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Abstract: Most areas of Caofeidian (Tangshan Caofeidian New District in Hebei Province, China)
were formed by land reclamation, where the dredger fill has a high water content and a high salt
content. The solidification of Caofeidian’s dredger fill is difficult because of salinisation, as well
as environmental and economic factors. This article proposes a composite slag solidifying agent.
The optimal proportion of various additives was determined by an unconfined compression test and
orthogonal design. Next, a microanalysis was carried out by SEM and XRD tests to characterise the
solidification mechanism of the composite slag solidifying agent. The results reveal that the composite
slag solidifying agent can substantially improve the unconfined compressive strength of Caofeidian’s
saline dredger fill by imparting a good microstructure: a compact overall structure was obtained
and few voids were observed in the solidified soil. The optimal proportion was determined as 10%
slag + 1.0% quicklime + 0.8% sodium silicate + 1.5% gypsum powder. In addition, the composite
slag solidifying agent can effectively reduce the content of soluble salts in saline dredger fill and
substantially improve the engineering characteristics of solidified soil.

Keywords: saline dredger fill; composite solidifying agent; unconfined compression test; SEM; XRD

1. Introduction

Most areas of Caofeidian (Tangshan Caofeidian New District in Hebei Province, China)
were formed by land reclamation. The reclamation area has reached 380 km2. The common
method of shallow foundation treatment in Caofeidian area is the squeezing of silt with
broken rocks. This can straightforwardly damage underground pipelines. Furthermore,
a large amount of broken rocks is required, and these need to be transported from places
that are 200 km away. Both the breaking of mountains to extract stones or rocks and the
long-distance transport are hazardous to the environment and uneconomical. In addition,
the dredger soil in this area was extracted from the offshore sand, which has a large salt
content. The groundwater level in this area is high, and the seawater erosion is significant,
which results in severe soil salinization. As a result, the engineering characteristics of
dredger soil, such as short consolidation time, high water content, and salinization, have
significantly hindered the construction and development of the Caofeidian area project.

Recently, soil solidifying agents have been developed and widely used in the construc-
tion of infrastructure such as ports, roads, and water conservancy facilities because of their
remarkable properties, low prices, and good treatment effects [1].

Lime and cement were the earliest solidifying agents used by humans and are widely
applied worldwide. These agents have been applied and studied by many researchers. De
Brito Galvao et al., Elhagwa et al., and Nafi Abdel et al. used lime to solidify clay [2–4]. Ra-
jasekaran et al., Rajasekaran, and McCarthy et al. used lime to strengthen sulphated coastal
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clay [5–9]. Miller et al. conducted experimental research (on-site and laboratory) on cement
kiln dust (CKD) as a soil stabilizer [10]. Chan et al. studied dredged marine clay solidified
with cement and fly ash and other binders [11]. In addition, certain new solidifying materi-
als have been examined by a few researchers: Bell investigated the use of lime-combined
PFA (pulverised fuel ash) and cement-combined PFA to solidify clay soil [12]. Attom et al.
proposed the use of burned olive waste as a new soil solidifying agent [13].

However, it has been demonstrated that conventional solidifying agents have a low so-
lidifying effect on coastal dredger soils with high water content and salinization. Sabry et al.
observed that the strength of cement-solidified soil increases slowly in a saline environment
over the long term, and that durability is reduced significantly owing to the corroding
effect of salt [14]. Omar Saeed et al. demonstrated that the use of lime as solidifying agent
cannot effectively improve the strength and durability of dry saline soil [15]. Therefore, a
few researchers improved conventional solidifying agents with additives for saline envi-
ronments. For example, Wild et al. used ground granulated blast-furnace slag (GGBS) to
replace part of the lime to solidify sulphate-containing Kimmeridge clay [16]. The results
revealed that the strength of solidified clay soil was improved significantly. Hossain et al.
proposed that industrial wastes such as lime, volcanic ash, and their mixtures are good
solidifying materials for saline clay soil [17]. Kamon et al. proposed that industrial waste
slag mixed with aluminium slime can enhance the early strength of saline soil [18].

Simultaneously, X-ray diffraction (XRD), scanning electron microscopy (SEM), and
other microscopic test methods have been applied in different research studies to clar-
ify the mechanism of saline soil solidification and to select good solidifying agents. For
example, based on these microscopic analyses, Suryavanshi et al. discussed the forma-
tion mechanism of Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O) and the analogues in C3A-
rich (3CaO·Al2O3) cement soil [19]. Huang et al. considered that the expansion of AFt
(3CaO·Al2O3·3CaSO4·32H2O) plays a dual role: it can simultaneously fill pores to solidify
soil and destroy the solidified soil structure formed by calcium silicate hydrate (CSH) [20].

According to previous researches, soil-solidifying agents are used widely. However,
the conventional method of using a single solidifying agent has a low solidifying effect on
saline soil. Composite solidifying agents containing industrial waste and other cementing
materials have a better solidifying effect on saline soil. Nevertheless, the solidifying
mechanism has been studied inadequately, and there is an urgent need to investigate the
components and their proportions for composite solidifying agents for saline dredger fill.
The verification of certain hydration products (such as CSH, AFt, and Friedel’s salt) during
the solidification of this soil is also highly worthwhile.

Therefore, in the present study, a composite solidifying agent (slag is used as the
main solidifying agent and sodium silicate, quicklime, and gypsum powder are used
as additives) is proposed to improve the strength of the Caofeidian saline dredger fill.
The optimal mixture ratio of the composite solidifying agent was determined by unconfined
compression tests. Finally, the hydration products and solidifying mechanism of the
composite slag solidifying agent were investigated based on SEM scanning and XRD
diffraction tests.

2. Materials Studied
2.1. Caofeidian Dredger Fill

Caofeidian belongs to Tangshan City, Hebei Province, China. It is located on the
southern coast of Tangshan and in the centre of Bohai Bay (Figure 1). The elevation of
the reclamation area is approximately 4.5 m, and the area is flat overall. Based on the
site survey (20 m depth), it can be stated that it mainly contains silty sand, silt, and silty
clay layers formed by quaternary Holocene sedimentary layers (Q4m), except the surface
dredge fill (Q4ml).
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Figure 1. Location of Caofeidian.

The dredge fill material studied in the present work is extracted from a site that is
50 m north of Caofeidian Station (39◦2′13′′ N, 118◦30′34′′ E). The soil is extracted from a
depth of approximately −2.0–−1.5 m. The material is representative because it only has a
period of self-weight consolidation without reinforcement. The geotechnical parameters
of the material studied are determined following the Chinese Standard JTG E40-2007, as
shown in Table 1. The components of soluble salt are calibrated following the Chinese
Standard GB/T 50123, as presented in Table 2.

Table 1. Geotechnical parameters of Caofeidian dredger fill.

Material
Natural Moisture

Content
Optimum Moisture

Content
Maximum Dry

Density Gs
Liquid
Limit

Plastic
Limit

Plasticity
Index

Liquid
Index

(%) (%) (g/cm3) (g/cm3) (%) (%) N/A N/A

Caofeidian
dredger fill 26.1 16.4 1.64 2.70 26.29 13.6 12.69 0.88

Table 2. Components of soluble salt of Caofeidian dredger fill.

Anions Cations
Total Soluble Salt

CO32− HCO3− SO42− Cl− Ca2+ Mg2+ K+ Na+

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (%)

0 304.9 1893.0 5972.9 297.4 3181.2 205.3 2288.5 13035.0 1.3

Table 1 shows that the natural water content of the Caofeidian dredger fill is 26.1%
(which is close to the liquid limit), and its plastic index is 12.69. Therefore, the material can
be classified as low-liquid-limit clay based on ASTM 2487 (classification of fine-grained
soil) [21]. According to Table 2, it can be stated that Na+ and Mg2+ are the main cations and
Cl− and SO4

2− are the main anions in the soluble salt, and that the main soluble salts are
NaCl, MgCl2, and sulphate. The total salt content of the Caofeidian dredger fill is 1.3%.

2.2. Solidifying Agents
2.2.1. Main Solidifying Agent

The slag (granulated blast furnace slag (GBFS)) powder is used as the main solidifying
agent in this work. Its main chemical composition is shown in Table 3. This white powder
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has a specific surface area and density of 429 m2/kg and 2.9 g/cm3, respectively. The 7 day
and 28 day activity indexes are 83% and 98%, respectively.

Table 3. Proportion of chemical composition of slag.

Chemical Composition SiO2 Al2O3 CaO MgO Others

Mass percentage (%) 35–50 15–20 20–30 5–15 Negligible

2.2.2. Additives

As the main solidifying agent, slag exhibits certain activity. However, it does not easily
achieve hydration reactions at ambient temperature. Hence, alkaline materials (sodium
silicate and quicklime) and sulphate (gypsum powder) were used to activate the slag in
this study. NaOH generated by sodium silicate can dissolve the surface vitreum of slag
and promote the formation of CSH colloid. The colloid is capable of filling the pores of soil
and thereby, increasing its density. The effects of the water absorbency, exothermicity, and
expansibility of quicklime facilitate soil hardening. In addition, the generated Ca(OH)2
contributes to the formation of CSH colloid and calcium aluminate hydrate (CAH) colloid.
Gypsum powder can promote the hydration of slag. Meanwhile, SO4

2− reacts with calcium
aluminate hydrate to yield AFt, which can fill the pores of soil effectively and form the
spatial network structure required to enhance soil stability.

3. Unconfined Compression Test
3.1. Sample Preparation and Test Procedure

An unconfined compression test was used to investigate the effect of the mixture ratio
of the solidifying agent on the strength of the solidified Caofeidian dredger fill. The mix
proportion design for the unconfined compression test is presented in Table 4. The 10% slag
was used as the main solidifying agent, and three additives (sodium silicate, quicklime,
and gypsum powder) at different content levels were applied to two approaches for sample
preparation: single-additive and composite-additive. The orthogonal design is applied in
the composite additive method.

Table 4. Proportion design for unconfined compression test.

Number Test Type Slag
(%)

Quicklime
(%)

Sodium
Silicate (%)

Gypsum
Powder (%)

A0

Single-additive

0 0 0 0
A1 10 0.5 (Level-1) 0 0
A2 10 1.0 (L-2) 0 0
A3 10 1.5 (L-3) 0 0
A4 10 0 0.6 (L-1) 0
A5 10 0 0.8 (L-2) 0
A6 10 0 1.0 (L-3) 0
A7 10 0 0 0.5 (L-1)
A8 10 0 0 1.0 (L-2)
A9 10 0 0 1.5 (L-3)

A10

Composite-additive

10 0.5 (L-1) 0.6 (L-1) 0.5 (L-1)
A11 10 0.5 0.8 (L-2) 1.0 (L-2)
A12 10 0.5 1.0 (L-3) 1.5 (L-3)
A13 10 1.0 (L-2) 0.6 1.0
A14 10 1.0 0.8 1.5
A15 10 1.0 1.0 0.5
A16 10 1.5 (L-3) 0.6 1.5
A17 10 1.5 0.8 0.5
A18 10 1.5 1.0 1.0
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The Caofeidian dredger fill was crushed and air-dried, and the impurities were re-
moved from the soil before the tests. In addition, grains larger than 2 mm were removed.
The soil was prepared with a water content of 16.4%. Next, the different types and propor-
tions of solidifying agents were mixed well with wet soil. Finally, the soil samples were
compacted in a cylindrical mould with a dry density of 1.63 g/cm3 (99% of maximum
dry density).

Subsequently, the sample was demoulded and cured in a curing chamber at a tem-
perature of 20 ± 2 ◦C and humidity of 90%. After 7 and 28 days of curing, unconfined
compression tests were carried out to obtain the 7 day and 28 day compressive strength,
respectively, of the solidified Caofeidian dredger fill. The instrument used in the test was
an electric limestone unconfined pressure tester (Tianjian, China). The test was controlled
to a speed of 1 mm/min and terminated when the sample failed.

3.2. Test Results
3.2.1. Single-Additive

The results for the unconfined compressive strength of solidified Caofeidian dredger
fill with different single additives are presented in Table 5 and Figure 2.

Table 5. Test results of single-additive samples.

Number
Unconfined Compressive Strength (kPa)

7 d 28 d

A0 18 41

A1 475 1550

A2 890 2015

A3 672 1406

A4 36 288

A5 99 389

A6 201 505

A7 45 121

A8 54 135

A9 59 157

The 7 day and 28 day compressive strength of unsolidified Caofeidian dredger fill
were 18 kPa and 41 kPa, respectively. Figure 2a illustrates the 7 day and 28 day compressive
strength with quicklime as the single additive. It can be stated that the strength first
increased and then decreased with the increase in quicklime content: the strength increased
for quicklime content between 0% and 1% and decreased for quicklime content higher than
1%. The maximum 7 day and 28 day compressive strength reached 890 kPa and 2015 kPa,
respectively, with 1% quicklime.

Figure 2b,c present the 7 day and 28 day compressive strength with sodium silicate
and gypsum powder, respectively, as single additives. It can be stated that the strength
increased with the increase in the content of sodium silicate and gypsum powder. However,
the final increase in strength was negligible compared with the result for quicklime as the
single additive: the maximum 7 day and 28 day compressive strength reached 201 kPa and
505 kPa, respectively, with 1% sodium silicate, and 59 kPa and 157 kPa, respectively, with
1.5% gypsum powder.
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3.2.2. Composite-Additive

The results of the unconfined compression test performed on solidified Caofeidian
dredger fill with composite additives are presented in Table 6.

Table 6. Test results of composite-additive samples.

Number
Unconfined Compressive Strength (kPa)

7 d 28 d

A10 1483 2764
A11 1981 3033
A12 1681 2870
A13 1886 3200
A14 2007 3370
A15 1907 3020
A16 1827 2401
A17 1680 2640
A18 1460 2374
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Table 7 presents the range analysis of the orthogonal test. Ti is the sum of the strength
at Level i, and ti is the average strength. The range is calculated as ti-max–ti-min, which
indicates the degree of influence of the three additives on the unconfined compressive
strength. Based on the results, it can be stated that quicklime was the key additive. It
had the maximum range of values for both 7 day and 28 day strength. It was followed
by sodium silicate and, next, by gypsum powder. In addition, the optimal proportion
scheme could be obtained based on strength tests and orthogonal analysis as 10% slag, 1%
quicklime, 0.8% sodium silicate, and 1.5% gypsum powder. The unconfined compressive
strength of the solidified Caofeidian dredger fill with the optimal proportion attained
2007 kPa in 7 d and 3370 kPa in 28 d. These results were slightly lower than or close to
the results from [22], in which a different slag composite curing agent was applied to the
Caofeidian coastal saline soil.

Table 7. Range analysis of orthogonal test.

T 7d 28d

Quicklime Sodium
Silicate Gypsum Powder Quicklime Sodium

Silicate Gypsum Powder

T1 5145 5200 5070 8667 8365 8424
T2 5800 5668 5327 9590 9043 8607
T3 4967 5048 5515 7415 8264 8641
t1 1715 1733 1690 2889 2788 2808
t2 1933 1889 1776 3197 3014 2869
t3 1656 1683 1838 2472 2755 2880

Range 277 206 148 725 259 72
Optimal proportion 1.0% 0.8% 1.5% 1.0% 0.8% 1.5%

influence factor Quicklime > Sodium silicate > Gypsum powder Quicklime > Sodium silicate > Gypsum powder

4. Microanalysis
4.1. Sample Preparation and Test Procedures

As presented above, the composite additive with the optimal proportion solidified
the Caofeidian dredger fill effectively. A microanalysis was carried out by SEM test and
XRD test to characterise the mechanism of solidification for the composite additives. For
comparison, the unsolidified soil sample and solidified soil samples with single additives
were also investigated. The proportion design for the microanalysis tests is presented
in Table 8.

Table 8. Proportion design for microanalysis.

Number Description
Proportion of Solidifying Agent/%

Slag
(%) Gypsum Powder (%) Sodium Silicate

(%)
Quicklime

(%)

B1 Unsolidified soil 0 0 0 0
B2 Slag + Gypsum powder 10 1.5 0 0
B3 Slag + Sodium silicate 10 0 0.8 0
B4 Slag + quicklime 10 0 0 1
B5 Slag + all 10 1.5 0.8 1

For the SEM test, a 2× 2× 2 mm3 cubical core sample was extracted from the sample of
unconfined compression test after 28 days of curing. The gold sputtering coating treatment
was applied to the cubical sample in vacuum before the test. An SU8010 cold-field emission
scanning electron microscope (Hitachi, Japan) was used in the test. Next, an incidental
energy-dispersive spectrometer (EDS) analysis was applied to a selected representative
region, as shown in Appendix A.
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For the XRD test, the core sample for the unconfined compression test after 28 days of
curing was extracted and ground into powder (<360 mesh). Next, a SmartLab X-ray poly-
crystalline diffractometer (Rigaku, Japan) was applied to perform the XRD pattern analysis.

4.2. Results and Analysis
4.2.1. Unsolidified Soil

Figure 3a presents the microscopy image of unsolidified soil. It can be stated that
the particles of unsolidified soil were different in size, disturbed, and block-shaped.
The point–point and point–surface contacts between particles were the main contact mecha-
nism without a structural link. Large voids between particles were apparent and distributed
widely. In addition, the unsolidified soil was prepared with a maximum dry density of
1.63 g/cm3. This implies that the microstructure of the unsolidified soil was significantly
loose and that its strength was low, as determined by the unconfined compression test de-
scribed above. Figure 3b presents a finer image of the particles. It is evident that the surfaces
of the particles were relatively smooth, without crystal production. Figure 4 presents an
X-ray powder diffractogram of unsolidified soil. Combining the EDS and XRD analysis, it
demonstrates that the main substances were quartz (SiO2) and albite (Na2O·Al2O3·6SiO2).
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(SiO2), albite (Na2O·Al2O3·6SiO2), and gypsum (CaSO4·2H2O). Unlike in the unsolidified 
soil, CaSO4·2H2O was the new crystalline substance generated from the hydrolysis of gyp-
sum powder (anhydrous gypsum: CaSO4) as follows: 

CaSO4 + 2H2O = CaSO4·2H2O (1)
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4.2.2. Solidified Soil with Slag and Gypsum Powder

Figure 5a presents the microscopy images of the solidified soil with slag and gypsum
powder. It can be observed that compared with unsolidified soil, the soil structure was
compact and that the soil grains varied in shape and size. The contacts between the soil
particles were mainly point–point, point–surface, and surface–surface. The surface of the
soil particles was non-uniform, and there were many voids. The shape and size of the voids
differed, and few overhead voids were observed. Based on Figure 5b, it can be stated that a
few crystals are formed on the surface of the grain. The crystals were mainly shaped as
strips and fine particles.
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The X-ray powder diffractogram is shown in Figure 6. Combining the EDS and XRD
analysis, it can be demonstrated that the main crystalline phase substances were quartz
(SiO2), albite (Na2O·Al2O3·6SiO2), and gypsum (CaSO4·2H2O). Unlike in the unsolidified
soil, CaSO4·2H2O was the new crystalline substance generated from the hydrolysis of
gypsum powder (anhydrous gypsum: CaSO4) as follows:

CaSO4 + 2H2O = CaSO4·2H2O (1)
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CaSO4·2H2O generally appeared as fine needle-shaped and columnar crystals (as
shown in Figure 5b), which contributed toward increasing the compressive strength to a
certain extent.
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4.2.3. Solidified Soil with Slag and Sodium Silicate

As shown in Figure 7a, compared with the results for the gypsum powder, a denser
structure could be obtained in the soil solidified with slag and sodium silicate. The distri-
bution of massive particles was relatively compact. The contacts between the soil particles
were mainly point–surface and surface–surface, and the contact area increased. A certain
amount of void and colloidal filler was apparent. In addition, Figure 7b reveals that a
certain amount of crystals (strips and needles) formed on the surfaces of the grains, which
filled the void and increase the contact between the grains. This was the main reason for
the improvement in strength for the solidified soil with slag and sodium silicate.
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The X-ray powder diffractogram is shown in Figure 8. Combining the EDS and
XRD analyses, it can be demonstrated that the main substances in the crystalline phase
were quartz (SiO2), albite (Na2O·Al2O3·6SiO2), anorthite (CaO·Al2O3·2SiO2), and CSH
(CaO·SiO2·H2O). Quartz and albite were crystalline minerals that pre-existed in the dredger
soil, and anorthite and CSH were new reaction products. During the solidification, NaOH
from Na2SiO3 hydrolysis increased the pH value of the sample. In the alkaline envi-
ronment, CaO and other vitreous structural substances in the soil and slag dissolved
straightforwardly to yield Ca2+. Ca2 + is conveniently replaced with Na+ from sodium
silicate (Na2SiO3) to form CSH. In this manner, CSH formed continuously, and the OH–

(alkaline environment) remained in the soil to maintain the circulation of the solidification.
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4.2.4. Solidified Soil with Slag and Quicklime

Figure 9 presents the microscopy image of solidified soil with slag and quicklime. A dense
and almost self-contained structure was observed (Figure 9a). The contact between the soil
particles gradually transformed from point contact to surface contact, at which point the contact
area was large and voids were filled effectively. Figure 9b reveals that the surfaces of the soil
particles were covered by a mass of flocculent colloid. It filled the void, improved the angular
surface, and enhanced the contact and connection. Finally, the strength of the solidified soil may
have improved because of the relatively dense microstructure.
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The X-ray powder diffractogram is shown in Figure 10. Combining the EDS and XRD
analyses, it can be demonstrated that the main crystalline phase substances were quartz (SiO2),
albite (Na2O·Al2O3·6SiO2), anorthite (CaO·Al2O3·2SiO2), CSH (CaO·SiO2·H2O), and CAH
(CaO·Al2O3·H2O). Quartz and albite were crystalline minerals that pre-existed in the dredger
soil, and anorthite, CSH, and CAH were new reaction products. The reaction mechanism
can be explained as follows: Ca(OH)2 from CaO hydrolysis increased the pH value of the
sample. Next, SiO2 and Al2O3 were activated, which resulted in the formation of CSH and
CAH colloids. The colloids filled the voids between the saline soil grains and then wrapped
the grains to form a spatial network structure. As a result, the density and strength of the
solidified soil improved significantly. The conclusion can be validated effectively by the results
of the unconfined compression tests described in Section 3.2.1: the maximum 7 day and 28 day
compressive strength reached 890 kPa and 2015 kPa, respectively, with 1% quicklime.
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4.2.5. Solidified Soil with Slag and Composite Additives

Figure 11a presents the microscopy image of solidified soil with slag and composite
additives. It is evident that a compact overall structure was obtained. Moreover, few voids
were observed. The soil surface was flat and covered with a layer of colloidal material.
Figure 11b reveals that the flocculent colloid on the surface of soil grain filled the voids
and wrapped the grains to form an overall structure. In addition, a significant amount of
colloid formed continually and connected to constitute a spatial network structure, which
may have contributed to a substantial increase in the strength of the solidified soil.
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Based on the XRD results of unsolidified soil, it can be stated that SiO2 was a main 
component in the dredger fill. In addition, the slag was essentially composed of SiO2, 
Al2O3, CaO, and other oxides. NaOH and Ca(OH)2 from sodium silicate and quicklime 
hydrolysis increased the pH value of the sample. Next, SiO2 and other oxides were acti-
vated. Finally, CSH was obtained. The reactions are expressed as: 
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Na2O·SiO2  + H2O → 2NaOH + SiO2 (2b)
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(b) 10 µm scale.

The X-ray powder diffractogram is shown in Figure 12. Combining the EDS and XRD
analyses, it can be demonstrated that the main crystalline phase substances were quartz
(SiO2), albite (Na2O·Al2O3·6SiO2), AFt (3CaO·Al2O3·3CaSO4·32H2O), CSH (CaO·SiO2·H2O),
and calcium aluminate chloride sulphate hydrate (3CaO·Al2O3·(0.5CaCl2·0.5CaSO4)·12H2O).
According to the above analysis with a single additive, AFt and calcium aluminate chloride
sulphate hydrate were the new reaction products in the solidified soil with slag and
composite additives. In particular, the Cl− in the calcium aluminate chloride sulphate
hydrate, which was derived neither from the slag nor from the three additives, indicated
that the composite slag solidifying agent had the capacity to desalinate the dredger fill.
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5. Mechanism Analysis of Composite Slag Solidifying Agent

Based on the results of the microstructure investigation, it can be inferred that the anal-
ysis of the mechanism of a composite slag solidifying agent is essentially the clarification of
the process of formation of CSH, AFt, and calcium aluminate chloride sulphate hydrate.

1. CSH

In the solidified soil, the source of CSH is the hydration of composite slag solidifying
agent and the reaction of SiO2.

Based on the XRD results of unsolidified soil, it can be stated that SiO2 was a main
component in the dredger fill. In addition, the slag was essentially composed of SiO2, Al2O3,
CaO, and other oxides. NaOH and Ca(OH)2 from sodium silicate and quicklime hydrolysis
increased the pH value of the sample. Next, SiO2 and other oxides were activated. Finally,
CSH was obtained. The reactions are expressed as:

CaO + H2O→ Ca(OH)2 (2a)

Na2O·SiO2 + H2O→ 2NaOH + SiO2 (2b)

SiO2 + Ca(OH)2 + H2O→ CaO·SiO2·H2O(CSH) (2c)

2. AFt

In the solidified soil, AFt (3CaO·Al2O3·3CaSO4·32H2O) was formed by the transfor-
mation of CAH. As introduced in Section 4.2.4, CAH was obtained in the solidified soil
with slag and quicklime. The formation of the CAH was similar to that of CSH: Al2O3 was
activated in an alkaline environment and combined with Ca(OH)2 to form CAH colloids.
The reactions are expressed as follows:

CaO + H2O→ Ca(OH)2 (3a)

Al2O3 + Ca(OH)2 + H2O→ CaO·Al2O3·H2O (3b)

Next, AFt is formed by the combination of CAH and sulphate ion, which is obtained
from gypsum powder:

CaO·Al2O3·H2O + CaSO4 + H2O→3CaO·Al2O3·3CaSO4·32H2O (3c)

3. Calcium aluminate chloride sulphate hydrate

Calcium aluminate chloride sulphate hydrate formed from the interaction between
the composite slag solidifying agent and the soluble salt in the saline dredger fill. As
presented above, a certain amount of CAH combined with sulphate ions in the gypsum
powder to form AFt. Part of the remaining CAH reacted with Cl− in the saline soil to form
Friedel’s salt (Fs: 3CaO·Al2O3·CaCl2·10H2O). Next, the sulphate ions from the gypsum
powder continuously replaced part of the chloride ions in Friedel’s salt in the sulphate
ion-enriched environment to eventually yield calcium aluminate chloride sulphate hydrate.
The reactions are expressed as follows:

CaO·Al2O3·H2O + NaCl→ 3CaO·Al2O3·CaCl2·10H2O + NaOH (4a)

3CaO·Al2O3·CaCl2·10H2O + CaSO4·2H2O→ CaCl2+ 3CaO·Al2O3·(0.5CaCl2·0.5CaSO4)·12H2O (4b)

The NaOH generated during the reaction, which provided an alkaline environment,
further promoted the hydration of the slag powder and maintained the reactions. Therefore,
soluble salts (such as Cl−) in saline dredger fill can be reduced effectively and, in turn, the
solidified soil can exhibit good road performance.

To summarize, the mechanism of composite slag solidifying agent for saline dredger
fill is essentially the formation of CSH, AFt, and calcium aluminate chloride sulphate
hydrate. CSH is a colloid, which has a good gelling property. It can fill voids in soil,
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thereby increasing the bonding force between grains, and cover the surface of grains to
produce an overall structure. AFt is a needle-bar crystal, which can fill voids to improve
the compactness of soil. The intersecting needle-bar crystal structures combine with CSH
to obtain a spatial network structure, which plays a good supporting role in soil. It causes
voids to be thinner or even disappear. The effect of AFt formation can compensate for
the shortage of CSH and further improve the strength of solidified soil. In addition, CAH
can combine with SO4

2− and Cl− in the soil to form calcium aluminate chloride sulphate
hydrate, which can effectively reduce the content of soluble salts in saline dredger fill and
substantially improve the engineering characteristics of solidified soil.

6. Conclusions

The solidification of Caofeidian dredger fill is difficult because of salinization, as
well as environmental and economic factors. In this study, the composite slag solidifying
agent proposed was experimentally detected by an unconfined compression test and
microanalysis. Based on the results, the following conclusions can be drawn:

1. The composite slag solidifying agent can substantially improve the unconfined com-
pressive strength of Caofeidian saline dredger fill. The additive quicklime contributes
the most to this improvement. The optimal proportion is obtained as 10% slag + 1.0%
quicklime + 0.8% sodium silicate + 1.5% gypsum powder.

2. The microanalysis illustrates that a compact overall structure was obtained and
few voids were observed in the solidified soil with the composite slag solidifying
agent. This is an apparent improvement in the microstructure compared with that of
unsolidified soil or solidified soil with slag and a single additive (quicklime, sodium
silicate, or gypsum powder).

3. The mechanism of composite slag solidifying agent for saline dredger fill is essentially
the formation of CSH, AFt, and calcium aluminate chloride sulphate hydrate. First, the
CSH colloid formed by slag hydrolysis improves the compactness of the soil. Second,
AFt (formed by the combination of CAH and SO4

2−) can further strengthen the
microstructure of the solidified soil. Finally, CAH can combine with SO4

2− and Cl−

in the soil to form calcium aluminate chloride sulphate hydrate, which can effectively
reduce the content of soluble salts in saline dredger fill and substantially improve the
engineering characteristics of solidified soil.

These observations are helpful for understanding the solidification mechanism of
saline dredger fill and can provide a theoretical basis for future solidification projects in
coastal saline dredger fill areas. In a future study, these observations could be verified with
different dredger soils from other locations and field tests.
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