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Abstract: Diagnosing Parkinson’s Disease (PD) necessitates monitoring symptom progression. Unfor-
tunately, diagnostic confirmation often occurs years after disease onset. A more sensitive and objective
approach is paramount to the expedient diagnosis and treatment of persons with PD (PwPDs). Recent
studies have shown that we can train accurate models to detect signs of PD from audio recordings
of confirmed PwPDs. However, disparities exist between studies and may be caused, in part, by
differences in employed corpora or methodologies. Our hypothesis is that unaccounted covariates
in methodology, experimental design, and data preparation resulted in overly optimistic results in
studies of PD automatic detection employing sustained vowels. These issues include record-wise fold
creation rather than subject-wise; an imbalance of age between the PwPD and control classes; using
too small of a corpus compared to the sizes of feature vectors; performing cross-validation without
including development data; and the absence of cross-corpora testing to confirm results. In this paper,
we evaluate the influence of these methodological issues in the automatic detection of PD employing
sustained vowels. We perform several experiments isolating each issue to measure its influence
employing three different corpora. Moreover, we analyze if the perceived dysphonia of the speakers
could be causing differences in results between the corpora. Results suggest that each independent
methodological issue analyzed has an effect on classification accuracy. Consequently, we recommend
a list of methodological steps to be considered in future experiments to avoid overoptimistic or
misleading results.

Keywords: Parkinson’s disease; diagnosis; voice; machine learning; methodological issues

1. Introduction

Parkinson’s Disease (PD) is the second most prevalent late-onset neurodegenerative
disease [1], in which progressive symptoms of tremor, stiffness, slowed movement and
imbalance affect functional independence and quality of life for millions of people around
the world. The average time to diagnosis with 90% accuracy is 2.9 years [2], usually after
the onset of motor deficits, though the condition has a much longer prodromal phase lasting
up to decades. In some cases, this delay in final diagnosis leads to sub-optimal therapies
for those who suffer from it. Moreover, when new neuroprotective therapies are ready [3],
such prolonged delays in treatment lead to irreversible striatopallidal injury damage that
could have been prevented.

In the last decade, a number of studies have proposed using recordings of sustained
phonation as a tool to automatically detect PD using models obtained by means of signal
processing and machine learning techniques [4]. The use of voice as a biomarker is moti-
vated by evidence of the impact of PD on voice and speech [5], even in early stages [6–8].
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As a voice signal, the advantages of sustained phonations is that they provide information
about tremor and rigidity in the respiratory and glottal structures and the subjects are not
required to read or memorize a sentence. Furthermore, as the detection models based on
phonatory features do not rely on articulatory-specific information, these can be sometimes
considered multilingual or are easily adapted to be employed in populations with different
mother tongues. However, sustained phonation signals are less complex than those from
connected speech, which require the precise coordination of multiple articulators while
also conveying phonatory information. This makes connected speech more suitable in the
analysis of kinetic aspects.

Although the interest in the development of diagnostic tools employing Persons with
Parkinson’s Disease (PwPD)’ phonation is increasing [4], there is not a clear consensus
about the validity of the methodologies proposed in the literature, as different data sets
and validation procedures vary between studies. Certain experiments have suggested that
machine learning and signal processing can automatically distinguish between PwPD and
controls with significant confidence. However, some of these papers contain methodological
issues that are known and understood in the machine learning community. For example,
employing separate corpora for each class [9,10] may train classifiers to detect PD via
meta-characteristics such as environmental noise, the sampling frequency, or the recording
technology of each corpus.

Another common problem identified in the literature is that some studies employ
data sets in which the average age difference of speakers with and without PD exceeds
5 years [10–15]. Generally, these studies report high recall in their trials of automatic PD
detection. They have not considered that since age influences speech; their classifiers
may be detecting characteristics related to age difference between groups in lieu of PD
patterns. This could lead to overoptimistic results as the influence of age in speech has
been shown to help differentiate between classes [16]. However, details of the examined
class demographics and speaker statistics (e.g., age, sex, and stage of the disease, at the
very least), are not always regularly reported, potentially impacting conclusions.

Some articles [17] claim that using sustained vowels leads to better results than other
speaking tasks in detecting differences between speakers with and without PD. Using
sustained vowels, word utterances, and short sentence readings, this study measures
amplitude/frequency perturbation qualities, such as jitter, shimmer, Harmonic to Noise
Ratio (HNR), Noise to Harmonics Ratio (NHR) and other pitch statistics. However, one
may consider it unorthodox to use these coefficients on non-sustained vowels because
quantifying the quality of the phonation is their principal use [18]. Connected speech
includes prosody and articulation, which both cause major modulations in amplitude and
frequency. As such, using amplitude and frequency perturbation measures such as jitter
and shimmer on voiceless consonants, for instance, might lead to incorrect conclusions.
There is no inherent meaning of these features when measured in voiceless consonants.

When considering sustained vowels, some corpora are distributed with the onset and
offset of the phonation, while others have trimmed each recording to contain only the
middle, most stable, segment. This is usually more adequate when employing acoustic
analysis or features proposed to be used in the stable part of the phonation, such as
complexity or frequency and amplitude perturbation features [18]. Therefore, some studies
take corpora distributed with the full recording and shorten them to as short as one
second [14,19,20]. Nevertheless, the onset and offset contain articulatory information and
might add extra differentiation between classes, especially when employing certain features
such as Mel-Frequency Cepstral Coefficients (MFCC) to characterize them. However, to our
knowledge, there are no studies analyzing the influence of these segments on accuracy.

Moreover, many studies employ large feature vectors obtained with feature extraction
libraries to characterize the phonation recordings without reasoning or selecting the most
appropriate features for PD detection. In this respect, a recent letter [21] to the editors of a
publication reveals that the use of high-dimensional feature vectors with small data sets
(100 times smaller than the feature vector dimension, in that case) leads to overoptimistic
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classification accuracy and non-reproducible results. The reasoning behind this idea is
that the larger the feature vector, the more chances to find one type of feature that might
randomly correlate with the classes to be classified without any scientific grounding.

The validation strategies found in studies employing phonatory aspects to detect PD
are also diverse. The most common is cross-validation, in which the employed corpus
is divided into multiple folds that are used to sequentially train and test several models,
yielding a weighted average accuracy from the individual models. It is uncommon to
find studies which employ different corpora in model training and testing (cross-corpora
validation) [22]. In some cases, the authors do not use cross-validation, and divide the
corpus into training and testing subsets randomly [14,22–26]. This increases the uncertainty
of the results when using small corpora (usually no more than 3 h of recordings), as the
testing partition is not large enough to be considered representative.

Moreover, some studies where there are more than one recording per participant
ensure that recordings from a speaker used to train a model are not considered to test or
validate the same model (subject-wise split) [19,25,27], whereas other studies randomly
select the recordings employed in the training and testing processes or intentionally use
recordings from the same speakers in training and testing subsets (record-wise split) [11,14].
The latter studies do not consider that when both training and testing processes contain
speaker identity information encoded in sustained vowels, their classifiers may be detecting
characteristics of specific speakers in addition to PD patterns. This could produce overopti-
mistic results, as coefficients like MFCCs and Perceptual Linear Prediction (PLP), employed
as the input of the classifier, have notably succeeded in speaker recognition tasks [28,29]
and could lead to classifier bias. Motivated by this discrepancy, several studies [13,16,30]
have reported a marked difference in accuracy between randomly populating folds in
cross-validation with (1) single recordings at a time (record-wise); and (2) all recordings
from a single participant (subject-wise), with record-wise experiments leading to artificially
higher accuracy. This observation also arises in other speech-based medical evaluation
models, such as one which estimates depression level from audio recordings [31].

Lastly, each study tends to employ their own corpus, due to the scarcity of publicly
available data sets to compare results across different methodologies. As a result of the
differences in data collection, populations, and methodologies, the literature provides a
variety of results that sometimes lead to contradictory or controversial conclusions regard-
ing which acoustic features better characterize the presence of PD. This methodological
variability and the inclusion of methodological issues makes it hard to distinguish between
valuable and minor/misleading contributions. For instance, it is not possible to know if
the high detection accuracy reported in some studies is caused by the acoustic patterns of
PD in the voice of the participants or because the average age difference between PwPD
and controls was higher than ten years. To our knowledge, no article has analyzed and
compared in detail the influence of the different methodological issues in the results of the
automatic detection of PD employing different corpora in a single work.

With these premises, the purposes of this study are:

• To analyze the influence of certain factors, such as age difference between classes, speaker
identity in training/testing folds, or feature vector length that might bias results;

• To study how different validation and classification methodologies influence the PD
detection results;

• To study the differences between corpora that might lead to differences in results
and conclusions.

A graphical summary of the purposes of this work is included in Figure 1.
To achieve these objectives, we performed PD detection employing sustained vowels

as acoustic material obtained from three different corpora, of which two are publicly
available. We calculated the most commonly used features in these types of studies
found in literature [4], also employing publicly available feature extraction and machine
learning code for reproducibility. We repeated the experiments several times, changing the
methodology in order to evaluate how the identified methodological issues can influence
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the results. We started from a baseline experiment and compared its results with each
methodological variation; i.e., including the same speaker in training and testing, using
different average age differences between speakers with and without PD, or using different
parts of the acoustic signal, among other experiments.

The goal of this study is not to identify or point out which studies have methodological
issues. Instead, we aim to provide a comprehensive analysis of how the outlined issues may
be affecting results in order to avoid repeating them in future work. Some seminal studies
can be of capital importance because these paved the path for the automatic detection of PD
through speech and yet have methodological issues that need to be addressed for iterative
scientific advancement.

This document is organized as follows: Section 2 describes the three corpora used in
this study. Section 3 provides an overview of our experimental processes. This includes
how we calculate our coefficients and employ dimensionality reduction (Section 3.2),
construct our classification architecture (Section 3.3), and vary our methodological strategy
between several different scenarios (Section 3.4). Section 4 contains tables and graphics
which demonstrate the impact of each methodological difference on classification accuracy.
Finally, Section 5 includes the conclusions of the study.

Figure 1. This work examines the influence of several experimental factors on PD detection accuracy.
We hypothesize that demographic differences between subjects, such as age and severity of the
disease, and methodological differences such as recording conditions, cross-validation folds creation,
audio pre/post-processing, and feature vector dimensionality, are factors influencing results.

2. Corpora

In this study, we calculated different types of acoustic features for three separate corpora:
Neurovoz [32], Italian Parkinson’s Voice and Speech (ItalianPVS) [33], and mPower [34].
These corpora vary in demographics, collection procedures, and sizes, and are described in
the following subsections.

2.1. Neurovoz

The Neurovoz data set [32] contains audio files from 47 Healthy Controls (HC) and
44 PwPD. All speakers used in this corpus are native speakers of the Castilian Spanish.
The samples were retrieved by the Bioengineering and Optoelectronics Group at Universi-
dad Politecnica de Madrid and by the Otorhinolaryngology and Neurology Departments



Appl. Sci. 2022, 12, 991 5 of 32

of the Gregorio Marañón hospital in Madrid, Spain. The Ethics Committee at the hospi-
tal approved the recruitment and the recording of participants. All participants signed
informed consent to be part of the study. Most of the participants have two separate audio
files for five sustained vowel sounds: /a:/, /e:/, /i:/, /o:/, /u:/, although some of the partic-
ipants only recorded one phonation and some other files were discarded due to recording
problems, as detailed in Table 1. Nevertheless, in all cases, every participant has at least
one phonation. The voice signals were recorded under controlled conditions at 44.1 kHz
employing a unidirectional headset microphone. Table 2 shows the age distributions of
these participants. More information about this corpus, including the severity of PD for the
participants, can be found in [32,35].

Table 1. Number of sustained vowel recordings per class and corpus for Neurovoz and ItalianPVS.

Neurovoz ItalianPVS

Vowel PD HC PD HC

/a:/1 44 47 28 22
/a:/2 43 44 27 22

/e:/1 44 20 28 22
/e:/2 37 45 27 22

/i:/1 44 47 28 22
/i:/2 43 38 27 22

/o:/1 36 47 28 22
/o:/2 43 44 27 22

/u:/1 41 47 28 22
/u:/2 5 18 27 22

Table 2. Age demographics from the Neurovoz corpus, organized by gender and class. Each category
has similar numbers of participants, age means, standard deviations and ranges.

Female Male Total

PD HC PD HC PD HC

Subjects 21 23 23 24 44 47

Age, average
(std) 70 (8.6) 69.5 (7.4) 67.0 (10.2) 61.0 (7.5) 68.4 (9.5) 65.1 (8.5)

Age range 56–86 58–86 41–80 53–77 41–86 53–86

2.2. ItalianPVS

Each speaker in the publicly available ItalianPVS corpus [33] (https://ieee-dataport.
org/open-access/italian-parkinsons-voice-and-speech, last accessed on 9 January 2022)
recorded five sustained vowel sounds, as in Neurovoz, with two iterations each. This study
considers two subsets from this group—the Healthy Elderly group (HC) with 22 partici-
pants, and the Parkinson’s Disease group (PD) with 28 participants. All speakers included
in this corpus were recorded in Bari (Puglia region), Italy. None of the subjects reported
any language or speech disorders. Each recording session occurred under a controlled
environment, considering factors including room temperature, microphone distance, time
of day and having a conversation with the subject to warm up their vocal muscles. The sam-
pling rate was 16 kHz. Table 1 contains the number of recorded phonations per vowel,
and Table 3 includes the corpus demographic information. More information can be found
in [33], although the severity of the disease for participants is not reported.

https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech
https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech
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Table 3. Age demographics from the ItalianPVS corpus, organized by gender and class.

Female Male Total

PD HC PD HC PD HC

Subjects 9 12 19 10 28 22

Age, average
(std) 64.3 (12.2) 65.3 (4.1) 68.6 (6.4) 69.3 (5.6) 67.2 (8.7) 67.1 (5.2)

Age range 40–80 60–72 50–77 60–77 40–80 60–77

2.3. mPower

Sponsored by Sage Bionetworks, the mPower corpus is unique because it uses crowd-
sourced audio samples—sustained vowel /A:/—from a mobile application. This corpus
also includes other non-speech signals gathered such as finger-tapping dexterity and
speed; short-term spatial memory; and walking gait/balance captured with the accelerom-
eter of the cell phone. This is the largest corpus of its kind to date which is publicly
available, with 5876 unique participants contributing a total of 65,022 recordings. Pre-
vious studies have used the mPower corpus not only to create and test PD detection
models [12–14,25,27,30,36,37], but also to design real-time PD diagnosis tools and applica-
tions [26], classify voice impairment level [38], measure longitudinal reliability and stability
of these metrics [20], quantify and improve diagnosis techniques on signals recorded in
noisy environments [39,40], and even screen for symptoms of depression reported by
PwPD [41].

Despite mPower’s potential in the field of non-invasive PD detection, there are a few
challenges to address when using this corpora. First, collecting data through a mobile
application leads to high variability of recording conditions and microphones. Having
an iPhone was a requirement for participation, but there were no restrictions on different
models. Moreover, subjects were not monitored to ensure the quality in their recordings, so
there are occasionally disingenuous or unsuccessful attempts at following the tasks. An-
other issue lies in the reliability of the participants’ self-reported diagnosis, and whether or
not they were examined by a medical professional. More subtly, the mPower corpora must
be studied with caution, as it contains age and gender imbalances between classes. Addi-
tionally, other demographic aspects such as brain surgery or smoking must be considered
since those can affect the quality of voice and could bias the results.

In this study, we created a subset S (age demographics described in Table 4), selecting
recordings based on the following inclusion criteria:

• The speaker reported having a professional diagnosis;
• The speaker participated in the voice recording portion of the survey;
• The speaker reported never having brain surgery/deep brain stimulation;
• The speaker did not report a smoking history within the past ten years or for a total of

over twenty years.

We discarded participants that had brain surgery or deep brain stimulation as the
influence of surgery therapies on the voice will need a separate analysis and might be
different from typical PD phonatory patterns [42]. In the same manner, participants with a
recent or long history of smoking were also discarded, as those participants could have
voice characteristics different to the rest of participants that might also require a deeper
study [43], which is out of the scope of this paper.
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Table 4. Age demographics of preliminary subset S. Only participants fulfilling the inclusion criteria
are included.

Female Male Total

PD HC PD HC PD HC

Subjects 484 603 864 2740 1348 3343

Age, average
(std) 60.2 (10.1) 32.3 (15.4) 60.1 (10.6) 33.7 (14.0) 60.1 (10.4) 33.5 (14.3)

Age range 28–86 18–86 18–90 18–84 18–90 18–86

Then, we discarded all participants below the age of 30 to create our reference subset
of usable participants SR (Table 5). These participants were discarded as PwPD below
30 years old are atypical, might require a special analysis and, at the same time, most
studies found on the literature do not consider them [20,25,30,37].

Table 5. Age demographics of the subset of users (SR) who fulfilled the inclusion criteria and were
older than 30 years; this subset was used in our experiments.

Female Male Total

PD HC PD HC PD HC

Subjects 260 132 454 805 714 937

Age, average
(std) 60.9 (9.1) 46.7 (12.3) 60.9 (10.2) 43.3 (11.8) 60.9 (9.8) 43.8 (11.9)

Age range 34–86 30–86 32–85 30–81 32–86 30–86

Within SR, the age distribution curves between PwPD and HC subjects are starkly
different in both mean and shape, as shown in Figure 2. There is an exponential decline
in HC subjects as age increases, as younger subjects tend to be more engaged in the
use of smartphone-related technologies than older people [44]. In contrast, the ages of
subjects with PD form a normal distribution, which may be explained by the subject
recruitment process. From the Sage BioNetworks portal FAQ (https://www.synapse.
org/#!Synapse:syn4993293/wiki/394516, last accessed on 9 January 2022), their work is
“highly collaborative, and conducted with a diverse set of external partners including
research organizations, industry, software companies, clinicians, patients, citizen activist
groups, and scientific publishers”. This suggests that the authors actively sought out
and encouraged PwPD to participate, whereas older people without the disease had less
incentive or ability to download the application and record samples.

Figure 2. Age distributions of mPower participants with (a) and without (b) PD in subset SR.

To ameliorate this issue, we randomly selected a certain number of participants from
several age categories of SR to create six subsets with age demographics, described in
Table 6. This gave us similarly shaped age and gender distributions for both classes,
as shown in Figure 3. We created six subsets (SR0–5) instead of only one to provide average

https://www.synapse.org/#!Synapse:syn4993293/wiki/394516
https://www.synapse.org/#!Synapse:syn4993293/wiki/394516
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results and to make sure that the results from experiments that we carry out are repre-
sentative. The number of participants to include from each age bin was decided using
a process considering the minimum number of each combination of age group (bins of
5 years), gender, and class. For example, the male control group between the ages 40–49
has 208 members, while the corresponding male group with PD has 52. Therefore, all
52 of the male PwPD group were included in the pool of selected participants, and then
52 others were randomly pooled from the healthy control group. This method allowed
us to keep as many participants in the subset as possible while maintaining a balanced
distribution. After this selection, the total number of participants was 670 (N), with each
class containing exactly 335 subjects. The authors of the corpus implemented no limit to
how many audio files each user recorded, and some subjects logged over 100 recordings.
We decided to limit the number of recordings used in this experiment to ten per participant
in order to eliminate possible imbalance in demographic representation and to simplify our
experiments. The exact subsets of the mPower corpora we created are published alongside
this article to allow reproducibility (https://github.com/aozbolt/thingsToConsider, last
accessed on 9 January 2022). Lastly, we created four additional subsets SA4–SA16, as de-
scribed in Section 3.4.3, in which the age difference between classes ranged between 4 and
16 years to evaluate the influence of age difference in automatic detection accuracy. Figure 4
contains a flowchart representing the subset selection process and Table 7 summarizes all
of the employed subsets.

Table 6. Age demographics of subset SR0. Users were randomly selected from twelve age bins to
create matching distributions of age, gender, and PD diagnosis. Five similar subsets (SR1–5) were
also created.

Female Male Total

PD HC PD HC PD HC

# of subjects 78 78 257 257 335 335

Age, average
(std) 54.7 (10.3) 54.2 (10.2) 56.6 (10.2) 56.3 (10.6) 56.1 (10.3) 55.8 (10.5)

Age range 34–86 30–86 32–83 30–81 32–86 30–86

Table 7. List of subsets created from mPower corpus as described in Figure 4. MPD and FPD
indicate male and female participants with PD, respectively. MC and FC indicate male and female
controls, respectively.

Subset Name Description

S

PwPD have professional diagnosis, participated in the voice recording portion
of the survey, never had brain surgery/deep brain stimulation, and have not
smoked within the past ten years or for a total of over twenty years.
MPD = 864, FPD = 484. MC = 2740, FC = 603

SR
Same as S, except users under 30 are discarded. MPD = 454, FPD = 260.
MC = 805, and FC = 132.

SR0−5

Users selected from SR to create six balanced distributions in age, sex,
and condition, as seen in Figure 3. In each of the 6, MPD = MC = 257, and
FPD = FC = 78.

SA4−16

Users from SR0, with some replaced by members of SR to create four
imbalanced distributions in age as described in Section 3.4.3. There still
exists a balance in sex and condition.

https://github.com/aozbolt/thingsToConsider
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Figure 3. Age distribution of mPower subjects after final filtering SR0. The counts for PwPD versus
HC are identical, so their numbers are combined into a single graph.

Figure 4. Overview of the different subsets employed in this study created using participants
from mPower.

2.4. Perceptual Evaluation of Corpora

Current diagnostic methods heavily involve the perceptual evaluation of PwPD’ symp-
toms, of which voice quality is one possible measure of the disease’s progression [5]. This
observation is typically conducted using a rating score which measures several vocal char-
acteristics related to degenerative dysphonia and dysarthria. In this study, we include
analyses of each data set according to the GRBAS scale [45] in order to determine perceptual
differences between the data sets that could influence the classification results. This scale
measures five categories of voice quality, including 0, which refers to a healthy condition,
1 to light disease, 2 to moderate impairment and 3 to grave impairment. The five quali-
ties are Grade, Roughness, Breathiness, Aesthenia, and Strain. We observed the levels of
dysphonia relative to each corpus, allowing us to verify whether or not differences in the
results were caused by differences in overall participants’ voice quality. The entire Neu-
rovoz and ItalianPVS corpora were assessed (GRBAS assessment per speaker in Neurovoz
and ItalianPVS corpora are available in Appendix A (Table A1)), while only 100 randomly
selected recordings from mPower were used due to its size. The evaluation was performed
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blindly (without knowing the speaker’s class) by a trained otolaryngologist who employed
5 sustained vowels and between 10 and 20 s of speech for each speaker in Neurovoz and
ItalianPVS. In the case of mPower, only a sustained vowel was available. Figure 5 shows
the disparity between the voice assessments of participants with and without PD. For all
characteristics of each corpus, PwPD have a higher average rating than HC. Participants
from both classes of ItalianPVS, on average, have higher scores than the other two corpora.
There was much less noticeable difference between classes in the mPower audio recordings,
which may be influenced by several factors, such as the fact that no connected speech was
available for the evaluation.

Figure 5. Average GRBAS ratings for each corpus. In general, the scores of both classes of ItalianPVS
(b) are larger than the other two corpora. The disparity between participants with (orange) and
without PD (green) in Neurovoz (a) and ItalianPVS (b) is much larger than that of mPower (c).

3. Methods

The goal of this study was not to design a machine learning pipeline to obtain the
highest accuracy for the automatic detection of PD using sustained vowels. Rather, our
aim was to isolate several factors and conduct experiments to see whether or not they lead
to overoptimistic results, as there is no common agreement about the methodology to be
followed to validate and evaluate results in the studies found in the literature [4]. First,
we conducted baseline experiments to use as a reference to be compared with different
methodologies found in literature. In that baseline, we employed different classifiers
and dimensionality reduction techniques applying a grid search to obtain the highest PD
detection accuracy possible for each data set. Then, after selecting the scheme that provided
the best results, we modified these different factors of the experiments to observe their
impact in the results. For these purposes, we analyzed:

• The influence of using record-wise experiments compared to subject-wise experiments;
• The influence of using age differences of varying magnitude between the classes (HC

and PD) compared to same-age distributions employed in the baseline;
• The influence of vowel onset/offset to evaluate if those segments provide any extra

information in studies employing phonatory analysis of sustained vowels;
• The influence of the training corpora. We performed cross-corpora experiments to

analyze if the obtained models are able to be generalized;
• The influence of the feature vector length;
• The influence of using development folds in cross-validation.

Additionally, we evaluated the relative importance of the employed features for each
corpus. In later subsections, we describe the different scenarios that were considered in
our experiments.

3.1. General Experimental Pipeline

In designing the experiments, we used different feature extraction, dimensional-
ity reduction, and classification techniques to explore the differences between standard
techniques commonly used in the field. Figure 6 depicts the process flow of our tri-
als. All of the recordings of sustained vowels present in the Neurovoz and Italian-
PVS corpora were employed in the experiments, whereas not all the mPower record-
ings are used, as we employ different subsets depending on the experiment (as indi-
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cated in Section 2.3). Features were extracted using two toolboxes: Data Analytics Re-
search and Technology in Healthcare group—Voice Analysis Toolbox (DARTH-VAT) [46]
(https://www.darth-group.com/software, last accessed on 9 January 2022) and Automatic
Voice Condition Analysis (AVCA) [47] (https://github.com/jorgomezga/AVCA-ByO, last
accessed on 9 January 2022). These two toolboxes provide typical quality of voice features,
some of them optimized for PD detection, as detailed in Section 3.2 and commonly used in
multiple studies to automatically detect or assess quality of voice or to evaluate PD [48–52].
Along with using just the raw coefficients, we performed dimensionality reduction tech-
niques (Principal Component Analysis (PCA) and ANOVA F-Value Feature Selection (FS))
to eliminate possible redundancy or irrelevant information. Each corpus was split into
several folds balanced in age, sex, and condition for cross-validation. Cross-validation
strategy is another key design factor when investigating the reliability of previously pub-
lished results. In our baseline, we ensured that folds were separated subject-wise, while
in other experiments, we divided them record-wise. Since ItalianPVS has relatively few
participants, this corpus was divided into eight individual folds, in contrast with the ten we
used in Neurovoz and mPower. The last step is the classifier, for which we used Support
Vector Machine (SVM) and Random Forest Classifier (RFC). For each of these, we created
a hyperparameter grid search over which each permutation was trained and tested to
find the optimal combination. We also compared the baseline results with results from
additional trials in which we used one fold as a development to select the best model in the
grid-search results, instead of directly using the testing folds.

Figure 6. Diagram depicting the flow of data in the experiments. To test the influence of speaker
identity across folds, we created folds either by ensuring each participant’s audios belonged to a
single fold (subject-wise), or to many folds (record-wise).

3.2. Feature Extraction Stage

The two libraries employed in this study, AVCA and DARTH-VAT, provide several
unique features; and for those that are common in both libraries, the authors employ
different algorithms or methodologies. These libraries include the source code of most
of the algorithms or the link to the auxiliary toolboxes needed to calculate those not
implemented directly by the authors. In this study, the libraries generated a single feature
vector per voice recording. These vectors included overall features that, in most of the
cases, were calculated as the mean and standard deviation of the base features obtained
in a per-frame basis. All the coefficients were calculated with the standard configuration
provided by the authors of both libraries.

3.2.1. AVCA Feature Extraction Library

The default configuration of the AVCA feature extraction library provides 261 coef-
ficients representing the statistics of several qualities of voice feature families, including
amplitude and frequency perturbation and fluctuation, spectral-cepstral analysis, complex-
ity analysis, and modulation spectra features. Many of the algorithms of this toolbox have
been employed in automatic detection and assessment of pathological voices, including
some studies related to PD [18,47,53]. Table 8 includes all the base family features and
coefficients calculated with this library. The resulting 261-feature vector obtained per

https://www.darth-group.com/software
https://github.com/jorgomezga/AVCA-ByO
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recording contains mean and standard deviation of the features when these are calculated
in a per-frame basis (as is the case of MFCC or PLP coefficients, for instance).

Table 8. AVCA library base features.

Feature Family Coefficients

Amplitude and frequency
perturbation and fluctuation

Absolute and relative jitter and shimmer, RAP, PPQ5, APQ3,
APQ5, HNR, NHR, CHNR, NNE, GNE, FTRI and ATRI

Spectral-Cepstral CPP, LHr, MFCC (12 coefficients + delta + delta delta) and PLP
(12 coefficients + delta + delta delta)

Complexity D2, LLE, ApEn, SampEn, GSampEn, FuzzyEn, mSampEn, PE,
RPDE, LZC and DFA

Modulation Spectra MSH, MSW, CIL, RALA, LMR, MSP, centroids and
dynamic margin.

3.2.2. DARTH-VAT Feature Extraction Library

Many of the algorithms in DARTH-VAT have been employed in several studies re-
lated to the automatic detection and assessment of PD [15,46,48,49,54,55]. This toolbox
contains different methods to calculate the fundamental frequency of the voice, employed
to estimate many features such as those related to jitter and shimmer. From all the methods,
the algorithm described in [56] was used in this study. The dimensionality of the final
feature vector obtained with the DARTH-VAT library is 339.

Table 9 includes all the base family features and coefficients in DARTH-VAT. As in the
AVCA-based feature vectors, the resulting 339-dimension DARTH-VAT vector obtained
per each recording contains the mean and standard deviation of the features when these
are calculated in a per-frame basis.

Table 9. DARTH-VAT library base features.

Feature Family Coefficients

Amplitude and frequency
perturbation and fluctuation

Absolute and relative jitter and shimmer, APQ3, APQ5, APQ11,
FPQ3, FPQ5, FPQ11, VFER, HNR, NHR, GQ andGNE

Spectral-Cepstral MFCC (12 coefficients + delta + delta delta)

Complexity ApEn, PPE, DFA, RPDE

Series decomposition EMD-ER, EMD and wavelet features

3.2.3. Dimensionality Reduction

In most of our experiments, especially those employing the Neurovoz and ItalianPVS
corpora, the dimensionality of the feature vectors was larger than the number of recordings.
In order to remove redundant or irrelevant information, we employed two dimensionality
reduction techniques, similarly to other previous studies [12,27,37]. The first technique we
utilized to reduce dimensionality was PCA from the Python scikit-learn module [57]. This
is an invertible linear transformation which uses singular value decomposition to project a
vector into a lower dimensional space. We used PCA to reduce the dimensionality of the
feature vectors to 10, 50, and 100 coefficients. We also used feature selection algorithms
to determine which features contain the most important information pertaining to PD
detection. For this, we employed the ANOVA F-Value classifier from the scikit-learn
SelectKBest module [57]. Using this method, we selected between 10, 30, 50, and 70 features.

In all the cases, the dimensionality reduction matrix or model was trained on the
training folds and applied to their respective testing folds.
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3.3. Classification

After the feature extraction (and dimensionality reduction, in some experiments),
we trained two types of classifiers, both from the scikit-learn python module: RFC and
SVM [57]. We also incorporated a hyperparameter grid search as described in the next sub-
sections to provide the highest possible accuracy with these models. Although there
are several examples of studies employing Deep Neural Networks (DNN) to assess
PD [14,19,25–27,36,37,58], most of the works found in the literature employ approaches
with simpler models, as the corpora are usually not large enough to train DNN.

3.3.1. Random Forest Classifier

A RFC is an ensemble technique that combines multiple member estimators (decision
trees) to reach a final decision for a certain input vector. Each tree is trained with random
partitions from the training data. During the testing phase, each tree provides its own
score, and then the average score is taken as the collective forest decision. Several studies
report high classification accuracy employing RFCs for PD assessment in similar scenar-
ios [12,19,25,27,30,36,37,59]. Table 10 lists the hyperparameter ranges we used in the grid
search:

Table 10. RFC classifier hyperparameters.

Parameter Values

n_estimators 20–500, step 20

max_features ‘auto’, ‘sqrt’

max_depth 10–100, step 10; None

min_samples_split 2, 5, 10

min_samples_leaf 1, 2, 4

bootstrap True, False

criterion ‘gini’, ‘entropy’

3.3.2. Support Vector Machine

We also employed SVMs, given that this type of classifier is very commonly used
in PD detection studies. This technique implements a kernel-based transformation to a
latent high-dimensional space in order to separate homogeneous data points into separate
regions. Several studies report high classification accuracy employing SVM for PD detec-
tion [12,27,30,36,59]. In the experiments, we employed a linear kernel with a grid search
for the hyperparameter ‘C’ (C = 2x, x ∈ [−11 : 2 : 13]).

3.4. Description of Experiments
3.4.1. Baseline: Comparison of Feature Extraction and Classification Methods

We conducted several baseline experiments to be compared with different methodolo-
gies (or potential methodological issues.) In this stage, the feature extraction toolboxes and
classification methods described earlier were applied to the three corpora. In the baseline
experiments, we employed, as in the rest of the experiments, a k-fold cross-validation
in which speakers’ audios belonged exclusively to either the testing or training folds for
each cross-validation iteration (speaker-wise cross-validation). Additionally, the folds were
purposefully created with a balance in class, gender, and mean/standard deviation of age
for each corpus. As explained in Section 3, the purpose of performing these baseline tests is
not to suggest “the best” classification method. Our experiments are designed to evaluate
the impact of certain practices which we find to cause inaccurate reporting of results. To this
end, the baseline experiments serve as a basis for comparison in each of these specific fac-
tors. We trained the classifiers with the training folds, iterating through each combination
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of hyperparameters. The greatest weighted average of test fold accuracy was used to select
the best result in the grid search. Only training and testing folds were considered.

3.4.2. Influence of Speaker’s Identity

We hypothesize that record-wise cross-validation might yield overoptimistic PD de-
tection results because the classifiers could be recognizing speaker-specific patterns from
the training data instead of detecting patterns associated with PD. In order to analyze if
record-wise fold creation could bias the classification results, we carried out experiments in
which we ensured that speakers had audio recordings in both training and testing folds
whenever possible. For these trials, speakers were considered one by one: each of their
audio recordings were placed into as many separate folds as allowed by the number of
recordings per participant. In the case of Neurovoz and ItalianPVS, each participant had
recordings in 2 folds, and in the case of mPower, each participant was present in up to
10 folds, depending on the participant. Since only one fold is considered as testing data in
the k-fold cross-validation strategy, and there are recordings from a certain participant in at
least two folds when participants have at least two recordings, most participants will have
recordings in the training and testing data. Only training and testing folds were considered.

3.4.3. Influence of Age Difference between Classes

As mentioned in the description of the mPower corpus (Section 2.3), we hypothesize
that age-related differences between the two classes could bias the classifiers to provide
overoptimistic results. In fact, many studies employ speech to train automatic age classi-
fiers [60,61], suggesting that speech allows the differentiation of speaker groups depending
on their age. In this respect, some previous studies employing the mPower corpus create
equal age distributions by selecting only some recordings in their experiments [25,30,37,38],
whereas other studies use recordings at random from mPower or do not attempt to create
equal age distributions [10,12,13,27] or use every single recording on the data set [14].
The former studies rarely report accuracy over 72%, whereas the latter provide values over
90% in most cases.

In this scenario, we employed the mPower corpus, which has enough recordings and
an age distribution in the PwPD and HC classes that allowed us to create four separate
subsets with increasing mean age difference. These subsets, SA4, SA8, SA12, and SA16, are
described in Table 11. Each of the four new subsets increased in mean age separation
between the HC and PwPD classes by intervals of approximately four years. These were
created by removing the youngest and oldest members of the PwPD and HC classes,
respectively, from SR0, and replacing the former with older and the latter with younger
remaining members from the subset SR. By adding participants from the two age extremes
and removing from the middle, we were able to most effectively shift the distributions
away from each other, thereby eliminating overlap between the two curves. Results using
these groups are compared to that of a subset with a negligible age difference: SR0 (Table 6).

It would also be interesting to perform trials where the HC class has a greater mean
age than the PwPD class. We hypothesize that since the voices of older HC have age-related
traits and the voices of younger PwPD still have PD-related traits, a potential similarity
between these traits would make it more difficult to classify participants on the basis of PD
alone. Unfortunately, the previously described subset-creation method does not permit a
mean age gap greater than 2.64 years in the other direction in mPower. Therefore, there
could not possibly be enough evidence to draw any conclusions on our hypothesis. Given
that PwPD tend to be older, and controls without PD can have any age, this may explain
why each age-imbalanced corpus we examined has younger controls than PwPD (e.g.,
Figure 2).

In addition to the four trials with consistent steps of difference in mean age, we ran
one extra trial including every member of subset S (mean age difference of 26.6 years)
described in Table 5. Note that the classes in the last two subsets do not have similar age
distributions in the manner described in Section 2.3.
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Table 11. Class-specific age means and standard deviations for four imbalanced subsets SA[4,8,12,16].
These are used in the experiments described in Section 3.4.3.

Age, Average (std)

Subset PD HC

SA4 58.0 (10.5) 53.9 (10.8)
SA8 59.8 (10.4) 51.8 (11.1)
SA12 61.8 (10.0) 49.5 (11.3)
SA16 63.4 (9.30) 47.4 (11.3)

3.4.4. Influence of Feature Randomness

A recently published work [62] uses vocal acoustic features similar to the ones in-
cluded in this study to detect essential tremor (ET), a neurological disorder which causes
involuntary, rhythmic shaking. The authors reported an area under the ROC curve (AUC)
of 0.97. Subsequently, in a letter to the editor [21], it was pointed out that the number
of coefficients analyzed (6139) is much larger than the sample size of the corpus being
analyzed (58). The authors of the letter repeated the classification experiment but employed
random feature vectors in which each coefficient of the vectors was replaced with a ran-
dom number between zero and one, obtaining an AUC = 0.90. This suggests that having
many more coefficients (on the order of 100 times) than participants can provide high (and
artificial) cross-validation results, even when there is no relevant information in the feature
vectors. Specifically, increasing the number of features above the number of observations
(recordings, in our case) increases the probability that one of the coefficients could be highly
correlated with the class labels just by chance.

In order to evaluate the influence of the feature vector length in our baseline experi-
ments, we repeated the experiments and replaced every coefficient vector calculated using
DARTH-VAT with those of random numbers ranging between zero to one. We selected
the DARTH-VAT dimension since that corresponds to the longest feature vector length in
our experiments. The labels and folds were kept as in the baseline experiments, and we
hypothesized that classification accuracy would increase in a fashion inversely propor-
tional to the size of each corpus. Then, a grid search was performed over the same range of
hyperparameters used in the baseline.

3.4.5. Mitigation of Random Over-Fitting Using Development Folds

The previously described influence of the feature vector length in the results can be
mitigated by including a single development fold along with training and testing folds
when cross-validating. In smaller corpora (usually less than 100 recordings), it is a common
practice to employ only training and testing folds for cross-validation, reporting the best
accuracy of the trained models over the testing folds after a grid search. This could be
considered unorthodox or a methodological issue as all the testing results are seen when
selecting the maximum accuracy, which could lead to unrepresentative and overoptimistic
results, as this does not represent a real practice (testing data should not be used with
all the possible models to select the optimal results, only on a model previously selected
following a certain criteria). Another option is to employ the training data to validate
trained models, and use the model with the highest training accuracy to classify the testing
folds, reporting only those results, independently if other models could lead to higher
testing accuracy. This last option is not always possible, as employing the training data to
evaluate the performance of the trained models can lead to an accuracy of 100% in many
grid-search models. As such, it is difficult to select an optimal set-up when training data is
used to validate. A similar result occurs with leave-one-out cross-validation strategies.

Using a single fold for validation allows us to select the best model separately from
evaluating the testing data. We hypothesize that including a development stage to select
the best hyper-parameters via grid searching, followed by evaluating that model with
the testing fold, would reduce the chances of reporting overoptimistic results. At the
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same time, this might decrease performance due to the reduction of usable training data,
which is already scarce in experiments with small corpora. To test this theory, we trained
random forest models using the same grid-search technique from the baseline optimization
experiments, except with one less training fold (which was applied as development data
instead). The grid-search processes determined the best hyper-parameter combinations by
searching for the trained models providing the best development accuracies. Then, those
models were evaluated with testing data to determine the blind classification accuracy.

3.4.6. Importance of Vowel Onset/Offset

One key difference between the corpora reported in literature is the presence of
participants’ vowel onset and offset in each recording. Some corpora are distributed
with onset and offset segments and some others have been removed to provide a stable
phonation more suitable for some types of acoustic features and algorithms, such as those
related to shimmer and jitter. For instance, the subset of Neurovoz we used already had the
beginning and ends of the recordings manually removed, and previous studies have used
that version of the data set [35]. On the other hand, the ItalianPVS corpus is distributed
with onset and offset segments. In order to compare the results of this study with other
possible results obtained with these two data sets, most of our experiments are carried
out using these corpora as they are distributed (clipped for Neurovoz and unclipped for
ItalianPVS), unless specified otherwise. However, in order to test the influence of onset and
offset segments on the results, the authors of Neurovoz provided us the unclipped version
of the recordings, and we created a new subset of ItalianPVS with the onset and offset of
the vowels removed. This new clipped version was generated by automatically finding
the maximum signal amplitude of the recording and removing all points between one end
and the first location where the absolute amplitude exceeds 10% of the maximum absolute
amplitude. Then, an additional 0.6 s from each end was clipped to ensure that the whole
onset and offset were removed. The resulting segments were visually inspected, searching
for any anomalies in order to ensure that onset and offset were properly removed and the
segmentation was manually corrected. Once we had an unclipped version of Neurovoz
and a clipped version of ItalianPVS, we repeated the experiments using only the classifier,
leading to better results in the baseline experiments.

3.4.7. Analysis of Generalization Properties: Cross-Corpora Experiments

In most studied literature, the authors evaluated their phonatory-based detectors in
a single corpus or in several corpora independently without studying the generalization
properties of the proposed approaches or the domain mismatch effects. Consequently,
we performed cross-corpora trials to evaluate the generalization properties of the trained
models. We trained new models (one per vowel) with the optimal hyperparameters from
the baseline trials with the Neurovoz corpus. Then, we evaluated them with the features
obtained with ItalianPVS. We repeated the same experiments but using ItalianPVS to
train the models and Neurovoz to evaluate them. Both DARTH-VAT and AVCA feature
extraction toolboxes were considered. Only Neurovoz and ItalianPVS were employed
for these trials since we assumed that the Spanish and Italian vowels are close enough
to assume phonetic equivalence (both languages share phonetic International Phonetic
Alphabet (IPA) representation for the employed vowels: /a:/, /e:/, /i:/, /o:/, /u:/). On the
contrary, mPower only contains one vowel (/A:/) that is not phonetically equivalent to the
Italian and Spanish realization of vowel /a:/. Therefore, this corpus was excluded from
this type of trial.

4. Results & Discussion

In this Section, we include and discuss the results obtained for each of the proposed
scenarios, i.e., baseline, influence of speaker’s identity, influence of age difference, in-
fluence of feature randomness, influence of onset/offset, and cross-corpora experiments.
The cross-validation results were obtained by pooling all the scores from the testing folds
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and calculating a single global accuracy. Most of these results are reported in terms of
classification accuracy (%) for the sake of simplicity, given that we report results per vowel,
corpus, and feature extraction library in multiple scenarios.

4.1. Baseline Results

Table 12 includes the classification accuracy results of the baseline of the study. In this
scenario, all the analyzed data sets are class-balanced and the PwPD and HC classes are age-
and gender-matched. In these, and in most of the trials of this study, the ItalianPVS corpus
provided the best results overall, with accuracy near 100% when using RFC classifiers.
This corresponds to more perceptible dysphonia in PwPD, according to Figure 5. In
each experiment, RFCs tend to have much higher accuracy than SVMs. In RFC trials on
the Neurovoz corpus, the vowels /i:/ and /u:/ tend to perform the best. In that corpus,
the vowel /a:/ frequently provides worse results, and it never provides the highest accuracy
when compared to the rest of the trials. One possible reason could be that the production
of the open-back vowel /a:/ requires a more relaxed position of tongue than other tighter,
extreme vowels such as the back-close /u:/ and the front-close /i:/ [63]. However, another
possible reason when analyzing results of the vowel /u:/ could be that this vowel contains
fewer recordings, as indicated in Table 1. As discussed in Section 3.4.4, a smaller number of
observations might lead to higher (overoptimistic) accuracy when employing very large
feature vectors. In ItalianPVS trials, the RFC experiments also tend to provide the highest
detection accuracy, but the differences between RFC classifiers are lower, especially when
using the AVCA-based feature extraction algorithms.

The coefficients obtained using the AVCA toolbox provide similar results to those calcu-
lated using the DARTH-VAT toolbox when using RFC classifiers. However, AVCA-related
trials tend to provide higher accuracy than those from DARTH-VAT when employing SVM
classification schemes. For instance, in the ItalianPVS experiments, SVM accuracy ranges
from 77.8–93.9% using AVCA versus 49.5–53.5% using DARTH-VAT. The differences in
the other corpora are much subtler but still present nonetheless. These differences may be
attributed to the PLP and Modulation Spectrum (MS) features from AVCA, which are not
present in DARTH-VAT.

In most experiments using the mPower corpus, vowel /a:/ classification accuracy is
lower than in the other corpora by as much as 16.4% (absolute). In order to ensure that
the mPower subset is representative, we obtained six parallel subsets by randomly selecting
speakers from the reference subset (SR) and obtaining the same age and gender statistics
indicated in Table 6. Table 12 includes the mean and variance of accuracy from repeating
the grid search with each of the six subsets. These results are supported by the GRBAS
results of this corpus as well: there is a notably smaller difference of perceived dysphonia
between those with and without PD. Although the perceptual evaluation reveals a less
distinguishable dysphonia, other factors could be influencing these results, such as the
differences in microphones, background noise, and acoustic conditions in the mPower
corpus collection method, as suggested in previous studies [64,65].

Using dimensionality reduction techniques increased the SVM classifier accuracy in
most experiments. On the other hand, feature selection using SelectKBest on RFC classifiers
led to ambivalent results, while PCA lowered the accuracy in every experiment. In fact,
given that the decision trees included in RFC classifiers are based on an algorithm that
finds the features that better differentiate between classes, as in many feature selection
algorithms, using dimensionality reduction techniques might be unuseful or redundant
when employing these types of ensemble algorithms.
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Table 12. Best classification accuracy (%) in the baseline (subject-wise) experiments after grid search.
This scenario is described in Section 3.4.1. Highest accuracy per vowel, coefficient, classifier, feature
reduction strategy, and corpus are in bold.

AVCA DARTH-VAT

Corpus Vowel LSVM PCA-
LSVM

FS-
LSVM RFC PCA-

RFC
FS-

RFC LSVM PCA-
LSVM

FS-
LSVM RFC PCA-

RFC
FS-

RFC

Neurovoz /a:/ 52.8 62.5 53.4 72.2 69.9 73.9 50.6 55.1 56.3 71.6 63.1 75.6
/e:/ 57.2 60.7 56.6 71.7 70.3 73.1 53.8 62.1 57.9 74.5 73.8 72.4
/i:/ 61.8 70.0 58.2 77.6 73.5 78.8 59.4 57.1 57.1 79.4 70.6 81.8
/o:/ 53.5 60.4 59.8 72.2 64.5 73.4 51.5 52.7 53.3 74.6 58.6 76.3
/u:/ 56.4 61.8 62.7 73.6 72.7 75.5 50.9 62.7 59.1 83.6 71.8 80.9

ItalianPVS /a:/ 93.9 90.9 98.0 99.0 89.9 99.0 50.5 55.6 84.8 99.0 72.7 100.0
/e:/ 77.8 85.9 93.9 99.0 94.9 99.0 53.5 55.6 74.7 98.0 77.8 99.0
/i:/ 90.9 90.9 93.9 99.0 96.0 99.0 50.5 54.5 92.9 99.0 69.7 99.0
/o:/ 88.9 87.9 97.0 99.0 97.0 98.0 49.5 57.0 86.0 98.9 76.3 100.0
/u:/ 78.8 90.9 92.9 99.0 94.9 98.0 53.5 51.5 60.6 98.0 80.8 99.0

mPower /a:/ 53.7 58.1 55.4 62.4 61.6 61.4 55.5 55.0 57.3 63.3 58.9 57.3

4.2. Influence of Speaker Identity on Classification Accuracy

Table 13 includes the results from trials where we used record-wise fold creation
rather than subject-wise, which was used in the baseline. Figure 7 includes the comparison
between the maximum accuracy obtained when using subject-wise versus record-wise folds
for the two feature extraction libraries employed in this study. As described in Section 3.4.2,
recordings from the same speaker belong to both the training and testing data sets.

Figure 7. Classification accuracy results using speaker-wise (blue) and record-wise (gray) fold creation
methodologies when employing AVCA (top) and DARTH-VAT (bottom) feature extraction libraries.

Compared to the baseline results shown in Table 12 (in which the same speakers’
recordings belong to only one of the training/testing folds), the accuracy obtained in
this new scenario is higher in most cases. Given the potential impact of record-wise fold
creation discussed in Section 3.4.2, the classifier could have been biased to detect unique
individual information, represented mainly by MFCC and PLP coefficients, rather than
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actual biomarkers or PD patterns. Detection accuracy in AVCA-related trials was generally
higher than that from DARTH-VAT-related trials in the record-wise fold experiments.
The reason could be that the coefficients obtained via the AVCA library contain more
speaker information as there are two perceptual coefficient families: MFCC and PLP,
whereas the DARTH-VAT only calculates MFCCs.

Trials using the Neurovoz corpus increased the most in accuracy: only 2 out of
30 RF trials and 7 out of 30 SVC trials saw a decrease in accuracy from the baseline,
though most differences are by no more than 3 absolute percentage points. The fact
that both RFC and SVM classifiers perform better suggests that speaker information has
an impact on classification and leads to overoptimistic results in experiments in which
there are recordings from the same speakers in training and testing. In some instances,
dimensionality reduction trials saw little to no increase in accuracy with respect to the
baseline scenario. This suggests that the loss of information might include some pertaining
to speaker-specific features.

On the other hand, results using ItalianPVS do not vary as significantly between these
two scenarios. First of all, we can simply note that the classification accuracy reaches
nearly 100% without the addition of speaker-specific information in the training data.
Furthermore, we analyzed which features are most important for classifying each corpus
(described later on Section 4.8). Briefly, classifiers trained with Neurovoz and mPower
both depend heavily on perceptual coefficients such as MFCCs and PLPs, while models
trained with ItalianPVS rely more on features related to voice quality, which contain less
speaker-specific information. This could be explained by the more evident dysphonia of
PwPD in ItalianPVS than those in mPower and Neurovoz (see Section 2.4).

Table 13. Accuracy (%) in the record-wise experiments. This scenario is described in Section 3.4.2.
Highest accuracy per vowel, coefficient, classifier, feature reduction strategy, and corpus are in bold.

AVCA DARTH-VAT

Corpus Vowel LSVM PCA-
LSVM

FS-
LSVM RFC PCA-

RFC
FS-

RFC LSVM PCA-
LSVM

FS-
LSVM RFC PCA-

RFC
FS-

RFC

Neurovoz /a:/ 56.2 64.0 65.2 85.4 77.0 83.1 56.7 56.2 56.2 79.8 62.4 82.0
/e:/ 63.0 68.5 64.4 78.1 76.0 80.1 56.1 63.7 59.6 76.7 74.0 73.3
/i:/ 70.9 76.2 59.3 86.0 80.2 85.5 55.2 59.9 54.1 83.7 75.0 82.6
/o:/ 58.8 69.4 57.6 81.2 76.5 80.6 53.5 54.1 56.5 77.6 58.8 78.2
/u:/ 61.3 64.0 59.4 77.5 76.6 79.3 61.3 55.9 53.2 86.5 69.4 83.8

ItalianPVS /a:/ 94.9 91.9 99.0 99.0 97.0 100.0 58.6 65.7 79.8 99.0 72.7 99.0
/e:/ 87.9 86.9 98.0 99.0 93.9 100.0 49.5 59.6 79.8 99.0 82.8 99.0
/i:/ 92.9 92.9 97.0 99.0 98.0 100.0 50.5 58.6 94.9 99.0 64.6 99.0
/o:/ 89.9 89.9 97.0 99.0 93.9 98.0 51.6 52.7 90.3 98.9 77.4 98.9
/u:/ 78.8 91.9 92.9 98.0 97.0 98.0 53.3 52.5 58.6 99.0 76.8 99.0

mPower /a:/ 51.1 59.2 55.1 75.4 67.1 69.4 52.3 50.9 53.6 70.4 70.2 70.4

4.3. Influence of Age Difference between Classes on Classification Accuracy

In this scenario, we used different age distributions between PwPD and HC speakers
in order to evaluate how age differences might influence detection accuracy. For these
experiments, we only considered mPower, as it is the corpus with the most participants as
well as a wider age range. To this end, we trained and tested new PD detection models as
in the subject-wise baseline experiments. Figure 8 displays the cross-validation maximum
accuracy per subset for trials employing the DARTH-VAT and AVCA toolboxes to extract
features. These results were obtained employing the same RFC grid search used in the
baseline. On the range of mean age difference between the PwPD and HC classes that we
examined, there is a consistent positive correlation between these gaps and the accuracy
achieved. We further explored the potential conflation of age and PD detection using subset
S (described in Table 4). Subset S has a mean age difference of 26.6 years, though the
distribution is not Gaussian. After running the same RFC grid search on subset S, we found
that accuracy increases even more as the mean age difference increases. Consequently,
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the results suggest that a difference in the mean age between speakers with and without
PD could be leading to overoptimistic results, as age-related effects on the voice of the
speakers can bias the classifier.

Figure 8. Maximum cross-validation accuracy results in mPower employing SR0 (age difference
= 0.3 years) and 4 new subsets with mean age difference between classes ranging between 4 and
16 years (in steps of approximately 4 years). This scenario is described in Section 3.4.3. The dashed
lines represent a break between the 16-year gap (SA16) and the larger 26.6-year gap (S).

4.4. Influence of Feature Randomness on Classification Accuracy

As described in Section 3.4.4, we repeated the RFC experiments with the same ar-
chitecture used in the baseline tests, except we replaced each coefficient with a random
number between zero and one with a feature vector dimensionality as those calculated
using DARTH-VAT. The results of these trials are listed in Table 14 as well as depicted
graphically in Figure 9. Results suggest that, even when the random coefficients do not
include any information related to the speakers, it is possible to obtain accuracies over
72% in ItalianPVS, and over 67% in Neurovoz with the proposed baseline experiments.
This effect is less clear in mPower. The reason is that ItalianPVS contains many fewer
audio recordings than mPower, and this number is much smaller than the feature vector
dimensionality. The larger the difference between the number of files and feature vector
dimension, the higher chances to find a feature that randomly correlates to the class labels.

Table 14. Classification accuracy (%) per vowel and corpus for the baseline experiments employing
features obtained with DARTH-VAT (which provides the longest feature vectors of the study) and
random feature vectors of the same length. This scenario is described in Section 3.4.4.

Corpus Vowel DARTH-VAT Random

ItalianPVS /a:/ 99.0 62.6
/e:/ 98.0 66.7
/i:/ 99.0 69.7
/o:/ 98.9 67.7
/u:/ 98.0 72.7

Neurovoz /a:/ 71.6 63.6
/e:/ 74.5 67.6
/i:/ 79.4 61.8
/o:/ 74.6 63.9
/u:/ 83.6 66.4

mPower /a:/ 60.2 56.6
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Figure 9. Accuracy of random forest classifiers trained with DARTH-VAT coefficients (a) as well as
replacing those with random numbers between zero and one (b).

4.5. Mitigation of Random Over-Fitting Using Development Data

A possible way to avoid selecting configurations that randomly over-fit training and
testing data is to use development folds. As such, we performed cross-validation with
development fold to choose the best model, and tested it using a testing fold. The results
from these experiments are listed in Table 15 and depicted graphically in Figure 10. In this
case, the experiments with random features are repeated six times with six different new
sets of random coefficients, and average accuracy is reported. In each trial, the testing
data performs worse than the development. This is to be expected because development
accuracy is the greatest observed over the entire grid search, while testing accuracy could
be considered as a more balanced measure of classifier performance in new data not seen
in training or validation. However, when using this technique with small corpora like
Neurovoz or ItalianPVS, including a development fold also leads to less training data (one
fold less), which is not desirable. Notably, the trials using random coefficients with corpus
sizes of Neurovoz and ItalianPVS perform the most differently between the development
and testing folds. This can be explained by the absolute lack of meaning of random features
other than coincidental trends that correlate with condition label vectors.

Table 15. Classification accuracy (%) per vowel and corpus for repeated baseline experiments,
including development folds. This scenario is described in Section 3.4.5. The experiments relative to
random features are repeated six times with six different new sets of random coefficients, and average
accuracy is reported along with standard deviation in parenthesis.

AVCA DARTH-VAT Random

Corpus Vowel Dev. Test Dev. Test Dev. Test

Neurovoz /a:/ 71.0 62.5 70.5 66.5 62.8 (1.97) 48.6 (5.57)
/e:/ 71.0 61.4 73.1 67.6 62.5 (3.09) 52.4 (5.50)
/i:/ 79.4 71.8 79.4 70.0 62.3 (2.08) 48.8 (2.41)
/o:/ 72.8 67.5 77.5 62.7 64.2 (1.85) 52.6 (2.22)
/u:/ 75.5 61.8 85.5 75.1 67.6 (2.65) 57.1 (3.63)

ItalianPVS /a:/ 99.0 89.9 99.0 97.0 68.5 (2.74) 51.2 (3.48)
/e:/ 98.0 93.9 98.0 97.0 67.9 (2.95) 51.2 (3.04)
/i:/ 98.0 93.9 99.0 95.0 67.2 (2.62) 55.6 (1.83)
/o:/ 98.0 93.9 98.9 95.7 70.2 (2.59) 57.7 (3.67)
/u:/ 98.0 93.9 99.0 96.0 66.3 (4.36) 50.2 (7.69)

mPower /a:/ 61.6 60.1 60.1 58.4 56.5 (0.163) 55.3 (0.415)
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Figure 10. Accuracy of random forest classifiers using single folds for both development (purple)
and testing (gray).

When comparing the results from the baseline (Table 12) with those from the tests
using development folds (Table 15), the classification accuracy using the development
fold nearly matches the baseline’s reported “best accuracy”. On the other hand, follow-
ing up with the testing fold produces a much lower classification accuracy on average.
Table 16 contextualizes these differences: the mean difference between development and
baseline accuracy (in corpora with five vowels) does not exceed 1.00% across all vowels.
Taking the average magnitude of the difference garners a similar result, not exceeding
1.50%. However, there is not a single case where testing accuracy exceeds the baseline or
development accuracy. In fact, these differences are significantly more pronounced than
those between development and baseline accuracy, reaching as high of a decrease as 8.46%.
These calculations, displayed in Table 16, support the hypothesis that using a single fold
for model validation and evaluation could lead to overoptimistic results, and that using
separating folds for each stage is an important methodological consideration.

Table 16. Difference between development/test and baseline classification accuracy. Average differ-
ences are listed.

AVCA DARTH-VAT

Corpus Vowel Dev.–Base. Test–Base. Dev.–Base. Test–Base.

Neurovoz /a:/ −1.20 −9.70 −1.10 −5.10
/e:/ −0.70 −10.3 −1.40 −6.90
/i:/ +1.80 −5.80 0.00 −9.40
/o:/ +0.60 −4.70 +2.90 −11.90
/u:/ +1.90 −11.8 +1.90 −8.50

Mean difference +0.48 −8.46 +0.46 −8.36

ItalianPVS /a:/ 0.00 −9.10 0.00 −2.00
/e:/ −1.00 −5.10 0.00 −1.00
/i:/ −1.00 −5.10 0.00 −4.00
/o:/ −1.00 −5.10 0.00 −3.20
/u:/ −1.00 −5.10 +1.00 −2.00

Mean difference −0.80 −5.90 +0.20 −2.44

mPower /a:/ −0.80 −2.30 −3.30 −4.90
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4.6. Influence of Onset and Offset of Vowels on Classification Results

To test whether or not the onset and offset of the vowel contains important classification
information, we repeated the baseline experiments with unclipped and clipped versions
of Neurovoz and ItalianPVS, respectively, and obtained the results included in Figure 11.
We found that in both corpora, removing the beginning and end of recordings mostly
decreased accuracy in both AVCA-based and DARTH-based trials. In Neurovoz, accuracy
was reduced much more using AVCA-based coefficients. Additionally, the total decrease
in accuracy for clipped audios is larger for Neurovoz than ItalianPVS. The discrepancy
between the Neurovoz DARTH-based and AVCA-based results may be explained by the
hypothesis that the onset and offset contains relevant articulatory information. The AVCA
toolkit calculates two separate perceptual coefficient families: MFCCs and PLPs; while the
DARTH-VAT toolkit only calculates the former. Assuming that removing onset and offset
also removes some relevant articulatory information, it makes sense that AVCA-based
trials would see a larger decrease in accuracy than their DARTH-VAT counterparts. As for
ItalianPVS, not much difference between the coefficient type results suggests that although
articulatory information has a marked impact on the results, it may not have as much
of an impact as other factors, such as dysphonia of participants’ voices as discussed in
Section 4.7.

Figure 11. Effect of onset/offset removal on classification accuracy. In most experiments, accuracy
decreases with the removal of the beginning and ends of the recordings.

4.7. Cross-Corpora Experiments

Since ItalianPVS has a lower sampling rate in its audios (16 kHz), we downsampled the
Neurovoz audios to match this frequency. Figure 12 shows the results of these experiments
when the models trained with ItalianPVS and Neurovoz are tested with the other corpus.
The model obtained with Neurovoz and evaluated with ItalianPVS led to higher accuracy,
reaching up to 83.8% for the vowels i: and u:. These results are not observed when the
model is trained with ItalianPVS and evaluated with Neurovoz, where the accuracy never
goes beyond 55.9%. One possible factor influencing these results is that Neurovoz contains
a larger amount of recordings per vowel than ItalianPVS (176 vs. 99), leading to a more
robust model. The other reason, aligned with the results obtained in the baseline trials,
is that the voices of PwPD of ItalianPVS are more clearly affected by the disease.In other
words, the dysphonia of these PwPD is more evident and probably easier to detect with
the models trained with Neurovoz.
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Figure 12. Classification accuracy (%) of cross-corpora trials. In each experiment, training with
Neurovoz (yellow) led to higher accuracy than training with ItalianPVS (gray).

4.8. Feature Analysis

In order to better understand the differences in the results between corpora, we
analyzed the feature importance per vowel, corpora, and coefficient type using the hyper-
parameters of the best-performing classifiers from the baseline experiments. The feature
importance values are calculated as the mean of accumulation of the impurity decrease at
each decision tree trained in the random forest of the employed classification library [57].
The higher the average decrease in impurity caused by a feature during the training process,
the higher the importance. The rankings in Table 17 depict the order of coefficients from
most to least important in classification considering only the models trained in the baseline
trials corresponding to the highest accuracy for each corpus. These were calculated using a
system of votes: for each repeated experiment in each corpus, the coefficient importances
were averaged between each fold. The top 12 most-voted features of all 3 corpora and both
coefficient calculation toolboxes appear in Table 17. Although this analysis does not point
out a specific confounding factor, it provides support for some other conclusions obtained
in this study.

For DARTH-VAT-based trials, the most significant features in the Neurovoz and
mPower are the means and variances of MFCC coefficients and their derivatives. On the
other hand, the most important features when using ItalianPVS are related to complexity,
noise, and shimmer. In most of our experiments, ItalianPVS classifiers perform with
the highest accuracy. An explanation of this may be that, as mentioned in Section 2.4,
the dysphonia of PwPD in ItalianPVS is perceptually more evident than those in mPower
and Neurovoz (hence the importance of features which characterize voice quality).

For AVCA-based trials, nearly all of the top-ranked coefficients of Neurovoz are also
spectral-cepstral, with some MS features. As such, AVCA-based classification accuracy
improved more from speaker-wise to record-wise fold separation experiments compared
to their DARTH-based counterparts. Again, ItalianPVS has different top features than
the other two corpora. Nearly all of its top 12 coefficients are related to the complexity
of the signal. This finding also explains why the accuracy of ItalianPVS classifiers only
minimally changed between the baseline and record-wise trials. The mPower feature
ranking is interesting because the top seven features are all related to the MS. In the mPower
classifiers, AVCA coefficients performed slightly better than DARTH-VAT coefficients,
which implies that in larger corpora, modulation spectrum characteristics may contain
important information as to whether or not the speaker has PD.

Figure 13 includes the boxplots of the most important features for each data set in the
vowel /a:/. It can be observed that the distributions of the most important features tend to
overlap less between classes for ItalianPVS, in comparison to the other two corpora.
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Figure 13. Boxplots of the phonatory features included in Table 17 in speakers with PD and HC.
Only features for vowel /a:/ are represented. To obtain this representation, the coefficients from all
the participants were normalized by subtracting the mean and dividing by the standard deviation.
The names of the features indicated in this figure are the ones employed in the AVCA and DARTH-
VAT libraries with the suffix HC or PD indicating the class represented in the correspondent boxplot.
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Table 17. The 12 most important features obtained in the baseline models leading to the maximum
accuracy, calculated using the ranking system described in Section 4.8.

Rank Neurovoz ItalianPVS mPower

DARTH-VAT Feature Ranking

1 std_1st delta delta’ PPE’ std_delta log energy’

2 std_10th delta’ mean_delta log energy’ std_MFCC_11th coef’

3 std_MFCC_10th coef’ mean_MFCC_12th coef’ mean_11th delta’

4 mean_MFCC_7th coef’ mean_Log energy’ mean_MFCC_11th coef’

5 IMF->NSR_SEO’ IMF->NSR_entropy’ mean_MFCC_8th coef’

6 det_LT_TKEO_std_8_coef’ NHR_mean’ mean_MFCC_6th coef’

7 std_10th delta-delta’ HNR_std’ mean_MFCC_5th coef’

8 std_6th delta-delta’ Shimmer->F0_DB’ mean_MFCC_3rd coef’

9 std_4th delta-delta’ Shimmer-
>F0_PQ11_classical_Baken’ mean_MFCC_2nd coef’

10 std_6th delta’ Shimmer-
>F0_PQ5_classical_Baken’ mean_MFCC_0th coef’

11 std_4th delta’ Shimmer-
>F0_PQ3_classical_Baken’ mean_Log energy’

12 std_1st delta’ mean_7th delta’ IMF->NSR_SEO’

AVCA Feature Ranking

1 MSHphase_mean’ MFCC12_dd_std’ RALP75_std’

2 MFCC7_std’ Hurst_mean’ RALA_std’

3 MFCC4_std’ rFuzzyEn_mean’ LMR_mean’

4 CIL_mean’ MarkEnt_mean’ MSDR12_std’

5 PLP3_d_mean’ LLE_mean’ MSDR10_std’

6 PLP1_d_std’ CorrDim_std’ MSCent11_mean’

7 PLP5_mean’ rmSampEn_mean’ MSCent10_std’

8 PLP3_std’ rGSampEn_std’ PLP10_std’

9 MFCC2_d_mean’ rSampEn_std’ PLP9_std’

10 MFCC11_std’ rFftr’ PLP7_std’

11 MFCC2_mean’ rApEn_mean’ MFCC12_mean’

12 PE_std’ PLP4_mean’ MFCC11_std’

5. Conclusions

In this study, we have analyzed the influence of potential methodological issues that
may lead to overoptimistic results in the automatic classification of PwPD and HC employ-
ing sustained vowels from three different corpora. We analyzed the effects of record-wise
vs subject-wise experiments, mean age difference between the two classes, cross-validation
design, and feature vector length on classification accuracy. Additionally, we analyzed
other factors such as vowel onset and offset removal, different feature extraction libraries,
classification techniques, and performed cross-corpora trials in order to find answers to
why the same techniques provide different results in different corpora. The purpose of this
study is not to report a precise analysis of optimizing our classifiers to achieve the highest
possible accuracy. Rather, the goal of this research is to empirically demonstrate whether
each aforementioned methodological factor skews classifier accuracy.

In our baseline experiments, test speakers were restricted to only a single fold (subject-
wise trials) and the age distributions were nearly identical. Between the three corpora,
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models trained with mPower participants perform the worst. One possible explanation
may be that as shown in Figure 5, the two classes from this corpus sound more qualitatively
similar on the GRBAS scale than the others. However, models trained with ItalianPVS
participants predict PD more accurately than models using Neurovoz despite the similar
GRBAS differences between their classes. For this reason, we claim that GRBAS ratings are
inconclusive benchmarks of a classifier performance in this study.

We examined the effect of speaker identity by splitting recordings from a single
participant into separate folds (record-wise trials). This way, we guaranteed that theoretical
speaker-specific information belonged to both training and testing data. The graphs in
Figure 7 illustrate our hypothesis that record-wise fold separation leads to higher accuracy
than subject-wise fold separation. As such, we argue that studies employing record-
wise methodologies might be reporting overoptimistic results. Further supporting this
claim, record-wise RFCs using AVCA-derived coefficients, which contain two perceptual
coefficient families (MFCCs and PLPs), perform better than those using DARTH-VAT-
derived coefficients which contain only MFCCs.

To explore the impact of mean age difference between two classes, we used one
mPower subset from the baseline and replaced participants in order to shift the age distri-
butions. As the separation between participants with PD and HC’s mean age increased,
classification accuracy consistently increased (Figure 8). All experiments considered, we ar-
gue that studies with large mean age differences between the two classes could be reporting
overoptimistic results.

We investigated the extent to which feature vector length influences classification
accuracy. The smaller the number of observations compared to the feature vector length,
the greater the chance that coefficients will randomly correlate with class labels. The results
of these trials (Table 14) suggest that smaller corpora like Neurovoz and ItalianPVS will
inherently perform better than larger ones like mPower when using large feature vector size
(several times the number of observations). A way to eliminate the influence of the feature
vector length in the results is to employ development folds at the expense of reducing the
amount of training data.

In some corpora, sustained phonation recordings have had their onset and offset
removed. Our results (Figure 11) suggest that models trained with samples containing
onset and offset are usually more accurate than those without. Based on this observation,
we claim that employing onset and offset from sustained vowel phonations in combination
with certain features (such as MFCC) could provide higher accuracy.

We observed the generalization properties of our models using Neurovoz and Italian-
PVS. Our results suggest that larger corpora provide better detection models. In any case,
the differences in results across corpora may be caused by the different speech and voice
phenotypes present in each corpus, as there might be different speech subgroups (prosodic,
phonatory-prosodic, and articulatory-prosodic) associated with PD [66].

As is the nature of an academic review, this study cannot encompass every single
aspect of methodological design which could possibly impact the results. For example,
the following limitations exist:

• Our analysis is limited to two classification techniques (RFC and SVM) which com-
monly appear in other works. We do not evaluate the performance of other clas-
sifiers found in literature, such as DNN [14,19,25–27,36,37,58], Gaussian Mixture
Model (GMM) [39,67,68], logistic regression [13,22,37], and ensemble classifiers other
than RFC [12,13,36,59];

• We do not have access to UPDRS/H&Y assessments of mPower and ItalianPVS
participants, preventing comparison of severity variance between each corpus;

• The mPower corpus only contains sustained vowel recordings. This impacts the
reliability and reproducibility of the GRBAS assessment described in Section 2.4;

• Other unexplored factors that could also impact classification accuracy include sex,
recording environment, microphone specifications, recording length, type of phona-
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tion, smoking/surgical history, time between medication and recording, coexisting
neurological disorders, and stage of medical treatment.

The conclusions exposed in this paper do not necessarily imply that studies employing
age-unmatched classes, very large feature vectors, or record-wise trials are not exploiting
PD-related acoustic features or patterns useful to automatically detect or assess PD. How-
ever, including these methodological issues in experiments does not allow us to analyze
if the results obtained are a direct consequence of the influence of PD in the voice of the
participants or if other factors such as age or identity are contributing to the overall accuracy
of the models.

A final takeaway from this study should be that although we have isolated several
methodological practices which lead to overoptimistic classification accuracy, there are
other possible factors which may influence the results in several different ways that have
not been considered here.

In the future, this work and similar studies will open the door for discussion about
new comprehensive baselines for experimental conduct in automatic PD detection from
phonation, as well as other general applications of speech processing.
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Appendix A

We include the GRBAS assessment of Neurovoz and ItalianPVS in Table A1. The eval-
uation was performed blindly (without knowing the speaker’s class) by a trained oto-
laryngologist who employed five sustained vowels and between 10 and 20 s of speech for
each speaker in Neurovoz and ItalianPVS. Regarding the ItalianPVS IDs, the first 22 IDs
correspond to HC (list of participants described in Table #3, that is distributed with the
ItalianPVS data set) and the rest to PwPD (list of participants described in Table #5 of the
data set). The order of the IDs is the same as the order of participants included in the
work-sheets provided by ItalianPVS authors to describe the data set (Tables #3 and #5
distributed with the ItalianPVS dataset).

https://github.com/aozbolt/thingsToConsider
https://github.com/aozbolt/thingsToConsider
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Table A1. GRBAS assessment of Neurovoz and ItalianPVS.

ID G R B A S ID G R B A S ID G R B A S

Neurovoz ItalianPVS

6 1 1 2 1 0 58 0 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 60 0 0 0 0 0 2 1 1 0 2 0
8 0 0 0 0 0 61 1 2 0 0 1 3 0 1 0 1 0
9 1 1 1 1 0 62 0 0 0 0 0 4 1 1 0 0 0
10 1 0 1 0 0 63 1 1 0 1 0 5 1 1 1 0 0
11 1 0 1 1 0 64 0 0 0 0 0 6 1 2 2 0 1
12 0 0 0 0 0 66 1 0 1 1 0 7 1 1 0 1 0
13 1 0 0 1 2 68 0 0 0 0 0 8 0 0 0 0 0
15 0 0 0 0 0 69 0 0 0 0 0 9 0 0 0 0 0
16 1 1 2 1 0 70 2 1 0 1 2 10 1 1 1 0 0
17 1 0 1 1 0 72 1 1 0 0 1 11 0 0 0 0 0
18 0 0 0 0 0 74 0 0 0 0 0 12 0 0 0 0 0
19 0 0 0 0 0 75 0 0 0 0 0 13 0 0 0 0 0
20 1 0 0 0 2 76 0 0 0 0 0 14 1 1 0 0 1
24 1 0 1 1 0 77 1 0 1 1 0 15 0 1 1 0 1
25 0 0 0 0 0 81 0 0 0 0 0 16 1 1 0 1 0
27 1 1 0 1 0 82 0 0 0 0 0 17 1 1 1 1 0
28 2 2 3 2 0 85 1 1 2 0 0 18 0 0 1 1 0
29 1 1 1 0 1 86 0 0 0 0 0 19 2 3 1 1 0
30 1 0 0 0 1 87 2 2 1 0 1 20 1 0 1 1 0
31 1 1 1 1 0 105 0 0 0 0 0 21 2 1 2 1 0
32 2 2 0 0 1 109 2 1 2 1 2 22 1 2 0 1 0
33 0 0 0 0 0 111 1 1 0 1 0 23 2 3 0 1 1
34 1 1 1 1 0 112 0 0 0 0 0 24 0 0 0 0 0
35 1 0 1 1 0 113 0 0 0 0 0 25 0 0 0 0 0
36 0 0 0 0 0 115 1 0 1 1 0 26 1 1 1 2 0
37 2 2 1 2 3 116 1 0 0 1 1 27 1 1 1 1 2
38 2 1 1 2 0 117 1 1 1 0 1 28 0 0 0 0 0
39 0 0 0 0 0 118 0 0 0 0 0 29 1 1 0 1 1
40 1 0 1 1 0 120 1 1 0 1 0 30 1 0 1 2 0
41 2 2 2 1 1 122 1 0 1 1 1 31 2 1 3 2 0
42 0 0 0 0 0 128 0 0 0 0 0 32 1 1 0 1 0
43 1 0 1 1 1 130 0 0 0 0 0 33 1 1 0 2 0
44 0 0 0 0 0 131 0 0 0 0 0 34 0 1 1 0 0
45 1 0 1 1 0 132 0 0 0 0 0 35 1 0 1 1 0
46 0 0 0 0 0 134 0 0 0 0 0 36 0 1 1 1 0
47 1 0 1 0 1 136 1 1 0 1 0 37 1 1 1 2 0
48 0 0 0 0 0 137 0 0 0 0 0 38 0 0 0 0 0
49 0 0 0 0 0 138 0 0 0 0 0 39 3 3 3 2 2
51 0 0 0 0 0 139 0 0 0 1 0 40 2 3 2 2 1
52 0 0 0 0 0 140 1 1 0 0 1 41 1 1 0 0 1
53 1 0 0 1 1 141 1 0 1 1 1 42 1 1 0 0 2
54 0 0 0 0 0 142 0 0 0 0 0 43 1 1 1 1 0
55 0 0 0 0 0 143 2 2 0 1 0 44 0 0 0 0 0
56 0 0 0 0 0 145 1 0 0 1 1 45 3 3 2 1 0

46 1 1 1 1 0
47 3 2 3 3 0
48 2 2 1 1 1
49 0 0 0 0 0
50 0 0 0 0 0
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