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Abstract: Background: The roughness of denture base materials is mainly affected by inherent
material features, the polishing technique, and the operator’s manual skills. The surface irregularities
of the denture base resin’s roughness profile is one of the components characterizing the superficial
topography of dental prostheses, and it is a critical parameter for describing surface morphology.
Generally, the increment of the surface roughness minimizes cleanability and promotes the rate
of bacterial adherence, affecting the expression of bacterial adhesins. The purpose of this in vitro
study was to investigate the roughness of four commercially available denture base resins employed
for removable prosthodontics. Methods: Twenty-five specimens were realized and submitted to
observation for three dimensions (vertically, horizontally, 45◦). Average surface roughness (Ra), Rv,
Rp, and Rq were measured with a calibrated mechanical roughness tester (Taylor Hobson Surtronic
25; Taylor Hobson, Leicester, UK). Data were analyzed through a Kruskal–Wallis test. Results:
Significant differences in Ra between the groups were assessed. Baltic Denture System™ (Merz
Dental GmbH; Lütjenburg, Germania) showed a lower surface roughness coefficient and a more
homogeneous surface. Conclusions: The functional importance of surface roughness parameters for
denture base materials must be explored, not only considering recognized surface features.

Keywords: surface roughness; resin; rugosimeter; bacterial adherence; prosthetic dentistry; dental
materials

1. Introduction

The surface phenomena affect the morphology of dental prostheses, such as rough-
ness [1]. Surface roughness is even an intrinsic property, and is one of the major clinical
properties of the dental prosthesis which may be responsible for promotion of bacterial
adhesion and biofilm organization [1–3]. In manufacturing processes, many factors, such
as inaccuracy by the operator or in the device tools, or micro-scale irregularities, can alter
the surface morphology [3]. The research in which roughness plays a prominent role has
demonstrated that it is one of the factors that can physically inflict considerable damage
to the oral environment, compromising the local ecological equilibrium. The adhesion
of microorganisms is the crucial phase for the colonization of the material, followed by
the production of extracellular polymer substances [4,5]. This process is characterized by
physicochemical interactions, including the hydrophobicity and charge of the bacterial cell
surface and the morphology of the resin material, as well as the potential of microorgan-
isms to adhere to different surfaces [1]. Several studies have investigated the relationship
between surface roughness and bacterial adhesion, reporting contradictory results [6–9].
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The impact of physical properties of the materials in the bacterial adhesion has been largely
discussed, describing the polymer surface irregularities of the material as the relevant
property for the process in the adhesion of different microorganisms [3,7]. Literature data
suggest the influence of a combination of mechanical and past polishing on the roughness
surface [4,8]. The outcomes of the study conducted by Rutkunas et al. explained the
effectiveness of polishing for generating smooth surfaces in both bis-acrylic and acrylic
resins [10]. It has been proposed that the type of surface-polishing technique is critical
for determining the surface roughness, as well as the type of acrylic resin employed. The
measurement of the surface texture is an important aspect of prosthesis confection [9,10].
The most widely used and standardized method for the determination of surface roughness
employs the profilometer, an instrument that contains a drive motor which traverses the
pickup—a variable inductive-type [11] transducer—across the surface movements of the
stylus relative to the skid, which are detected and converted into a proportional electrical
signal, and which can be recorded for display or subsequent computer analysis. The Ra is
the most-used international parameter of roughness, and it is normally determined as the
arithmetic mean of the average absolute deviation of the roughness profile from the mean
line over one sampling length [10,11]. Published studies, which evaluated the effects of the
roughness surface in providing the retention of microorganisms, established that the Ra
(the arithmetical average height) value that is clinically tolerable for a hard surface in the
oral environment is 0.2 µm on composite resin (Ra = 0.179) [12]. The aim of this in vitro
study was to compare the surface roughness level of four resins used to produce prosthetic
bases, firstly by analyzing the Ra parameter, and then the statistical differences between
the Rq, Rv, and Rp surface roughness parameters.

2. Materials and Methods

Twenty-five specimens of dental base resins were realized, and the mean of the
arithmetic average of the absolute values of the profile height deviations from the mean
line (Ra), the root mean square average of the profile heights over the evaluation length
(Rq), the distance between the deepest valley of the profile and the mean line within the
evaluation length (Rv), and the distance between the highest point of the profile and the
mean line within the evaluation length (Rp) were calculated.

The surface roughness of all test specimens was determined using a profilometer.
Roughness was measured in three dimensions for each sample: vertically, horizontally, and
at 45◦.

This in vitro study focused on the surface roughness of four different thermoplastic
resin materials used for the fabrication of complete dentures: (1) microcrystalline polyamide
denture base material (QUATTROTI SRL, DENTAL D-N). Polyamide is a thermoplastic
material that is widely used as a denture base material because of its higher elasticity,
toxicological safety, and because it is a chemical-resistant material; (2) the Baltic Denture
System™ (Merz Dental GmbH), used for the fabrication of CAD/CAM complete dentures;
(3) acrylic resin (ProBaseCold; IvoclarVivadent, Schaan, Liechtenstein); (4) acrylic resin
(ProBaseHot; IvoclarVivadent, Schaan, Liechtenstein). Each resin material was processed
according to the manufacturer’s instruction: wax patterns were positioned into the slots of
plasters (10 × 12 × 3 mm) (Figure 1).

After the plaster was set, the wax patterns were carefully removed, and polymerization
was accomplished at a pressure of 6 bars for 25 minutes for acrylic resin ProBaseCold and
at pressure of 2 bars for 25 minutes for acrylic resin ProBaseHot. Twenty-five samples of
each material were obtained for the analysis of Ra (Figure 2).
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2.1. Surface Preparation 
Once the samples were cut to an appropriate size, they were ready for the grinding 

operation, finishing, and polishing. The purpose of grinding, which is by far the most 
important stage in preparation, was the mechanical removal of surface irregularities and 
the excess resin that covered the sample with rotary instruments. Then, the finishing and 
polishing were executed by using a tungsten-carbide bur (HM 79GX-040 HP; Meisinger, 
Centennial, CO, USA) with a thin cross, cut at 18,000 rpm to remove any zone of main 
deformation consequent from the initial cutting. Then, a coarse-grain cylindrical rubber 
top bur for acrylic resin (Super Acrylic Polish; Lang Dental, Wheeling, IL, USA) was em-
ployed, and then a fine-grain cylindrical rubber top bur (Super Acrylic Polish) was used. 
Before polishing, samples were thoroughly cleaned and dried. The first polishing was ac-
complished using adhesive-backed emery paper, which is thought to be less aggressive: 
surfaces were planed using a hard napless without excessive weight pressing down on 
the samples. Intermediate cleaning was carried out to minimize the contamination of the 
abrasive materials. Cleaning was required to remove polishing residues. This requirement 
for cleanliness was also applied to the operator’s hands. Final polishing was performed 
by using 6- or 3-μm diamond embedded on a napped cloth. Blocks with a 3-mm-thick 
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Figure 2. Samples of each resin material (a–d).

2.1. Surface Preparation

Once the samples were cut to an appropriate size, they were ready for the grinding
operation, finishing, and polishing. The purpose of grinding, which is by far the most
important stage in preparation, was the mechanical removal of surface irregularities and
the excess resin that covered the sample with rotary instruments. Then, the finishing and
polishing were executed by using a tungsten-carbide bur (HM 79GX-040 HP; Meisinger,
Centennial, CO, USA) with a thin cross, cut at 18,000 rpm to remove any zone of main
deformation consequent from the initial cutting. Then, a coarse-grain cylindrical rubber
top bur for acrylic resin (Super Acrylic Polish; Lang Dental, Wheeling, IL, USA) was
employed, and then a fine-grain cylindrical rubber top bur (Super Acrylic Polish) was used.
Before polishing, samples were thoroughly cleaned and dried. The first polishing was
accomplished using adhesive-backed emery paper, which is thought to be less aggressive:
surfaces were planed using a hard napless without excessive weight pressing down on
the samples. Intermediate cleaning was carried out to minimize the contamination of the
abrasive materials. Cleaning was required to remove polishing residues. This requirement
for cleanliness was also applied to the operator’s hands. Final polishing was performed by
using 6- or 3-µm diamond embedded on a napped cloth. Blocks with a 3-mm-thick layer
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were produced, providing 100 samples measuring 10 × 12 × 3 mm. Then, the specimens
were stored in distilled water at 37 ◦C for 48 ± 2 h prior testing.

The profilometric study of the degree of surface roughness was performed by using
rugosimeter TAYLOR HOBSON Surtronic 25, following the method related to the reference
surface.

2.2. Statistical Analysis

Data analysis was conducted employing IBM SPSS 20.0 Statistics for Mac (IBM Inc.,
New York, NY, USA). Summary statistics were calculated for Ra, Rv, Rp, and Rq. A Kruskal–
Wallis rank sum test was conducted to assess if there were significant differences in Ra, Rv,
Rp, and Rq between the levels of the group.

3. Results
3.1. Summary Statistics

The summary statistics can be found in Table 1.

Table 1. Statistics summary table for interval and ratio variables.

Group Variable Min Max Range Median s2 IQR SS

Ra

Myc 6.7 9.32 2.62 8 1.25 2.22 7.52
Baltic 4.6 7.6 3 6 1.25 2.2 7.53
ProBase Hot 5.67 8.12 2.45 6.89 0.91 2.09 5.49
ProBase Cold 5.98 8.76 2.78 7.76 0.94 1.56 5.69

Rv

Myc 8.12 9.6 1.48 9.12 0.27 0.87 1.64
Baltic 7.89 9.13 1.24 8.34 0.20 0.81 1.22
ProBase Hot 11.23 15.55 4.32 14.78 2.57 2.67 15.44
ProBase Cold 8.12 9.78 1.66 9.12 0.366 1.1 2.2

Rp

Myc 10.89 13.11 2.22 12.89 0.67 0.98 4.05
Baltic 5.67 12.12 6.45 9.89 4.68 3.34 28.08
ProBase Hot 10.56 12.34 1.78 11.76 0.47 1.34 2.83
ProBase Cold 8.66 11.56 2.9 10.12 0.78 0.91 4.73

Rq

Myc 37.67 43.12 5.45 40.12 22.66 1.26 16.01
Baltic 21.56 34.56 5 32.12 13.35 2.99 20.1
ProBase Hot 26.67 36.89 10.22 31.56 12.62 5.89 75.73
ProBase Cold 29.56 39.12 17.12 34.56 35.21 7.67 65.14

Sample Minimum (Min): The smallest numeric value in a given sample; Sample Maximum (Max): The largest
numeric value in a given sample.

3.2. Kruskal–Wallis Rank Sum Test

Ra: The results of the Kruskal-Wallis test were significant based on an alpha value of
0.05, χ2(3) = 8.23, p = 0.041, indicating that the mean rank of Ra was significantly different
between the levels of Group. Table 2 presents the results of the Kruskal–Wallis rank sum
test. Figure 3 presents boxplots of the ranked values of Ra by the levels of Group.
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Table 2. Kruskal–Wallis rank sum test for Ra by group.

Level Mean Rank χ2 df p

Myc 19.86 8.23 3 0.041
Baltic 8.21
ProBase Hot 12.64
ProBase Cold 17.29
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Post hoc. Pairwise comparisons were examined between each level of Group. The
results of the multiple comparisons indicated significant differences based on an alpha
value of 0.05 between Myc–Baltic. Table 3 presents the results of the pairwise comparisons.

Table 3. Pairwise comparisons for the mean ranks of Ra by level of group.

Comparison Observed Difference Critical Difference

Myc–Baltic 11.64 11.60
Myc–ProBase Hot 7.21 11.60
Myc–ProBase Cold 2.57 11.60
Baltic–ProBase Hot 4.43 11.60
Baltic–ProBase Cold 9.07 11.60
ProBase Hot–ProBase Cold 4.64 11.60

Note. Observed Differences > Critical Differences indicate significance at the p < 0.0500 level.

Rv: The results of the Kruskal–Wallis test were significant based on an alpha value of
0.05, χ2(3) = 17.47, p < 0.001, indicating that the mean rank of Rv was significantly different
between the levels of Group. Table 4 presents the results of the Kruskal–Wallis rank sum
test. Figure 4 presents boxplots of the ranked values of Rv by the levels of Group.
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Table 4. Kruskal–Wallis rank sum test for Rv by group.

Level Mean Rank χ2 df p

Myc 13.50 17.47 3 <0.001
Baltic 7.29
ProBase Hot 25.00
ProBase Cold 12.21
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Post hoc. Pairwise comparisons were examined between each level of Group. The
results of the multiple comparisons indicated significant differences based on an alpha value
of 0.05 between the following variable pairs: Baltic–ProBase Hot and ProBase Hot–ProBase
Cold. Table 5 presents the results of the pairwise comparisons.

Table 5. Pairwise comparisons for the mean ranks of Rv by level of group.

Comparison Observed Difference Critical Difference

Myc–Baltic 6.21 11.60
Myc–ProBase Hot 11.50 11.60
Myc–ProBase Cold 1.29 11.60
Baltic–ProBase Hot 17.71 11.60
Baltic–ProBase Cold 4.93 11.60
ProBase Hot–ProBase Cold 12.79 11.60

Note. Observed Differences > Critical Differences indicate significance at the p < 0.0500 level.

Rp: The results of the Kruskal–Wallis test were significant based on an alpha value of
0.05, χ2(3) = 16.19, p = 0.001, indicating that the mean rank of Rp was significantly different
between the levels of Group. Table 6 presents the results of the Kruskal–Wallis rank sum
test. Figure 5 presents boxplots of the ranked values of Rp by the levels of Group.
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Table 6. Kruskal–Wallis rank sum test for Rp by group.

Level Mean Rank χ2 df p

Myc 23.43 16.19 3 0.001
Baltic 8.43
ProBase Hot 17.29
ProBase Cold 8.86
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Post hoc. Pairwise comparisons were examined between each level of Group. The
results of the multiple comparisons indicated significant differences based on an alpha
value of 0.05 between the following variable pairs: Myc–Baltic and Myc–ProBase Cold.
Table 7 presents the results of the pairwise comparisons.

Table 7. Pairwise comparisons for the mean ranks of Rp by level of group.

Comparison Observed Difference Critical Difference

Myc–Baltic 15.00 11.60
Myc–ProBase Hot 6.14 11.60
Myc–ProBase Cold 14.57 11.60
Baltic–ProBase Hot 8.86 11.60
Baltic–ProBase Cold 0.43 11.60
ProBase Hot–ProBase Cold 8.43 11.60

Note. Observed Differences > Critical Differences indicate significance at the p < 0.0500 level.

Rq: The results of the Kruskal–Wallis test were significant based on an alpha value of
0.05, χ2(3) = 15.64, p = 0.001, indicating that the mean rank of Rq was significantly different
between the levels of Group. Table 8 presents the results of the Kruskal–Wallis rank sum
test. Figure 6 presents boxplots of the ranked values of Rq by the levels of Group.
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Table 8. Kruskal–Wallis rank sum test for Rq by group.

Level Mean Rank χ2 df p

Myc 24.86 15.64 3 0.001
Baltic 9.71
ProBase Hot 10.07
ProBase Cold 13.36
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Post hoc. Pairwise comparisons were examined between each level of group. The
results of the multiple comparisons indicated significant differences based on an alpha
value of 0.05 between the following variable pairs: Myc–Baltic and Myc–ProBase Hot.
Table 9 presents the results of the pairwise comparisons.

Table 9. Pairwise comparisons for the mean ranks of Rq by level of group.

Comparison Observed Difference Critical Difference

Myc–Baltic 15.14 11.60
Myc–ProBase Hot 14.79 11.60
Myc–ProBase Cold 11.50 11.60
Baltic–ProBase Hot 0.36 11.60
Baltic–ProBase Cold 3.64 11.60
ProBase Hot–ProBase Cold 3.29 11.60

Note. Observed Differences > Critical Differences indicate significance at the p < 0.0500 level.

4. Discussion

The purpose of this in vitro study was to perform an analysis of surface roughness. By
definition, roughness refers to the parameter that measures the spaced micro-irregularities
on the surface texture [13–16]. The surface roughness is a critical property of resin material,
which directly increases the risk of oral bacterial colonization [13–17]. Concerning the
relationship between the surface property of roughness of dental prostheses and the increase
of bacterial adhesion and biofilm formation, the manufacturing phases and different resin
materials have been largely investigated [13,14,17–22]. Specifically, several studies have
focused on the resin material, suggesting that the composition of the resin matrix, the size



Appl. Sci. 2022, 12, 1837 9 of 11

and distribution of the particles of the resins, and the chemical nature of the material may
affect the polishing stage [6,13–25]. In general, polymethyl methacrylate (PMMA) resin,
a synthetic resin produced from the polymerization of methyl methacrylate, performed
better in roughness surface testing than the other materials [26]. Polishing is a critical
step of prosthetic bases’ production, and its efficiency is strictly correlated to the surface
smoothness [1,4,18,19]. Several studies assessed the impact of chemical and mechanical
polishing on the roughness of acrylic resins used in prosthetic bases, achieving the lowest
roughness values with the mechanical polishing. Young et al. [9] and Gantz et al. [27]
compared the surface roughness values of the bis-acrylic resins with the acrylic resins,
showing the lower roughness values of the bis-acryl resins [28]. These results were in
contrast with the observations reported by Sen et al. [29], Haselton et al. [11], and Rutkunas
et al. [10], which supported the hypothesis of the heterogeneous design of the bis-acryl
resins. The differences were found to be statistically significant. This difference in roughness
property between the materials could be attributed to the manufacturing process [11,15].
In our study, the higher surface roughness values were observed for the Baltic resin,
a currently available CAD/CAM material. Baltic resin is widely used in CAD/CAM
manufacturing techniques. This technology is an improvement over manual processes
and minimizes the negative impact of manual manipulation. However, our findings
are in contrast with previous results, which reported less roughness surface values for
CAD/CAM resin, suggesting that the resin may possess differences in composition or
manufacturing process [3,7,9]. In accordance with previous studies, these results have
shown that the manipulation technique (powder–liquid) is operator-dependent and may
result from comparing the homogeneous composition [2–5,10,14,30–32].

5. Conclusions

The limitation of this study is due to the intrinsic nature of in vitro studies, which
do not recreate the natural conditions. Indeed, in clinical practice, the increasing of the
roughness of a prosthesis is supported by the occlusal adjustments during the prosthesis
confection. It was observed that there was a significant statistical difference comparing the
Ra roughness values obtained by the different resins. The f-ratio value is 16.46. The p-value
is <0.00001. Within the limitations of this in vitro study, the reliable conclusion is that the
smoothness is the goal of achieving an ideal dental prosthesis surface, but further testing of
the properties of materials are needed to determine the exhaustive analysis of roughness
parameter, especially by in vivo observation.
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