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Abstract: The highly contagious and rapidly mutating COVID-19 virus is affecting individuals
worldwide. A rapid and large-scale method for COVID-19 testing is needed to prevent infection.
Cough testing using AI has been shown to be potentially valuable. In this paper, we propose a
COVID-19 diagnostic method based on an AI cough test. We used only crowdsourced cough sound
data to distinguish between the cough sound of COVID-19-positive people and that of healthy people.
First, we used the COUGHVID cough database to segment only the cough sound from the original
cough data. An effective audio feature set was then extracted from the segmented cough sounds.
A deep learning model was trained on the extracted feature set. The COVID-19 diagnostic system
constructed using this method had a sensitivity of 93% and a specificity of 94%, and achieved better
results than models trained by other existing methods.

Keywords: AI diagnostics; COVID-19 screening; deep learning; speech recognition

1. Introduction

COVID-19, a disease caused by the coronavirus SARS-CoV-2, was declared a pandemic
by the World Health Organization (WHO, Geneva, Switzerland) on 11 March 2020. The
virus is spread in the form of small particles expelled from the mouth or nose when an
infected person coughs, sneezes, speaks, sings, or breathes. These particles take various
forms, from respiratory droplets to aerosols. Therefore, individuals adjacent to a person
infected with the COVID-19 virus, or who touch the eyes, nose, or mouth with hands
that have come into contact with contaminated surfaces, may get infected. The infection
therefore spreads more easily indoors or in crowded places.

The symptoms of COVID-19 range from none to mild, moderate, or severe, with major
symptoms including fever of 37.5 °C or higher, fatigue and cough, and dyspnea (shortness
of breath), while other symptoms include chills, muscle pain, headache, and olfactory,
or taste loss. Other symptoms, such as loss of appetite, production of phlegm, digestive
symptoms, confusion, dizziness, runny nose, or stuffy nose may occur. For most people,
symptoms are mild. However, in some people, the virus affects the respiratory system
and changes the quality of voice, coughing sound, and breathing sound. The trend of
COVID-19 confirmed patients around the world is shown in Figure 1.

As shown in Figure 1, the total number of confirmed infections worldwide is about
250 million, and the death toll is about 5.1 million. As the number of confirmed cases
increases, the number of patients who have recovered is increasing, but there have been
many deaths.

Many epidemiological experts argue that a large-scale coronavirus testing is essential.
Reverse transcription–polymerase chain reaction (RT-PCR), which is currently used all
over the world, is currently the standard approach to diagnosing COVID-19 with high
accuracy [2]. The RT-PCR test is reliable, but the process of collecting a sample using a long
swab in the nose can be painful, and is costly to the individual in some countries [3]. Rapid
diagnosis is also difficult, because the test results can be received within a few hours to
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a few days after the test. With the advent of the new virus, many experts are uncertain
as to when herd immunity will be reached. There are four recently developed vaccines:
AstraZeneca, Janssen, Pfizer, and Moderna. Vaccination helps protect individuals from
COVID-19. Vaccination is recommended at the national level, and many people in South
Korea have been vaccinated (Figure 2).

Figure 1. The trend of COVID-19 confirmed patients around the world [1].

Figure 2. Extent of vaccination in South Korea by type of vaccine [1].

As shown in Figure 2, more and more people have been vaccinated over time, and some
experience side effects from the vaccines. Side effects may affect the ability to perform daily
activities. They may disappear within a few days, or cause an allergic reaction. Notably,
vaccine-associated adverse reactions were more commonly reported in the AstraZeneca
vaccination group than in the Pfizer vaccination group [4]. Above all, with the advent
of new strains and breakthrough infections, many experts are uncertain as to when herd
immunity can be reached. Rapid and scalable diagnostic testing technologies are required
to solve this problem.

Research into diagnostic test technology has been actively conducted in many fields.
The fact that the COVID-19 virus affects the human lungs has made it possible to study
diagnostic testing techniques in a variety of ways. Studies have been conducted to dis-
tinguish between the lungs of COVID-19 positive people and the lungs of healthy people
using lung CT scans and X-rays. These studies have more than 90% accuracy, and the
results are constantly improving [5,6]. Diagnostic test studies using artificial intelligence
(AI) to interpret audio signals generated from the human body, such as cough sounds, are
ongoing [7–15]. The flowchart of the basic diagnostic process is shown in Figure 3.

As shown in Figure 3, cough sound data is generally collected using crowdsourcing.
An AI model is then created, which analyzes and classifies the collected data and uses the
results for diagnosis. Users of the application can record cough sounds, and be informed of
the probability of being positive for COVID-19. Acoustic features are extracted from the
cough sound data, and the model is trained based on these features. Diagnostic studies
into the diagnosis of COVID-19 based on cough sounds have attempted to classify the
COVID-19 cough sounds based on preliminary studies involving diagnosing asthma [12,16],
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pneumonia [17], or Alzheimer’s disease [18] using cough sounds. The success of this work
indicates that there are specific characteristics of cough produced by the way COVID-19
affects the respiratory system.

Figure 3. COVID-19 basic diagnostic flow using the app.

In this paper, we propose a method of diagnosing COVID-19-infected people using
cough sound data. To extract more information from the cough sound data, we created a
feature set by extracting 36 audio features. As well as mel-frequency cepstral coefficients
(MFCC) [19] and spectrograms, which have been widely used in the past, spectral centroids,
spectral bandwidth, seven spectral contrast features, spectral flatness, spectral roll-off, and
12 chroma features were extracted from cough sound data. Then, using a model based
on [13], the spectrogram image was presented as an input to ResNet-50, the feature set was
presented as an input to DNN, and then the output values of each model were connected
to derive a result. In comparison with other methods, the method proposed in this paper
showed the highest performance, with a sensitivity of 93% and a specificity of 94%.

The paper is structured as follows. Section 2 introduces related work and Section 3
describes the database and the proposed method. Section 4 describes the experiment
method and compares the performance with existing methods to evaluate the proposed
method. Section 5 ends with conclusions.

2. Related work
2.1. Cough Data

There have been several studies which have collected cough data from COVID-19-
positive patients. The Cambridge Dataset [12], Coswara [20] and COUGHVID [21] are
accessible means of data. For the diagnosis of COVID-19 using cough sound, it is important
to collect a large amount of data to increase the diagnostic accuracy. However, data have
mainly been collected through crowdsourcing, and through applications, as contacting
COVID-19-positive patients is difficult. The cough sound data were recorded using built-in
microphones of phones or computers. Precautions were are also required with respect to
security, since the collected data included personal data such as the region, gender, and
respiratory disease status of the people who provided the data, as well as the cough sound.

The Cambridge Dataset [12] was created using web applications and Android apps
to collect data using crowdsourcing. Users enter their symptoms, record a cough three
times, record a breathing sound three times, and enter their COVID-19 test results. Because
the data contains user information, a unique ID is created and stored, without collecting
personal identifiers or users’ e-mail addresses. Healthy data were defined as the data of
users who did not have a history of smoking, had not tested positive for COVID-19, and
did not have any symptoms. Among the first data shared by the Cambridge researchers,
93 people were healthy and 46 people were COVID-19 positive. The second dataset shared
by the Cambridge researchers was divided into train, dev, and test data. The dataset
contained data from 725 individuals, 567 of whom were healthy, and 158 who were COVID-
19 positive. The length of the recording was at least 2 to 5 s, and the sampling frequency
was 16 kHz.
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Coswara [20] was created in India, and collected breathing sounds, cough sounds,
and the voices of healthy and unhealthy people using a website application to diagnose
COVID-19. For the breathing and cough sounds, shallow sounds and deep sounds were
collected, respectively. The pronunciation sounds of three vowels (‘eu’, ‘i’, ‘u’), and the
voices used when counting numbers from 1 to 20 were collected, and the sounds pro-
nounced at normal speed and at high speed were collected. Nine audio files were recorded
per participant, and the number of participants in the currently published dataset was
2131 as of 14 September 2021. Among them, 1372 people were healthy, 314 people had
respiratory disease, and 99 people were completely recovered. A total of 346 people tested
positive for COVID-19, of which 72 people had severe symptoms and 231 people had mild
symptoms. In addition, there were 42 asymptomatic patients. The length of the recording
was at least 2 to 5 s, and the sampling frequency was 44.1 kHz.

COUGHVID [21] collected cough sounds from 1 April 2020 to 10 September 2020
using a web application. When the user finished recording the cough sound, the user’s
age, gender, and current condition were entered. The status of the cough sound data was
recorded as COVID-19, symptomatic, or healthy. All data in COUGHVID are in .webm
or .ogg format, with a sampling frequency of 48 kHz. The length of the recording was
at least 2 to 9 s. There are more than 20,000 pieces of data, and the datasets were filtered
using a cough detection algorithm. As there is a risk of collecting the wrong sample using
crowdsourced data, the COUGHVID team developed a classifier which analyzes the score
of cough sound detection in the data, so that non-cough data can be excluded. The cough
sound score is included in the metadata as an item called cough_detected.

2.2. Cough Testing

Brown et al. [12] collected cough and breath sound data, as described in Section 2.1,
to distinguish between the cough sounds of COVID-19-positive individuals and those of
healthy people. Brown et al. trained a classification model with 477 handcrafted features
and features extracted using VGGish [22]. The handcrafted features consisted of features
extracted at the segment level and features extracted at the frame level. Duration, onset,
tempo, and period were extracted at the segment level, and RMS energy, spectral centroid,
roll-off frequency, zero-crossing, MFCC, ∆-MFCC, and ∆2-MFCC were extracted at frame
level. Therefore, a total of 477 handcrafted features were extracted to train the classification
model. The researchers also used VGGish to extract features. With a sampling frequency
of 16 kHz, a pre-trained VGGish model returns 128-dimensional features every 0.96 s.
The researchers trained a classification model by extracting 256 features using VGGish.
The classification model used a support vector machine. In an experiment by Brown et al.
extracting and training the VGGish feature and segment level features using only cough
sound data produced an area under the receiver operating curve (AUC) of 0.82 and a
sensitivity of 0.72. These were the best results of their experiments.

Ahmed et al. [13] used the COUGHVID dataset to identify the cough sound of a
person who was COVID-19 positive. They extracted MFCC and spectrogram images
from the data to train a multi-branch network. The spectrogram images were input into
a ResNet50 model, and the 13 MFCCs extracted were input to the fully connected layer.
Clinical features such as fever symptoms and respiratory diseases were input to the fully
connected layer, and combined with the MFCC model. Then, the model was combined
with the spectrogram model and trained. The multi-branch network had a sensitivity of
85% and a specificity of 99.2%. The model excluding clinical features had a sensitivity of
93% and a specificity of 86%.

3. Proposed Method
3.1. Data

The experimental data used in this paper came from COUGHVID [21]. Crowdsourced
audio data usually contains unnecessary content. Therefore, Lara et al. [21] developed a
classifier that analyzes the score at which cough sounds are detected. The cough score for
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each .wav file is included as metadata. Of the cough sound data, the total number of data
with a cough score of 0.9 or higher was 6092. Table 1 shows the number of data with a
cough sound detection score of 0.8 or more, and the number of data with a cough sound
detection score of 0.9 or more in COUGHVID.

Table 1. Number of data having a coughing sound detection score of 0.8 or higher, and 0.9 or higher
in COUGHVID.

Cough_Detection_Score ≥ 0.8 Cough_Detection_Score ≥ 0.9

Healthy 5608 4702
Symptomatic 1135 949

COVID-19 547 441
Total 8295 6092

There were 5608 cough sound data from healthy people with a cough detection score
of 0.8 or higher, 1135 cough sound data from symptomatic people, and 547 cough sound
data from COVID-19-positive people. In this study, we used only cough data with a
cough detection score of 0.9 or higher, to minimize noise and train the model with more
accurate cough sounds. Therefore, we used 4702 cough sound data for healthy people,
949 cough sound data for symptomatic people, and 441 cough sound data for COVID-19
positive people.

3.2. Preprocessing

Cough sound data included unnecessary sounds between coughs, and the number of
coughs varied between recordings. These inconsistencies could reduce the performance of
the model, so the process of segmenting only the cough was essential. In this study, the
cough sound was segmented from the cough sound data using a method published by
Lara et al. [21].

Figure 4 is an example of the original cough sound data. When we actually listened to
the original data, the first part of the data was a coughing sound, and the last part of the
data was a small cough sound mixed with noise. Therefore, only the first part of this data
should be segmented and used. In this case, the sampling frequency was set to 24,000 Hz,
the minimum length of the cough sound was set to 200 ms, and a sample signal of 200 ms
length was added before and after the cough was detected. Here, the sample signal was
the number of seconds added to the beginning and end of each detected cough to make
sure the coughs were not cut short.

In the part recognized as a cough sound, there were cases where the coughing sound
was recorded once as “Cough!”, or twice as “Cough! Cough!”, and so was segmented
based on the coughing sound, and used as shown in Figure 5.

3.3. Audio Features

The feature set was created by extracting audio features from an audio chunk file
by cutting only the cough from the original data. MFCC is one of the most commonly
used features in the field of speech recognition. It has been widely used in studies into
the diagnosis of COVID-19 from cough sounds [11,13–15,23]. Spectrograms were also
frequently used in this study, and were considered necessary for high accuracy. In this
study, in addition to the MFCC and spectrograms used primarily in existing papers, we
added the following audio features:

• 13 MFCCs;
• 5 spectral features: spectral centroid, spectral bandwidth, 7 spectral contrast features,

spectral flatness, and spectral roll-off;
• 12 chroma features: 12-dimensional chroma vector.
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Figure 4. An example of the original data.

Figure 5. Segmented cough sounds.

Both the spectral features and the chroma features have been widely used as effective
features in studies related to speech. Therefore, the feature sets were combined by selecting
features based on preliminary research. All features were extracted using the librosa [24]
package with a sampling frequency of 24 kHz. In addition, 36-dimensional feature sets were
constructed using the average value of each extracted feature. Figure 6 shows spectrogram
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images extracted from the segmented cough sound data of male and female participants
who were positive and negative for COVID-19.

Figure 6. Spectrogram images extracted from the segmented cough sound data of male and female
participants who were positive and negative for COVID-19.

3.4. Model

The model in this study used a combination of ResNet-50 [25] and a deep neural
network (DNN) to distinguish between the cough sounds of COVID-19 positive people
and the cough sounds of healthy people. This model was constructed based on the model
proposed in [13]. The ResNet-50 was trained with spectrogram images (224, 224, 3) extracted
from the audio chunk file. The ResNet-50 model was divided into a Global Average
Pooling layer and a Global Max Pooling layer, and was reconnected after performing batch
normalization and dropout. The DNN was trained with the 36-dimensional feature set
configured in this study as an input. It was divided into two layers of 256 node layers and
two layers of 64 node layers, respectively, and was connected after dropout was performed
on each layer. GlorotUniform was used for the kernal initializer of each layer and Relu was
used for the active function. In all models, the dropout was 0.5. The output values from
ResNet-50 and DNN were connected to each other (Figure 7).

The values output by the ResNet-50 and DNN were connected. Then, an output value
was calculated using the sigmoid function after passing through the dense layer, batch
normalization layer, and dropout layer. Using this value, the cough sound of COVID-19-
positive people was distinguished from the cough sound of healthy people.
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Figure 7. Structure of the model combining a ResNet-50 and a DNN.

4. Experiments
4.1. Experimental Design

In this study, we used only cough sound data to distinguish between the cough sound
of COVID-19 positive people and the cough sound of healthy people. To achieve this aim,
a more precise preprocessing method was added, and a new feature set was constructed.
Table 2 shows the databases used in the experiment, the number of cough sound data
points of COVID-19 positive people and healthy people in each database, and the number
of segmented cough sounds.

Table 2. Counts of original data in each database and the number of segmented cough data.

Database Negative Positive Negative
Segmented File

Positive
Segmented File

COUGHVID [21] 5651 441 11,981 1140
Cambridge [12] 660 204 1634 586

Coswara [20] 1372 303 2353 448

The data had an imbalance between negative and positive data, as shown in Table 2. So,
only 1200, 1000, and 1000 of the negative segmented data in each database in Table 2 were
used, respectively. The experiments were designed to compare the accuracy, sensitivity, and
specificity of each case. There were cases in which only MFCC was extracted from each of
the three databases and analyzed with the long short-term memory (LSTM) [26] model. The
second case was when only the spectrogram was extracted from COUGHVID, and analyzed
only with the ResNet-50 model. The third case was where both MFCC and spectrogram
data were extracted from COUGHVID and analyzed with the ResNet-50+DNN model.
Then, in the fourth case, the ResNet-50+DNN model was trained by extracting a new
36-dimensional feature set and spectrogram from COUGHVID: the proposed method. For
validation, the data were randomly grouped into training, validation, and testing sets in
70–15–15 splits. So, the number of train–validation–test datasets of COUGHVID were 9185,
1968, and 1968, respectively. The experiment was conducted in the same environment for
each model, and the software and hardware specifications used are shown in Table 3.
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Table 3. Specifications of software and hardware used in the experiment.

Specifications

Operation system Ubuntu 18.04 LTS
Tensorflow 2.4.1

Cuda 10.1
CPU intel Core i7-4770
GPU GeForce GTX 1080Ti × 1
RAM 16 GB

4.2. Results

Table 4 shows the sensitivity, specificity and accuracy of each row. In experiments (a)
to (c), only MFCC was extracted from each database and analyzed with LSTM. Experiment
(a) had a sensitivity and specificity of about 60% and 62%, respectively, and (b) had a sensi-
tivity and specificity of about 77% and 65%, respectively. Experiment (c) had a sensitivity
and specificity of about 71% and 76%, respectively, higher than (a) and (b). The lowest
performance was found in (a), using relatively high-quality data. In addition, in (b) using
the smallest number of data, the performance was relatively higher than that of (a) and
(c). This fact suggests that more high-quality data was needed. Experiment (d) produced
a diagnostic accuracy of about 88% to 90%, which was lower than (e) and (f). However,
(d) showed that the ResNet-50 model was effective in diagnosing COVID-19 cough sounds.
Experiment (e) was the model excluding the clinical feature in [13]. Here, the clinical
features indicated whether the individual had fever symptoms or underlying respiratory
illness. We extracted a new 36-dimensional feature set and spectrogram from [21] and
trained the ResNet-50 + DNN model. It showed sensitivity and specificity of 93% and 94%,
respectively, and had higher diagnostic accuracy than (e), even though the clinical features
were not used.

Table 4. Performance comparison results of each study.

Database Features Model
Performance

Accuracy Sensitivity Specificity

(a) [21] MFCC LSTM 62% 60% 62%
(b) [12] MFCC LSTM 71% 77% 65%
(c) [20] MFCC LSTM 73% 71% 76%
(d) [21] Spectrogram ResNet-50 88% 90% 88%
(e) [21] MFCC + spectrogram ResNet-50 + DNN 89% 93% 86%

(f) [21] Proposed feature set
+ spectrogram ResNet-50 + DNN 94% 93% 94%

For the experiment shown in Table 3, each ROC curve is as shown in Figure 8. The
proposed method had an AUC value of 0.98 at the maximum area under the ROC curve
as the red line (f). The blue line (e) had an AUC value of 0.96, which was lower than that
of the proposed method. The orange line depicts method (d), and has an AUC value of
about 0.95, lower than the red line (f) and the blue line (e). Below that, they show lower
performance than the above three experimental results. From these results, it was found
that the extracted feature set including the spectrograms and MFCC were important to
distinguish the cough sound of COVID-19 positive people from the cough sound of healthy
people. In addition, when the ResNet-50+DNN model was trained with this feature set, it
showed higher diagnostic accuracy than [13].



Appl. Sci. 2022, 12, 1795 10 of 12

Figure 8. The ROC curve for each experiment.

5. Conclusions

COVID-19 affects the human respiratory system. Coughing is an audio signal that
comes out of the body only after going through the respiratory system. Therefore, if the
COVID-19 virus has affected the respiratory system, it will inevitably affect the audio signal
generated. For this reason, COVID-19 diagnostic studies using coughing sound are being
actively conducted.

In this study, we used only crowdsourced cough sound data to distinguish between
the cough sound of COVID-19 positive people and that of healthy people. A new feature set
based on features identified in previous studies was extracted to improve the performance
of the analysis of cough sounds. If COVID-19 diagnosis is possible with only the cough
sound, it will be possible to receive a faster diagnosis for prescreening purposes before
undergoing the RT-PCR test. Depending on the diagnosis results, the user will be able to
go to the hospital for an accurate diagnosis and minimize contact with the outside world.
This would be able to help prevent infection of COVID-19.

We have created a model to diagnose the COVID-19 condition from cough sounds;
however, before the implementation of machine learning algorithms, reliable data are
needed for the generalization of the model [27]. Therefore, in order to ensure high per-
formance in all locations and situations, ML solutions must be trained and tested with
collected data from various people in various locations. Future research aims to find
high-quality data collected from more diverse locations to compensate for this point. In
addition, due to the inevitable lack of COVID-19-positive cough sound data, we will study
the best way to combine the databases and how to combine models to compensate for this.
Furthermore, the main challenge of clinical COVID-19 diagnosis is that the symptoms are
similar to those of other common respiratory, lung and heart diseases [28]. Therefore, mod-
els should be tested to distinguish COVID-19 from other diseases, such as non-COVID-19
pneumonia, respiratory infections, asthma, and chronic lung disease exacerbations [29,30].
Therefore, we will conduct additional sub-analysis tests and conduct research on effective
audio features. Using this approach, we hope to develop faster and larger-scale diagnostic
technology that can be used by anyone with a smartphone or computer. In the future, it is
expected that a technology for diagnosing other respiratory diseases using audio signals
will be studied.
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