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Abstract: Environmental noise has become one of the principal health risks for urban dwellers and
road traffic noise (RTN) is considered to be the main source of these adverse effects. To address this
problem, strategic noise maps and corresponding action plans have been developed throughout
Europe in recent years in response to the European Noise Directive 2002/49/EC (END), especially in
populated cities. Recently, wireless acoustic sensor networks (WASNs) have started to serve as an
alternative to static noise maps to monitor urban areas by gathering environmental noise data in real
time. Several studies have analysed and categorized the different acoustic environments described
in the END (e.g., traffic, industrial, leisure, etc.). However, most of them have only considered the
dynamic evolution of the A-weighted equivalent noise levels LAeq over different periods of time.
In order to focus on the analysis of RTN solely, this paper introduces a clustering methodology
to analyse and group spectro-temporal profiles of RTN collected simultaneously across an area of
interest. The experiments were conducted on two acoustic databases collected during a weekday
and a weekend day through WASNs deployed in the pilot areas of the LIFE+ DYNAMAP project.
The results obtained show that the clustering of RTN, based on its spectro-temporal patterns, yields
different solutions on weekdays and at weekends in both environments, being larger than those
found in the suburban environment and lower than the number of clusters in the urban scenario.

Keywords: road traffic noise; spectro-temporal analysis; WASN; clustering

1. Introduction

Environmental noise has become one of the major pollutants in urban areas in recent
years, having important negative effects on the quality of life of citizens [1,2]. In particular,
the sustained increase in the number of urban dwellers has aggravated the problem of
traffic noise, the main noise source of noise pollution in urban areas, which has serious
consequences for the health of their inhabitants [3]. The European competent authorities
reacted to this problem by developing the European Noise Directive 2002/49/EC (END) [4],
and the subsequent strategic noise mapping assessment for its homogeneous application
across Europe, denoted as CNOSSOS-EU [5]. The main goal of these regulations is to ad-
dress the effects of environmental noise by requiring European member states to determine
noise exposure, inform affected citizens and provide support to competent authorities to
prevent and reduce environmental noise if required.

For this purpose, both noise maps and action plans have to be developed every five
years for large agglomerations, according to the END legislation. Recently, the development
of wireless acoustic sensor networks (WASNs) has provided information about environ-
mental noise in real-time through low-cost multi-sensor networks deployed in smart cities
(see [6] and references herein), improving the amount of data collected and available for
the competent authorities. In this context, the LIFE+ DYNAMAP project [7] has developed
a WASN-based dynamic noise mapping system to represent the acoustic impact of road
infrastructures in real-time in two pilot areas [8,9]: one in the city of Milan as an urban
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area, and another on the outskirts of Rome as a suburban environment. Specifically, the
urban WASN is composed of 24 acoustic nodes installed in different façades of public
buildings across District 9 of Milan [10], while the suburban WASN is composed of 19
acoustic sensing nodes placed in the portals of the A90 motorway surrounding Rome [11].

For the proper computation of the equivalent noise levels (Leq) of road infrastructures,
acoustic events unrelated to regular road traffic noise (RTN), (considered as those which
come from from vehicles engines and the contact between their tyres and the pavement [7]),
should be removed automatically to avoid biasing the RTN map generation. These events
are denoted as anomalous noise events (ANEs) within the DYNAMAP project, and repre-
sent, for instance, trains, airplanes, sirens, horns, speech, doors, works, etc. To this end, an
anomalous noise events detector (ANED) has been designed as a two-class classifier (ANE
vs. RTN) using mel-frequency cepstral coefficients (MFCC) [12] and Gaussian mixture mod-
els, and has been implemented in the low-cost sensors running locally in real-time [13,14].
In order to train the ANED algorithm properly, several previous studies have focused
on the collection, characterization and impact analysis of ANEs in the A-weighted en-
vironmental noise levels (LAeq) computation (see e.g., [10,11,15]). However, much less
attention has been paid to the majority class, that is, RTN, which represents around 90%
of the collected data [15], which is also relevant, since spectral components and evolution
of the road traffic noise of each specific location may also affect the performance of the
ANED algorithm.

Several investigations have addressed the study of the similarities and differences of
acoustic environments by means of clustering techniques, using data collected through
WASNs. Most of them consider LAeq values computed, using several window spans,
depending on the goal of each analysis, in the deployed sensors, as well as their temporal
evolution during the day and on different days of the week. Among them, it is worth
mentioning that several works have analysed Milan’s DYNAMAP urban environment
to cluster that neighborhood through different approaches based on LAeq measurements.
In [16], the presence of acoustic events is included in the analysis, by considering their
impact merged with RTN levels through the intermittency ratio (IR). Other studies, such
as [17,18] also consider LAeq curves with different analysis window sizes, together with
other parameters, such as traffic speed data, to complement the equivalent noise levels
and complete the classification of the monitored acoustic environments. However, these
studies focus on high-level features (e.g., LAeq and IR) to analyse the acoustic environments
of interest.

As an alternative to the categorization of acoustic environments based on their spectro-
temporal behaviour, in [19], a preliminary proposal was described through the analysis of
WASN-based raw acoustic data. The research showed the viability of the proposal, as well
as the potential existence of two clusters in the urban pilot area of the DYNAMAP project.
However, this conclusion was tentative as it was obtained through a straightforward visual
inspection. Later, in [20], a further analysis was conducted by means of selecting two
representative locations from each pilot area (Rome and Milan) on both weekdays and
weekend days [21]. The analysis paid special attention to the low frequency range, which
contains the main frequency components of RTN, as well as the sensor locations and
day and night characteristics. The results showed a high dependence on the analysed
environment and encouraged the authors to extend the study by considering all the sensors
of both WASNs to characterize the spectro-temporal behaviour of the RTN across all the
available locations.

Following the authors’ previous studies [19,20], this article introduces an analysis
and clustering methodology to group road traffic noise spectro-temporal profiles, which
are simultaneously collected across an area of interest during a given period of time. The
approach, which is designed to determine the optimal number of clusters, as well as to
interpret the results through expert-based post-processing, is evaluated using around 250 h
of RTN-labelled data from the two pilot areas of the DYNAMAP project that were collected
during a weekday and a weekend day.
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The remaining sections of the paper are organized as follows. Section 2 describes the
most relevant studies related to the clustering of acoustic environments. Section 3 describes
the proposed analysis and clustering methodology on the spectro-temporal distributions
of road traffic noise collected in different locations of an area of interest simultaneously,
Next, Section 4 describes the experiments conducted, as well as the results obtained for the
data collected from the urban and suburban pilot areas of the DYNAMAP project, during
a weekday and a weekend day. Finally, Sections 5 and 6 discuss the results obtained and
present the conclusions of this research and several future research lines, respectively.

2. Related Work

In recent years, progress has been made in the deployment of different acoustic sensor
networks designed for noise monitoring, especially in urban areas, where traffic noise is one
of the main sources of annoyance described in the END [4]. The observation of the noise
measured in each of the stations can lead to the classification of their locations, according
to the measured level of noise, but also according to other urban parameters, such as the
type of street, or the intensity of traffic measured or estimated by the municipalities.

Several studies can be found in the literature on the cluster analysis of urban acoustic
environments. In [17], the authors introduced a clustering approach based on the k-means
algorithm, considering yearly acoustic indexes, such as Lday, Levening and Lnight, as well as
the standard deviation of Lden. The sensor network under test was the Barcelona Noise
Monitoring Network [22], which also measured noise levels with the final goal of the
identification of several acoustic environments across the city. The results showed that
the obtained clusters have a geographical meaning, as they correspond to locations close
to high traffic roads, residential areas or leisure areas, respectively. Other studies, as [18],
start with an approximation of road classification based on the road design and the traffic
speed data. Subsequently, the equivalent noise levels of all the roads is included in the
clustering. The final goal of the study conducted in Foshan (China) was to predict the
equivalent noise level from vehicles’ speed and road design information. In [23], the
authors propose a method to draw a spatio-temporal distribution of the noise levels in the
city with two variables, the traffic density and the traffic speed, as well as spatio-temporal
characteristics derived from the geography of the deployed network. The goal of the
study was to evaluate the noise distributions corresponding to several periods by efficient
algorithms of prediction with an acceptable accuracy.

The Milan pilot of the DYNAMAP project was widely analysed in terms of clustering
the noise levels in the different sensor locations, in order to optimize the spatial distribution
of noise monitoring stations. Preliminary studies described in [24,25] introduced a first
statistical approach to the categorization of Milan’s District 9 roads, based on the clustering
of 14-hourly LAeqh, with the aim of progressing further in the classification than the infor-
mation given by the legislative road categorization. Moreover, in [26], the authors describe
another statistical clustering approach, where the roads having similar flow conditions—
and hence similar noise trends due to road traffic—are grouped together, based on an
extensive measurement campaign. The authors conclude that two clusters describe the
roads in Milan more efficiently than the road categorisation used by the administration.
More recent research in the same urban environment has widened the study to use up
to 90 sensor locations to represent noise events The proposal was to cluster the sensors
by means of the similarities among them. The data used to evaluate the clustering were
the equivalent level LAeqh and the intermittency ratio (IR), which is a metric that reflects
the short-time variations of noise exposure [27], of all the sensor locations, the resulting
clusters being highly related to the average day-time hourly traffic flow of vehicles. The
authors of [28] managed to improve the accuracy of the noise map generation by means of
the information given by each and every sensor location, considering the cluster to which
each sensor belonged.
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3. Analysis and Clustering Methodology

This section describes the methodology followed to analyse and group RTN data
collected simultaneously from N′ different measurement locations across a given area. The
approach focused on investigating how many different acoustic environments, in terms of
RTN, could be distinguished in the area of interest, e.g., a city district or a neighbourhood,
based on the spectro-temporal analysis of real acoustic data gathered in that area. In order
to focus on RTN, other noise sources, such as trains, airplanes, horns, sirens, birdsongs, dogs
barking, works, people, rain, etc., should be removed beforehand to avoid any potential
bias due to their occasional presence in the clustering and analysis of RTN distributions.

Figure 1 shows the block diagram of the proposed clustering methodology. First,
acoustic data are gathered from N′ locations simultaneously (e.g., from a WASN of N′

sensors) of a given acoustic environment. The analysis considers a labelled acoustic
database as input, which includes both the simultaneous collection of audio recordings
for the period of interest (e.g., one day) together with the corresponding RTN labels. Next,
the acoustic data are pre-processed before conducting the subsequent spectro-temporal
analyses of RTN. To that effect, the audio passages of interest are selected from the sensed
periods, considering if they sufficiently representative in terms of the presence of RTN. As
a result, some sensed locations can be discarded (e.g., due to particular technical problems),
being N ≤ N′, the final number of locations considered for the subsequent analyses.

Figure 1. Block diagram of the clustering and analysis methodology of RTN acoustic environments
from the data collected from N locations simultaneously.

After conducting the spectro-temporal analysis of the acoustic data for each location
considered, the obtained spectro-temporal profiles (STPs) are input into the clustering
analysis to automatically obtain a set of STP groups based on the computation of a set
of cluster validity indices (CVIs) that drive the selection of the optimal number of STP
clusters Q∗. Finally, the approach ends with an expert-based analysis and representation
step to validate the coherence of the obtained solution, obtaining as output a similarity
matrix S that shows graphically the differences and similarities between the N acoustic
RTN environments according to the Q∗ STP clusters, through the expert definition of a
mapping function I(i), for i = {1, . . . , N}.

3.1. Data Pre-Processing

A data pre-processing step is applied to the input acoustic database in order to obtain
an STP for each sensed location, representing the acoustic energy distribution related to
RTN in terms of both the considered time periods and the frequency bands. This step
is integrated into the process due to the possible non-homogeneity of the original data,
e.g., there might be different time periods of recordings provided for each sensed area.
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First, in order to perform a consistent analysis, a selection of 1-h periods where there are
available data for all the sensed placements (both audio files and RTN labels) is performed.
Secondly, only the 1-h periods with a minimum presence of RTN in the recorded passages
are selected for further analyses. For that purpose, a selection threshold γ (see Figure 1)
is defined as the minimum percentage of RTN frames that must be present within the
T minutes of the recorded audio file per hour. This value is manually set as a trade-off
between the minimum representative time to compute the hourly mean spectra of RTN
and the maximum amount of discarded data (i.e., if the criterion is very restrictive, the
subsequent analysis will lose too much data). The discarded 1-h periods represent data
that are not sufficiently representative to compute the corresponding mean RTN energy
curve. Finally, the missing STP values removed at these periods are filled using a 2D-based
interpolation (i.e., in frequency and time) by considering the values of the STPs of their
neighbour 1-h periods.

3.2. Spectro-Temporal Analysis

The set of audio signals gathered from each location during H 1-h periods within the
predefined analysis period (e.g., one day sampled at every hour) are represented using
an MFCC-based parameterisation [12]. The spectrum of each signal frame is computed
considering B energy sub-bands, following the approach described in [29]. Then, the mean
spectrum obtained for each analysed hour of the day, taking into account only those frames
labelled as RTN, is computed to obtain the STP of each nth-location (for n ∈ {1, N}), and
denoted as STPn ∈ RB×H . STPn is a matrix of real values that contain logarithmic energies
of B frequency subbands at H 1-h periods of the analysed day, i.e., STPn = (STPi,j), for
i = {1, 2, . . . , B} and j = {1, 2, . . . , H}.

3.3. Clustering Analysis

In this step, the grouping of RTN acoustic environments gathered from different
locations is performed.

Given the set of STPs, i.e., Λ = {STP1, STP2, . . . , STPN}, Λ is analysed using a
clustering technique to discover the similarities and differences between the acoustic
environments related to traffic noise. To that effect, a clustering machine learning technique
is applied, varying the number of potential clusters Q from QI to QF. For the given acoustic
environment, the optimal number of clusters Q∗ is determined through the analysis and
integration of the results obtained by the considered CVIs after the sweep. The decision
should aim to achieve a consensus among the local optima of the CVIs curves, considering
that the output allows a significant grouping of the number of sensed locations. Finally, the
Q∗ clusters are represented by the set of STP groups of indices Ψ = {I1, I2, . . . , IQ∗}, being
Ik, the set of indices belonging to cluster k, which are subsequently analysed by experts.

3.4. Expert-Based Analysis and Representation

An expert-based analysis and representation step is performed as the last stage of the
analysis methodology to corroborate the appropriateness of the Q∗ clustering solution and
enrich the interpretation of the results.

To that effect, a similarity matrix, together with a mapping function, are computed to
allow experts to analyze the relationships between the obtained STP clusters. The similarity
matrix S = (si,j) ∈ RN×N is computed, being the element si,j, the Euclidean distance
between STPs of sensed site I(i) and I(j), i.e., Si,j = ||STPI(i) − STPI(j)||2, being I(j) a
bijective mapping function I : N→ N that covers the range of sensor numbers N.

The mapping function I(i) is initially defined as Ψ. Then, this function is adjusted
through an iterative manual process the objective of which is to obtain an S matrix that
tends to have lower distances for those positions close to the diagonal, being Sij = 0
for i = j, while having higher values for positions far from it. At each iteration, the
mapping function I(i) is adjusted following two criteria: (i) the cluster indices positions
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can be interchanged, e.g., {I2, I1, . . . , IQ∗} or {IQ∗ , IQ∗−1, . . . , I1}, etc.; (ii) the indices Ik (for
k ∈ {1, .., N}) can be reordered within each cluster k, while they are kept together.

Therefore, the expert-based analysis considers the Q∗ clustering and obtains a final
similitude matrix S driven by this partition but including a fine-grained analysis at a lower
level (i.e., adjusting the ordering between clusters but also within each cluster), taking into
account the Euclidean distances between STPs to improve the analysis of the results.

4. Experiments and Results

In this section, the proposed clustering and analysis methodology was applied to
two acoustic environments (suburban and urban) and two types of day (weekday and
weekend day) from the DYNAMAP project. The suburban environment consisted of
N′ = 19 sensors deployed along the A90 circular highway surrounding the city of Rome
(see Figure 2), while the urban scenario was defined with N′ = 24 sensors within District 9
of the city of Milan (see Figure 3). The acoustic data corresponded to two WASN-based
audio databases collected through the two networks in real-time operation [10,11]. Both
databases included data from two days in 2017 with different traffic conditions, one from
a weekday (on Tuesday, the 28th of November for the urban area, and on Tuesday, the
2nd of November for the suburban environment), and another during the weekend (on
Sunday, the 3rd of December for the urban area, and on Sunday, the 5th of November for
the suburban environment). The audio recordings were collected from the first T = 20 min
of each hour (with a sampling frequency of 48 kHz), a trade-off between node storage and
communication capabilities. The set of sampled 1-h periods corresponded to hours 01:00,
03:00, 05:00, 07:00, 09:00, 11:00, 13:00, 15:00, 17:00, 19:00, 21:00 and 23:00 in the suburban
environment (H = 12), to 02:00, 03:00, 05:00, 08:00, 09:00, 11:00, 14:00, 15:00, 17:00, 20:00 and
23:00 for the urban scenario during weekdays (H = 11), and to 02:00, 05:00, 08:00, 11:00,
14:00, 17:00, 20:00, 21:00 and 23:00 during weekends (H = 9) [10,11]. Nevertheless, due to
different technical problems, one sensor per acoustic environment (hb114 and hb119 for
the urban and suburban area, respectively) was discarded as the acoustic data provided
was incomplete. As a result, 129 h 23 min of audio data from the N = 18 sensors of the
suburban environment and 114 h and 43 min from the N = 23 sensors installed across the
urban area were considered, respectively, for subsequent analyses.

Regarding the computation of STPs, on the one hand, the recorded audio signals
of T = 20 min length per sampled hour are parameterised by extracting B = 48 energy
sub-bands at the frame level using 30 ms length Hamming windows with 50% of overlap.
On the other hand, the STP value of a missing point was obtained through the cubic
interpolation of the values at neighboring grid points in each respective dimension, that is,
in frequency and time, following [19].

As for the clustering analysis, an agglomerative hierarchical clustering technique was
applied using Ward’s minimum variance algorithm [30], as it allowed both the automatic
grouping of STPs and interpretation of the resulting grouping through the derived hier-
archical dendrogram. The clustering analysis considered a sweep between QI = 2 and
QF = 18 clusters for the suburban area, and from QI = 2 to QF = 23 clusters for the urban
environment, being QF in both cases the total number of operative sensors per area. Four
CVIs were considered to determine Q∗: (i) the ratio of within-cluster and between-cluster
distances of the Davies–Bouldin index [31]; (ii) the Silhouette index [32], a measure of how
similar an object is to its own cluster (cohesion) compared to other clusters (separation);
(iii) the Gap value [33], which compares the within-cluster dispersion with that expected
over an appropriate reference null distribution; and, (iv) the overall within-cluster variance
of the Calinsky–Harabasz criterion [34].
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Figure 2. Map of the acoustic sensor locations of the WASN deployed across A90 circular highway
surrounding the city of Rome (suburban environment), adapted from Google Maps®.

4.1. Data Pre-Processing

For the STP computation, only those passages labelled as RTN should be considered,
thus, the audio clips labelled in one of the 28 ANE identified subcategories in both envi-
ronments, as well those others labelled as complex passages, where a mixture of different
sound sources (e.g., diverse ANEs together with RTN as background), were removed [15].

The selection threshold γ has been set to γ = 40%, i.e., a T = 20-min audio recording
was used for the corresponding STP computation if it contained at least 40% of RTN. This
value was selected as a trade-off between representativeness and coverage, by ensuring the
computation of mean hourly spectra of RTN considering more than 10% of the total time
and assuming that less than 3% of the collected data is discarded, respectively.

Moreover, other sensed 60-min periods were also discarded due to an episode of
heavy rain between 13:00 and 15:00 during the weekend in the suburban scenario. After
inspection of the corresponding audio recordings, it was found that a significant number of
RTN periods contained residuals of rain sound as well as their STPs presenting a significant
increase in high frequency energy STPs due to the contact of tyres with wet pavement.
Thus, audio data from these 1-h periods were discarded because the rain episode could
have potentially biased the corresponding clustering of the STPs.
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Figure 3. Map of the acoustic sensor locations of the WASN deployed across District 9 of Milan
(urban environment), adapted from Google Maps®.

Table 1 shows the discarded 1-h periods from both suburban and urban scenarios,
respectively, and provides information on the sensor name, the acoustic environment, the
sensed day and the considered criterion for their identification. It can be observed that
eleven periods were found in the suburban environment during the weekend day, four
due to the selection threshold criteria and seven due to a rain episode. Otherwise, up to eight
1-h periods were discarded during the weekday and only one on the weekend in the urban
scenario, as they did not meet the selection threshold criterion.

4.2. Analysis Results for Suburban Area
4.2.1. Interpolation of Spectro-Temporal Profiles

Figure 4 shows two examples of original and interpolated STPs for the suburban
environment, both for the weekend day. First, it can be observed that the original STPs
showed higher energy values at low frequency bands (below 500 Hz), due to the presence
of RTN. As can be seen in the left-most graph of Figure 4a, a significant increase of the
measured energy was observed at 13:00 and 15:00, which was more prominent at high
frequencies. This was mainly caused by a rain episode during the weekend, which was
confirmed by the ANE labels. After data interpolation, the rain effect was largely removed,
as can be seen in the right-most graph of Figure 4a. Figure 4b depicts an example of a
missing data period due to an insufficient number of RTN frames (below 40%) within
the corresponding audio recording at 11:00. In the interpolated STP (right-most graph),
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the mean energy curve at this hour was filled through the cubic interpolation of the
neighboring data.

Table 1. Discarded 1-h periods from both suburban and urban environments.

Sensor Environment Sensed Day Criterion Discarded 1-h
Periods

hb104 Suburban Weekend Rain 13:00, 15:00
hb105 Suburban Weekend Rain 15:00
hb112 Suburban Weekend % RTN < γ 15:00
hb119 Suburban Both Tech. problem All
hb134 Suburban Weekend % RTN < γ 15:00
hb141 Suburban Weekend Rain 15:00
hb143 Suburban Weekend % RTN < γ 11:00
hb147 Suburban Weekend Rain 15:00
hb148 Suburban Weekend Rain 15:00
hb149 Suburban Weekend Rain 15:00
hb153 Suburban Weekend Rain 13:00, 15:00
hb154 Suburban Weekend % RTN < γ 13:00, 15:00

hb114 Urban Both Tech. problem All
hb117 Urban Weekday % RTN < γ 8:00, 14:00
hb124 Urban Weekday % RTN < γ 15:00
hb125 Urban Weekday % RTN < γ 09:00
hb133 Urban Weekday % RTN < γ 03:00, 17:00
hb133 Urban Weekend % RTN < γ 23:00
hb137 Urban Weekday % RTN < γ 09:00
hb138 Urban Weekday % RTN < γ 11:00
hb145 Urban Weekend % RTN < γ 14:00

4.2.2. Weekday Suburban Analysis

Figure 5 shows the clustering validity indices curves derived from the four explored
metrics using the STP data analysis from the suburban environment during the weekday.
It can be observed that the solutions of Q = 3 (for Gap and Calinsky–Harabasz) and Q = 5
(for Davies–Bould and Silhouette) clusters attained local optimum values, for the Silhouette
and Gap indices being the number of clusters that attained a significant increase of the
validity index within the lower number of clusters.

Figure 6 shows the resulting dendrogram of the agglomerative hierarchical clustering
for the suburban environment on the weekday, where the solutions for Q = 3 and Q = 5
are also highlighted. Figure 7 shows the obtained similarity matrix S. As can be seen, the
solution is compliant with the clustering solution Q = 3 (shown in red rectangles on the
left-side), as well as Q = 5 (shown with white dashed lines across the image, but also as
green rhomboids at the bottom of the figure). In the figure, and considering the clustering
solution for Q = 5, the inter (for i = j) and intra-cluster (for i 6= j) Euclidean distances are
also shown as Dij (note that indices i and j refer to the numeration of clusters of the Q = 5
solution shown in Figure 6, e.g., Ci in green).
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Figure 4. Examples of original (left-side) and interpolated (right-side) STPs for the suburban environ-
ment from (a) sensor hb140 and (b) sensor hb143, respectively.

Figure 5. Clustering validity indices obtained for the acoustic suburban environment on the weekday,
resulting from the agglomerative hierarchical clustering algorithm for the considered number of
clusters sweep 2 ≤ Q ≤ 18. The suboptimal number of clusters are marked as red asterisks, being the
local maxima in all clustering indices despite the Davies–Bouldin index, which is a local minimum.



Appl. Sci. 2022, 12, 981 11 of 21

Figure 6. Dendrogram of the agglomerative hierarchical clustering for the suburban environment on
the weekday. Clustering solutions for Q = 3 (in red) and Q = 5 (in green) are also highlighted.

As an overall picture, Figure 7 enables us to see clearly that the Q = 5 clusters obtained
from the STPs exhibited different patterns, with the inner similitude between sensors of
each cluster being very high, because the distances in D11, D22, D33, D44 and D55 regions
were somewhat lower than the others. Due to the hierarchical nature of the clustering
technique, the solution for Q = 5 also included the Q = 3 solution, where two clusters
of Q = 3 also included two other clusters of Q = 5 (see Figure 6). As can also be seen
from Figure 7, the sensor hb155 position has been allocated near sensors hb156 and hb111
through the expert-base analysis, because they exhibited a more similar pattern within S.

4.2.3. Weekend Suburban Analysis

An equivalent clustering and analysis was conducted for the weekend, considering
the corresponding STPs. First, the clustering validity indices curves are shown in Figure 8.
In this case, Q = 2 (where Silhouette and Calinski–Harabasz indices attained local max-
ima) as well as Q = 4 (where Davies–Bouldin attained a local minimum) are the main
interesting values to be considered as optimal number of clusters. The dendrogram of the
agglomerative hierarchical clustering is depicted in Figure 9. Compared to the clustering
solutions analysed for the weekday, it can be seen that Q = 5 on the weekday and Q = 4
during the weekend shared some similarities: (i) sensors hb111 and hb156 are grouped
together; (ii) sensors hb104 and hb153 form a group on the weekday, and together with
their isolate cluster with hb155 to form a new cluster at the weekend. However, the rest of
the sensor locations are grouped as a whole in the Q = 4 solution for the weekend, while
they are separated in two different clusters for the Q = 5 solution on the weekday.
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Figure 7. Similarity matrix (S) for the suburban environment on the weekday. White dashed lines
separate the Q = 5 clustering solution, which in turn also includes the optimal Q = 2 solution. Q = 5
clusters are also highlighted at the bottom by means of green rhomboids and Q = 2 clusters on the
left-side with red rectangles. Inter (i = j) and intra-cluster (i 6= j) distances are highlighted in white
and denoted as Dij.

Figure 8. Clustering validity indices obtained for the acoustic suburban environment at the weekend,
resulting from the agglomerative hierarchical clustering algorithm for the considered number of
clusters sweep 2 ≤ Q ≤ 18. The suboptimal number of clusters are marked as red asterisks, being the
local maxima in all clustering indices despite the Davies–Bouldin index, which is a local minimum.
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Figure 9. Dendrogram of the agglomerative hierarchical clustering for the suburban environment at
the weekend. Clustering solutions for Q = 2 (in red) and Q = 4 (in green) are also highlighted.

Figure 10 shows the similarity matrix S for the suburban environment. Compared with
the same matrix computed for the weekday, it can be seen that there are many similarities
between both results. Looking at the differences, it is worth noting the higher distances
between sensors hb134 and hb154 with respect to the most similar cluster formed by sensors
hb110, hb141, hb103, hb148, and hb128 for the weekend analysis compared to its weekday
counterpart (see Figure 7).

Figure 10. Similarity matrix (S) for the suburban environment at the weekend. White dashed lines
separate the four clusters of the Q = 4 clustering solution (marked as green rhomboids at the bottom),
which, in turn, also includes the Q = 2 solution (also marked on the left-side as red rectangles). Inter-
(i = j) and intra-cluster (i 6= j) distances are highlighted in white and denoted as Dij.
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4.3. Analysis Results for the Urban Area
4.3.1. Interpolation of Spectro-Temporal Profiles

Figure 11 shows two examples of original and interpolated STPs for the urban envi-
ronment. Similar to the suburban environment, in this case, the STPs also show higher
energy values at low frequency bands (below 500 Hz), due to the presence of RTN. As
can be seen in the left-most graph of Figure 11a, a significant increase of the measured
energy was observed at 8:00 and 14:00. In this case, it was mainly caused by an increase in
various types of ANEs during these hours. After data interpolation, this increase in sound
levels was smoothed, as can be observed in the right-most graph of Figure 11a. Figure 11b
shows the result of interpolating a missing data period of an STP (left-most graph) due to
not having enough RTN frames (below γ = 40%) as a result of an episode of persistent
birdsong at 14:00.

Figure 11. Examples of original (left-side) and interpolated (right-side) STPs for the urban environ-
ment from (a) sensor hb117 and (b) sensor hb145, respectively.

4.3.2. Weekday Urban Analysis

Figure 12 shows the clustering validity indices curves derived from the four explored
metrics using the STP data analysis from the urban environment on the weekday. As for
the suburban analysis, the Q = 2 clusters solution was obtained for all the methods despite
the Gap index, which attained the best suboptimum solution for Q = 3 clusters.

Figure 13 shows the dendrogram of the agglomerative hierarchical clustering for
the urban environment on the weekday, where the solutions for Q = 2 and Q = 3 are
highlighted in color. Moreover, Figure 14 shows the similarity matrix S. As can be observed,
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the solution is coherent with the clustering solution Q = 2 (shown in red rectangles on
the left-side) as well as Q = 3 (shown with white dashed lines across the image and also
as green rhomboids at the bottom of the figure). It can be seen that, as in the suburban
case, the expert-based analysis stage yields a sensor ordering where the similarity matrix
presents lower Euclidean distances near its diagonal, with higher values for positions far
off the diagonal, including hb133 and hb144 sensor locations with higher distances from
hb109 and hb108 sensor locations. From the analysis of the similarity matrix, it can also be
concluded that the sensor locations belonging to clusters C2 and C3 present more different
behaviour (see higher values in D23 region) than if they are individually compared to
cluster C1 for the Q = 3 solution.

Figure 12. Clustering validity indices obtained for the acoustic urban environment on the weekday,
resulting from the agglomerative hierarchical clustering algorithm for the considered number of
clusters sweep 2 ≤ Q ≤ 23. The suboptimal number of clusters are marked as red asterisks, being the
local maxima in all clustering indices despite the Davies–Bouldin index, which is a local minimum.

Figure 13. Dendrogram of the agglomerative hierarchical clustering for the urban environment on
the weekday. Clustering solutions for Q = 2 (in red) and Q = 3 (in green) are also highlighted.
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Figure 14. Similarity matrix (S) for the urban environment on the weekday. White dashed lines
separate three clusters of the Q = 3 clustering solution (marked as green rhomboids at bottom), and
the Q = 2 one (also marked on the left-side as red rectangles). Inter (i = j) and intra-cluster (i 6= j)
distances are highlighted in white and denoted as Dij.

4.3.3. Weekend Urban Analysis

The same results were obtained when comparing the results of the appropriate number
of clusters between the weekend and the weekday in the urban acoustic environment:
Q = 2 was the suboptimal lower number of clusters for all the metrics, despite the Gap
one, which also attained this value for Q = 3 clusters (see Figures 12 and 15).

Figure 15. Clustering validity indices obtained for the acoustic urban environment at the weekend,
resulting from the agglomerative hierarchical clustering algorithm for the considered number of
clusters sweep 2 ≤ Q ≤ 18. The suboptimal number of clusters are marked as red asterisks, being the
local maxima in all clustering indices despite the Davies–Bouldin index, which is a local minimum.

However, regarding the distribution of sensors within the obtained clusters with the
agglomerative hierarchical clustering method, some small differences can be found when
comparing weekend with weekday STPs. As can be seen in the dendrogram depicted in
Figure 16, sensor locations of hb106 and hb127 were grouped together with another set of
sensors, as well as hb135 and hb137. Figure 17 shows the corresponding similarity matrix
of the urban weekend STPs. hb106 and hb127 seem to have behaved similarly to other
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sensors of cluster C1 in the Q = 3 solution and also other sensors from cluster C3, while
the sensor location of hb135 behaved clearly closer to those from cluster C2. This pattern
can also be discerned in Figure 14, but in the weekend analysis it is clearer. In contrast, the
acoustic environment sensed by hb137 seems to be closer to those acoustic environments
grouped in cluster C3, despite it being assigned to cluster C2.

Figure 16. Dendrogram of the agglomerative hierarchical clustering for urban environment at the
weekend. Clustering solutions for Q = 2 (in red) and Q = 3 (in green) are also highlighted.

Figure 17. Similarity matrix (S) for urban environment at the weekend. White dashed lines separate
three clusters of the Q = 3 clustering solution (marked as green rhomboids at bottom), and the
Q = 2 solution (also marked on the left-side as red rectangles). Inter (i = j) and intra-cluster (i 6= j)
distances are highlighted in white and denoted as Dij.

5. Discussion

Following analysis of the results, there are several aspects to be discussed. For instance,
it is worth noting that the described clustering and analysis methodology has been applied
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to acoustic data gathered from a WASN. However, it can also be applied to other kinds
of raw acoustic data obtained from N locations, e.g., from field measurement campaigns
conducted by experts, if it is collected simultaneously. Nevertheless, in this example it
could be more difficult to gather data 24 h/7 than using a WASN. Moreover, the clustering
results obtained in both environments (urban and suburban) reinforce the need to consider
acoustic data from the locations of each cluster to adapt ANED for RTN monitoring systems,
and to use data from different days, as considered in this study (weekday and weekend).
These results helped us to acquire a better understanding of the characteristics of RTN,
with the future possibility of customizing the training and testing of the ANED algorithm
in each specific location at a spectro-temporal level.

Regarding the number of clusters, they were larger in the suburban than in the
urban environment. In this sense, it is worth mentioning that the sensor nodes of the Rome
suburban WASN were installed on the portals along the A90 highway, considering different
locations of specific road geometry, such as single roads, crossings, nearby railways and
multiple connections [9,35]. This fact can probably explain why a higher number of clusters
were found within this environment than were found in the urban environment where the
sensors were deployed in different types of streets, but all within the same district of Milan,
with less differences among locations.

The clustering analysis of the spectro-temporal patterns obtained from the RTN acous-
tic data can be linked to other information (e.g., related to the physical sensor location
particularities) that could reinforce the STP clusters found. Regarding the suburban envi-
ronment, the sensor locations can be seen in detail in [11], where it can be appreciated that
all the sensors were located on the portals along the A90 highway surrounding the city
of Rome in Italy, except hb104, hb153, hb155 and hb143, which were located at secondary
road connections and, for the first three, at less than 500 m of the main highway crossing.
From the analyses presented in Section 4.2, these three sensor locations belonged to one
cluster during the weekend, while on the weekday this cluster was broken down into two
groups: one composed of hb153 and hb104, and another containing only hb155. Hence,
it seems that the acoustic ambient RTN presented a particular pattern, which was clearly
different from the rest of the sensor locations (see large distances shown graphically in
Figures 7 and 10). However, sensor locations hb111 and hb156, which were also grouped
together on both monitored days, seem to show a particular pattern. After inspecting their
STPs, they exhibited lower energy values for the majority of hours and frequency bands, a
pattern that could have been due to lower traffic density.

Considering the urban environment, the analyses conducted have shown that it is
reasonable to group the sensor locations in three clusters of sensor locations on both
weekdays and at weekends. In this environment, a contrast analysis can be performed
considering the type of roads within the city, as previously considered in [21] to analyse
the distribution of ANEs. In that study, the roads where sensors were located were divided
into narrow streets (of one lane) and wide streets (with more than 1-lane). According to this
classification, sensor nodes hb115, hb124, hb125, hb127, hb133, hb135, hb137, hb138, hb139,
hb144 and hb145 were labelled as narrow streets, while the rest of the acoustic sensors
were located in wide streets. From the clustering results presented in Section 4.3, it can
be observed that clusters C1 and C2 of Q = 3 clustering solution on the weekday (see
Figure 13) contained 100% and 87% of locations in the wide and narrow streets, respectively,
while cluster C1 contained only 60% of wide streets. In addition, during the weekend (see
Figure 16), clusters C1 and C3 of Q = 3 clustering contained 85% and 83% of wide streets,
while cluster C2 contained up to 90% of narrow street locations. As the type of street affects
the acoustic environment (e.g., the canyon effect in narrow streets [36]), this reinforces the
results obtained.

6. Conclusions

In this study, an analysis and clustering methodology has been proposed to group
RTN acoustic data by considering the spectro-temporal energy distribution of a set of
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recordings gathered simultaneously from an area of interest during a given period of time.
The proposal has been evaluated in two different environments, either urban and subur-
ban, using approximately 250 h of RTN data collected through operative WASNs of the
DYNAMAP project over two different days (a weekday and weekend day). The obtained
set of clusters have been analysed by experts, obtaining a similarity matrix that shows
graphically the Euclidean distances between specific RTN STPs from the sensed locations.

From the analyses conducted, it can be concluded that the weekday and weekend
patterns shared many similarities, and even when certain locations were grouped differ-
ently, on both days (e.g., in the urban environment, up to three clusters were obtained
on both days, differing only in 4 out of 23 sensor locations), which supports the idea of
considering weekday and weekend to have different RTN behaviour at a spectro-temporal
level. These findings could be considered to support decision-making by administrations
or private entities supervising roads and traffic, to evaluate the effects of action plans in
real time, and develop new policies to improve the quality of life of their citizens. It is of
note that the clustering analysis in the suburban environment revealed more heterogeneity,
i.e., a higher number of clusters was obtained (with up to five clusters in the weekday
analysis), than in the urban environment (where partitions were quite highly correlated
with the type of streets in terms of number of lanes). The higher homogeneity found in the
urban environment could be harnessed to the detection of possible variations or anomalies
in real-time through monitoring systems, including those provoking sudden changes in
spectro-temporal patterns, e.g., those derived from the COVID19 pandemic.

Future research will be developed to consider the viability of the proposed clustering
and analysis methodology from the results found in this study. To do so, data derived from
other sources of information (e.g., traffic monitoring systems) could also be considered to
deepen the analyses performed to better understand the main reasons for the similarities
and differences found between the set of clustered locations. This more precise knowledge
will enable us to obtain, on the one hand, better RTN models that can be used for the
development of more accurate ANED algorithms that can be trained specifically for each
clustered RTN environment and, on the other hand, to enrich RTN monitoring systems
with valuable information that could be used to support the development of specific actions
for real-time traffic management in urban and suburban environments.

Author Contributions: Conceptualization, F.A.; methodology, J.C.S., F.A. and R.M.A.-P.; software,
J.C.S.; validation, F.A.; data curation, J.C.S.; writing—original draft preparation, F.A. and J.C.S.;
writing—review and editing, F.A., J.C.S. and R.M.A.-P.; visualization, J.C.S.; supervision, F.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANE Anomalous noise event
ANED Anomalous noise event detector
CNOSSOS-EU Common Noise Assessment Methods in Europe
DYNAMAP Dynamic noise mapping
END European Noise Directive
IR Intermittency ratio
RTN Road traffic noise
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34. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [CrossRef]
35. Benocci, R.; Bellucci, P.; Peruzzi, L.; Bisceglie, A.; Angelini, F.; Confalonieri, C.; Zambon, G. Dynamic Noise Mapping in the

Suburban Area of Rome (Italy). Environments 2019, 6, 79. [CrossRef]
36. Echevarria-Sanchez, G.M.; Van Renterghem, T.; Thomas, P.; Botteldooren, D. The effect of street canyon design on traffic noise

exposure along roads. Build. Environ. 2016, 97, 96–110. [CrossRef]

http://dx.doi.org/10.1038/jes.2015.56
http://dx.doi.org/10.3390/s20020412
http://dx.doi.org/10.1109/TMM.2012.2199972
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.3390/environments6070079
http://dx.doi.org/10.1016/j.buildenv.2015.11.033

	Introduction
	Related Work
	Analysis and Clustering Methodology
	Data Pre-Processing
	Spectro-Temporal Analysis
	Clustering Analysis
	Expert-Based Analysis and Representation

	Experiments and Results
	Data Pre-Processing
	Analysis Results for Suburban Area
	Interpolation of Spectro-Temporal Profiles
	Weekday Suburban Analysis
	Weekend Suburban Analysis

	Analysis Results for the Urban Area
	Interpolation of Spectro-Temporal Profiles
	Weekday Urban Analysis
	Weekend Urban Analysis


	Discussion
	Conclusions
	References

