xiao et al. [2] presented a stacked sparse, auto-encoder using a semisupervised
deep learning approach. This strategy was used to predict different types of cancers,
i.e., LUAD, STAD, and BRCA. This model comprised semisupervised feature extraction
techniques and supervised classification techniques to handle both labeled and unlabeled
data, in order to extract more precise information for cancer predictions. The proposed
methodology was compared with other state of the art machine learning classifiers like
SVM, RF, NN, and auto-encoders, and was shown to provide more accurate prediction
results. Other research has discussed the application of technologies such as the Internet of
Things (IoT), networks, software-defined networking (SDN), and wireless sensor networks
(WSN) [32–39]

Boyu Lyu et al. [22] proposed an approach converting RNA-Seq data into 2D images
which were then classified by CNN. This technique was applied to 32 types of tumors for
classification. The workflow was composed of preprocessing gene expression data and
converting it to 2D images, before sending it to CNN. CNN was used here as a classification
model. In the third step, heat maps were developed for each class, and genes that were
comparable to pixels were selected with high salience in a heat map. In the final step, the
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pathways of the selected genes were validated. For testing and comparison purposes, SVM
and RF were used; the proposed model was shown to provide better accuracy.

Brian Aevermann et al. [40] proposed the use of feature selection and the binary
manifestation technique of a random forest to identify biomarkers in high throughput
sequencing. For this, the authors introduced NS-Forest version 2.0 in their study. This
latest version of NS-Forest is suitable for two tasks, i.e., for downward examination and
identification of active cell types. In their study, a cell with a gene expression with a
clustered assignment was presented to the random forest, where important features were
extracted through a Gini index. Genes were further ranked to overcome negative markers.
Then, a binary expression score was used to identify top-ranked genes. To determine the
minimum number of features, a threshold was used based upon a decision tree and an
F-Beta score to examine possible combinations of biomarkers. To examine the performance
of the method, experiments were conducted on human middle temporal gyrus (MTG).

Padideh Danaee et al. [8] presented an approach based on deep learning to diagnose
cancer and identify important genes for the detection of breast cancer. For this, a stacked
denoising autoencoder (SDAE) was used for feature extraction from a breast cancer data
set. To validate the results, three classification algorithms were applied, namely, ANN,
SVM with a linear kernel, and radial basis function kernel. Autoencoders are basically
feed-forward neural networks that, by using hidden layers, produce an output layer which
is much closer to the input layer. Moreover, SDAE performs dimensionality reduction
stack by stack on RNA-Seq data. For a performance evaluation, the authors compared
their approach with principal component analysis and kernel principal component analysis
(KPCA), and noted that SDAE outperformed both.

Yang Guo et al. [41] proposed a new deep learning approach named boosting cascade
deep forest (BCDForest) as an alternative to deep neural networks for the classification
of cancer subtypes. This methodology was implemented on three microarray data sets
containing adenocarcinoma, brain, and colon cancer, as well as data sets of RNA-Seq
data including BRCA, GBM, Pancancers, and LUNG. This methodology worked as an
ensemble of deep forests, whereby each forest was powerful in predicting the classification
results. Cascade forest attempts to identify meaningful features in raw data by training
and assembling decision tree-based random forests. This output was then compared with
state-of-the-art classifiers, including SVM, KNN, LR, RF, and original gcforest. The authors
noted that their proposed method provided more accurate results. Table 1 provides the
precise view of literature discussed above

Table 1. Comparative Review of Literature.

Authors Name Year Proposed Methodology Dataset Results

Paul Ryvkin et al. [26] 2014 CoRAL (Classification of RNA
by Analysis of Length).

Small RNA sequences
datasets

CoRAL performed best for
the classification of small

RNA-Seq samples

Hamid Reza Hassanzadeh et al. [28] 2016
Graph-based semisupervised

Laplacian support vector
machines

KIRC and NB datasets 86.83%, 66.20%

Padideh Danaee et al. [8] 2017

SDAE based feature selection.
For classification, ANN, SVM
with a linear kernel, and radial

basis function kernel are
applied

Breast cancer data set. 98.26

Yang Guo et al. [41] 2017 Deep learning approach
named BCDForest

BRCA, GBM, Pancancers,
LUNG, adenocarcinoma,
brain and colon cancer

92.8%
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Table 1. Cont.

Authors Name Year Proposed Methodology Dataset Results

Yawen Xiao et al. [24] 2017

Deep learning-based
multimodel ensemble

approach using KNN, SVM,
DTs, RFs, and GBDT

Cancer types i.e., LUAD,
STAD, and BRCA. 96.80%, 96.59%, 95.76%

Adam McDermald et al. [31] 2018

Machine learning-based tool
named GeneQC to estimate

the reliable expression level of
RNA-Seq data

RNA-Seq datasets of
seven plants and animal

species

GeneQC provided better
results for the proposed

purpose

Yawen Xiao et al. [2] 2018

Stacked sparse auto-encoder
using a semisupervised for
feature extraction and deep
learning for classification

LUAD, STAD, and BRCA
datasets 96.23%

Boyu Lyu et al. [22] 2018 Deep Learning CNN Multiple cancer types 95.59%

Dincer Goksuluk et al. [25] 2019 Voom based classifiers and
SVM

cervical cancer, lung
cancer, and aging datasets

VoomNSC achieved the
best results, i.e., 92.20%

accuracy

Joseph M. de Guia et al. [16] 2019 Deep Learning CNN Multiple cancer types 95.65%

Léon-Charles Tranchevent et al. [30] 2019
Feature selection based on
graphs and combined with

deep neural networks

Fischer-M, Fischer-R,
Maris and Versteeg

datasets
85–87%,

Nour Eldeen M. Khalifa et al. [27] 2020 BPSO-DT and CNN KIRC, BRCA, LUSC,
LUAD, and UCEC 96.90%

Sterling Ramroach et al. [23] 2020 ML algorithms i.e., RF, GBM,
KNN, NN, and SVM

Cancer types dataset and
primary site dataset

RF outperformed five
algorithms in terms of

accuracy

Jiande Wu et al. [29] 2021 Machine Learning models
SVM, KNN, NB, and DT

Triple and nontriple
negative breast cancer

dataset
90%, 87%, 85%, 87%

Brian Aevermann et al. [40] 2021
To identify Biomarkers in high

throughput Sequencing
NS-Forest version 2.0

MTG cell types

NS-Forest version 2.0
achieved better results
compared to previous

versions

3. Materials and Methods
3.1. Data Sets

The dataset includes the gene expression values of five different types of cancer, i.e., lung
adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma
(KIRC), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma
(UCEC) and is accessed from [42]. Brief details about these tumors are discussed below.

3.1.1. BRCA

Breast invasive carcinoma (BRCA) is the most aggressive type of cancer in women [43,44].

3.1.2. KIRC

Kidney renal clear cell carcinoma (KIRC) is the most widespread form of renal cancer
(comprising 70–80% or renal cancer cases), with a high death ratio worldwide [40,45].

3.1.3. LUAD

Lung adenocarcinoma (LUAD) is a standard form of cancer. LUAD mostly comprises
40% of all lung cancer diagnoses. In most cases, it affects nonsmokers [46]. In general,
LUAD is encountered accidentally; it expands more slowly than other types of lung cancer.
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3.1.4. LUSC

Lung squamous cell carcinoma (LUSC) is the second most common form of lung
cancer, and is common among tobacco smokers. Smoke particles in the air spread LUSC
cancer, making their residence usually in the middle of the lung [47].

3.1.5. UCEC

Uterine corpus endometrial carcinoma (UCEC) is a recurrent prenatal cancer that
cannot be identified in its early stages [48]. It is the most widespread type of cancer
in women. It has a high death rate because of the nonavailability of information on its
biomarkers for early detection and treatment [49].

There are 972 columns and 2086 rows in our dataset. Some 971 features are available with
a total of 2086 samples. The last column represents the cancer categories as follows: 1 for BRCA,
2 for KIRC, 3 For LUAD, 4 for LUSC, and 5 for UCEC. The gene expression dataset used in this
study is based on [42]. A detailed description of the dataset is provided in Table 2.

Table 2. Dataset Description.

Cancer Type Number of Instances Features

BRCA 878 971

KIRC 537 971

LUAD 162 971

LUSC 240 971

UCEC 269 971

3.2. Preprocessing

A number of steps are required to convert gene expression 1D data into 2D images
to be presented to neural networks and other classification algorithms. First, we load the
data into memory. Then, we normalize the values ranging from 0 to 2428 to 0 to 255 using
Equation (1) [27], where 255 is the highest value of an image and 24,248 is the highest value in
the gene expression dataset. In the last step, 971 features are converted to (32 × 32) pixel images
by appending some zeros. Finally, as the output, we obtain 2086 images of size 32 × 32.

Pixel = Round (CellValue × 255/24,248) (1)

3.3. Data Augmentation

Data augmentation means increasing the size of data artificially to overcome the
chances of overfitting the model [27]. Different augmentation parameters are available to
increase the size of data. Parameters are chosen according to the requirements of the data.
In this study, we used zoom range, vertical flip, horizontal flip, and shear. In this way, a
comprehensive comparative analysis of the discussed models is made with and without
the use of augmentation techniques.

3.4. Classification Model

In this study, multiple deep learning models are implemented for classification pur-
poses. Brief detail about these models is given below.

3.4.1. Convolutional Neural Network

CNN developed by Yann LeCun [50] at Paris, is implemented for the classification
of medical data. The CNN is stimulated by the biological process of transmission of
information between the neurons. CNN is not like traditional networks composed of only
two layers (i.e., input and output); it is a standardized form of multilayer perceptron,
consisting of a fully connected architecture made up of an input layer, hidden layers, and
an output layer [50–52].
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3.4.2. ResNet

ResNet, short for residual network, was proposed in 2015 by Shaoqing Ren, Xiangyu
Zhang, Jian Sun, and Kaiming He working at Microsoft Research Asia Lab. The main
motivation for proposing this new architecture was for the dissipation of gradients. Adding
depth to model backpropagation hits the gradient, and performance degrades drasti-
cally [53,54]. Therefore, this model introduced skip connections in which layers reducing
the model’s performance are skipped. It achieves very impressive results for image pro-
cessing tasks [55]. Multiple ResNet architectures are available.

3.4.3. ResNet50

Another benefit of using ResNet is that the model’s performance does not decrease,
even as a model becomes bigger and deeper [56]. ResNet50 is a version of ResNet developed
by Shaoqing Ren, Xiangyu Zhang, Jian Sun, and Kaiming He working at Microsoft Research
Asia Lab, which comprises of 50 layers of architecture: 48 convolutional layers, 1 max pool,
and 1 average pooling layer.

3.4.4. ResNet101

ResNet101 is another variant of ResNet and developed by Shaoqing Ren, Xiangyu
Zhang, Jian Sun, and Kaiming He at Microsoft Research Asia Lab, which is 2× deeper than
ResNet50. It comprises of 101 layers and can be used to easily classify hundreds of classes.

3.4.5. ResNet152

ResNet152 is the most recent version of ResNet and developed by Shaoqing Ren,
Xiangyu Zhang, Jian Sun, and Kaiming He at Microsoft Research Asia Lab. It is a convo-
lutional neural network that is 152 layers deeper. As it is much deeper than ResNet50, it
takes more computation time and resources than other models.

3.4.6. VGG

VGG16 is a popular model developed by K.Simonyan and A.Zisserman [57] in Uni-
versity of Oxford used in DL models for classification and feature extraction. It is a
convolutional neural network approach which may be used to reduce the feature space and
time required for convergence [57]. It is a 16-layer architecture which uses approximately
138 M parameters for classification tasks. VGG19 is a variant of VGG16 using 19 layers, i.e.,
16 convolutional layers and three fully connected layers.

3.4.7. GoogleNet

GoogleNet is a deep neural network architecture; we may say that it is a version of
the Inception network developed by research work team at Google. There are 22 layers in
GoogleNet, and it can be used for multiple purposes like face recognition, object finding,
image processing, etc. [58,59].

3.4.8. AlexNet

AlexNet was the first deep neural network architecture to achieve high level perfor-
mance in the ImageNet classification competition. It is very similar to the LeNet architecture,
but is much deeper and larger. It has more convolutional layers and filters, and an increased
dropout rate and momentum, as well as ReLU activation. There are, in total, eight layers,
i.e., five convolutions and three fully connected layers. To overcome the problem of over-
fitting, the method introduced data augmentation and dropout. AlexNet was developed
by Alex Krizhevsky and main reason for its popularity is its faster speed for ImageNet
classification tasks [60].

3.5. Proposed System Design

In this paper, a novel approach for the classification of multiple tumor types is in-
troduced. The proposed architecture is implemented in the following way. A dataset for
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multiple cancer types was extracted from [42] as a series of numerical values. The dataset
contains five types of cancers i.e., BRCA, LUAD, KIRC, LUSC, and UCEC. It comprises
2086 rows and 972 columns, in which 971 are RPKM RNA-Seq values and the last column is
the class of cancers. Some additional steps are required to convert the data from numerical
values to images. For example, Equation (1) serves to convert numerical 1D data to 2D
images. Additionally, numerical values are converted to an image range and some zeros
are added at the end to obtain a square matrix. Upon completion of this process, a total
of 2086 images are generated of size 32 × 32. These images are then passed to DL models
to extract the most relevant features. In the final step, eight deep learning models (CNN,
ResNet50, ResNet101, ResNet152, VGG16, VGG19, AlexNet, and GoogleNet) are applied
to obtain the classification output for the RNA-Seq dataset. Figure 1 illustrates the overall
flow of the proposed methodology.
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Figure 1. Proposed Methodology Diagram.

3.6. Training and Testing Strategy

This study uses four different splitting strategies to measure the accuracy and analyze
the different strategies used in our proposed architecture. Strategy 1 (S1) is when we pass
50% of the data to training and 50% to testing. The second strategy (S2) implies 60% of the
data for training and 40% for testing. Strategy 3 (S3) makes classifications using 70% of
the data for training and 30% for testing. The final strategy (S4) applies 80% of the data
for data for training and 20% for testing. In addition to this, k-fold cross validation is also
performed. Table 3 shows the splitting strategy used in our experiments.

Table 3. Training and Testing strategies.

Model S1 S2 S3 S4 k-Fold

DL models 50–50 60–40 70–30 80–20 K = 10
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4. Results and Discussion

This section presents the classification results for various cancer types.

4.1. Evaluation of the Model Performance

To measure the accuracy of our proposed architecture, we use different metrics, including
explicitness, delicacy, ratio of false negative, ratio of false positive, and correctness ratio.

Delicacy, also called sensitivity (SEN), ratio of true positive, or recall (REC), can all be
calculated using Equation (2)

SEN/REC = TP/TP + FN (2)

where FN is the false negative count and TP is the true positive count.
Explicitness, also known as specificity or true negative, can be calculated using

Equation (3)
SPE = TN/TN + FP (3)

where TN is the true negative count and FP is the false positive count.
Correctness ratio or accuracy (ACC) is calculated to measure the execution and perfor-

mance of the classifier. This can be calculated using Equation (4)

ACC = TP + TN/FP + TN + FP + FN (4)

The false positive ratio indicates how many instances have been misclassified by the
model as positive instances; it can be calculated using Equation (5)

FPR = 1 − TNR (5)

where TNR is the true negative rate.
The false negative rate is a measure that calculates how many instances have been

misclassified by the model as negative instances; this can be calculated using Equation (6).

FNR = 1 − TPR (6)

where TPR is the true positive rate.
If we calculate the rate of total true positive to the total predicted positive, we may

call this precision (PRE), which can be calculated using Equation (7).

PRE = TP/TP + FP (7)

F1-Score is an accordant average of precision and recall. This value considers both
false positive and false negative, and can be calculated using Equation (8).

F1 Score = 2 × (PRE × REC/PRE + REC) (8)

4.2. Deep Learning-Based Classification

Deep Learning is currently being applied to almost every type of real-world problem.
We applied eight DL models for a comparative analysis of these approaches, both with and
without augmentation of the data.

4.2.1. Results for DL Models without Augmentation

This section presents the results for multiple deep learning models without the use of
augmentation techniques.

4.2.2. Discussion of DL Models without Augmentation

Table 4 shows the comparative results of eight different deep learning algorithms
without any augmentation on the dataset. Table 3 depicts the accuracies of the eight models
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with four different splitting strategies and k-fold cross validation. It can be easily seen that
the models performed best at 80–20 and 70–30 split. In short, we can say that more data in
training results in more accurate testing results.

Table 4. Comparative Results for DL-based approaches without augmentation.

Splitting Strategies k-Fold Validation

Models S1 S2 S3 S4 K = 10

CNN 96% 95% 97% 97% 96.952

AlexNet 92% 93% 94% 96% 93.103

GoogleNet 92% 94% 91% 94% 95.862

VGG16 87% 92% 93% 94% 92.875

VGG19 91% 93% 93% 92% 91.092

ResNet50 96% 94% 96% 95% 96.713

ResNet101 96% 95% 97% 94% 95.396

ResNet152 92% 94% 94% 96% 94.780

Table 4 shows the model’s accuracies for a 80–20 split of the dataset. We can see
that CNN achieved the highest accuracy, i.e., 97%, among all models. If we analyze the
performance of the DL models for a 70–30 split, we see that ResNet101 and CNN were
optimal, yielding accuracies of 97%. Table 4 also shows that by reducing training data,
accuracy suffers, dropping to 95% from 97%; in this case CNN and ResNet101 also yielded
the best results. The table shows the accuracy of the results for a 50–50 split; here, CNN,
ResNet101, and ResNet50 achieved accuracies of 96%. The last column shows the accuracies
of these DL classifiers for k-fold cross validation where k = 10. CNN yielded the best results
here, achieving an accuracy of 96.952%.

An analysis of the data in Table 4 shows that CNN is competitive relative to other
models for classifying cancer types from image data. Although the results for ResNet101 are
also excellent, only one classifier can be declared a winner for a contaxt without augmenting
the dataset. Figure 2 shows the evaluation matrix of CNN for all four strategies in terms
of precison, recall and F1 Score. In addition to this, Figure 3 is a heatmap for CNN for a
70–30 split, which makes it possible to easily identify the best results at this split without
augmentation.
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4.2.3. Results for DL Models with Augmentation

This section contains the results of DL models for classification with augmentation
applied to the data.
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4.2.4. Discussion for DL Models with Augmentation

Table 5 explains the comparative results of these eight different deep learning algo-
rithms with augmentation techniques applied discussed earlier for increasing the size
of data and removing chances of overfitting, if any. These results show how models be-
have when augmentation is applied. Here the results for split 70–30 are best among four
mentioned splits. Detailed discussion for models accuracies is given below

Table 5. Comparative Results for DL based approaches with augmentation.

Splitting Strategies k-Fold Validation

Models S1 S2 S3 S4 K = 10

CNN 94% 93% 96% 94% 92.724

AlexNet 91% 92% 92% 93% 81.872

GoogleNet 90% 88% 94% 92% 57.754

VGG16 92% 92% 91% 93% 87.312

VGG19 88% 92% 88% 90% 82.916

ResNet50 93% 94% 94% 94% 82.603

ResNet101 93% 91% 92% 91% 71.478

ResNet152 89% 86% 86% 89% 83.084

Analysis of Table 5, we can see the results for split of 80–20 of data for training and
testing, we can easily decide which classifier performed better than all. CNN and ResNet50
outperformed here with 94% accuracy for the split 80–20. Where analysis of split 70–30 shows
that CNN with 96% accuracy is the best among all. For split 60–40, the accuracy of CNN
decreased, and ResNet50 outperformed among all DL approaches in Table 5. The final accuracy
report for the 50–50 split is shown in Table 5, where CNN again achieved first position by
securing high accuracy i.e., 94%. In addition to the splitting strategies, accuracies of DL classifiers
for k-fold cross validation is also shown in Table 5. Accuracies of all models other than CNN
decreased from 90% and CNN achieved high accuracy among all.

Analysis of Table 5 shows that CNN performed well for all the four splitting strategies
and k-fold validation with augmentation. Figure 4 is the classification report for CNN
for all the splits as it is analyzed from Table 5 and declared a winner among all eight DL
models. Figure 5 is the Heatmap for CNN for the split 70–30 as best accuracies are achieved
at this split with augmentation.
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4.2.5. Comparison of DL Models with Other, State of the Art Techniques

The methodology proposed in this study for generating 2D images is similar to those
used by other, state of the art preprocessing techniques, such as the ones described in the
studies listed in Table 6. This table shows that the proposed methodology outperformed
other, state of the art techniques with the same dataset, achieving an accuracy of 97%.

Table 6. Comparison of results of DL models with related work in gene expression data.

Dataset Number of
Samples Optimization Preprocessing Accuracy for

5 Classes

[22] TCGA
Dataset

samples ×
genes No

Y = log2 (x + 1)
variance threshold
102 × 102 image

95.59%

[27] Mendeley
Dataset

2086 samples
× 971 genes BPSO-DT

BPSO-DT

96.90%Equation (1)

No threshold

25×25 image

[16] TCGA
Dataset

samples ×
genes No

Y = log2 (x + 1)
variance threshold
102 × 102 image

95.65%

Proposed Mendeley
Dataset

2086 samples
× 971 genes No

Equation (1)

97%No threshold

32 × 32 image

5. Conclusions

Early prognosis and treatment of cancer are highly significant, as mortality due cancer
remains very high. RNA-Seq data for multiple cancer types is beneficial in this regard, as it assists
in identifying differentially expressed genes and the relationship among different genes that
occur in our bodies. However, this is a complex process, as relatively few samples are available,
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and those that are available are high dimensional and have missing and duplicated values.
Therefore, in this study, a novel approach has been proposed that tackles high dimensional
and noisy RNA-Seq data. The RNA-Seq data used in this study was extracted from the
Mendeley repository developed by Elsevier, a publishing company at Netherlands. The dataset
contains information on five types of cancer, i.e., kidney renal clear cell carcinoma (KIRC),
BRCA, lung squamous cell carcinoma (LUSC), lung adenocarcinoma(LUAD), and uterine
corpus endometrial carcinoma(UCEC). In the first step, preprocessing is done, in which 1D
data are converted to 2D images of size 32 × 2. In the next step, relevant features are extracted
and selected using DL algorithms. As the last step, a classification task is performed through
eight deep Learning based algorithms (CNN, ResNet152, ResNet50, ResNet152, GoogleNet,
AlexNet, VGG16, and VGG19). Deep learning models have shown promising results; in this
study, the highest obtained highest was 97%. CNN outperformed all other DL algorithms. In
this paper, we made classification of five cancers based on the related genes identified by the DL
algorithms. Comparative analysis with state of the art work is also conducted and the results
achieved by proposed work outperformed the work presented in literature for the same cancer
types. For future prospects, the proposed methodology can be used to identify the best accurate
method for identification of cancer related biomarkers for each cancer type. Functional pathway
analysis of related genes for these cancer types can also be conducted with the help of David
website [61] or IntPath website [62]. Deep Learning architectures can be implemented to identify
promising features from 2D images and these features could be incorporated to identify cancer
specific biomarkers.
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