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Abstract: Condition-based maintenance (CBM) is becoming a necessity in modern manufacturing
units. Particular focus is given to predicting bearing conditions as they are known to be the major
reason for machine down time. With the open-source availability of different datasets from various
sources and certain data-driven models, the research community has achieved good results for
diagnosing faults in bearing fault datasets. However, existing data-driven fault diagnosis methods
do not focus on the changing conditions of a machine or assume all conditional data are available
all the time. In reality, conditions vary over time. This variability can be based on the measurement
noise and operating conditions of the monitored machines such as radial load, axial load, rotation
speed, etc. Moreover, the availability of the data measured in varying operating conditions is
scarce, as it is not always feasible to collect in-process data in every possible condition or setting.
Considering such a scenario, it is necessary to develop methodologies that are robust to conditional
variability, i.e., methodologies to transfer the learning from one condition to another without prior
knowledge of the variability. This paper proposes the usage of latent values of an auto-encoder as
robust features for inter-conditional fault classification. The proposed robust classification method
MLCAE-KNN is implemented in three steps. First, the time series data are transformed using Fast
Fourier Transform. Using the transformed data of any one condition, a Multi-Layer Convolutional
Auto-Encoder (MLCAE) is trained. Next, a K-Nearest Neighbors (KNN) classifier is trained based on
the latent features of MLCAE. The so-trained MLCAE-KNN is then used to predict the fault class
of any new observation from a new condition. The results of using the latent features of the Auto-
Encoder show superior inter-conditional classification robustness and superior accuracies compared
to the state-of-the-art.

Keywords: bearing faults; industry 4.0; robust fault diagnosis; transfer learning; k-nearest neighbors;
convolutional auto-encoders

1. Introduction

Production lines often encounter downtime, either planned or unplanned. Though
planned downtime affects the Overall Equipment Efficiency (OEE), it can be reduced
by an optimized usage plan. In contrast, unplanned downtime, as the name suggests,
is not planned beforehand and is typically due to the component failure, tool breakage
or other technical stoppage. It is difficult to foresee some of these failures and plan the
maintenance tasks accordingly. Predictive or condition-based maintenance is a solution
that can be employed in manufacturing industries to reduce this unplanned downtime.
Predictive maintenance methods, by predicting the condition of a machine or a component,
allow dynamic and convenient maintenance scheduling, thus making it an adequate
option for modern manufacturing industries [1]. Predictive maintenance, from the authors’
perspective, is accomplished in three important steps: (1) monitor a machine, (2) predict
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if something is anomalous and the machine is prone to failure and (3) make sure it is
maintained without causing any disturbance to the planned production. In situ deployed
sensors take care of the monitoring aspect, whereas fault prediction and maintenance
are traditionally manual procedures. This intermediate task of predicting the early faults
whilst monitoring the machines has been researched for a long time [2]. Importantly, there
are two types of fault diagnosis methods to monitor machines or machine components,
model-based and data-driven. Though very commonly used, the mathematical model of a
fault diagnosis system designed using a model-based method cannot take into account all
the noises or subtle variations that a system is exposed to [3]. Hence, depicting an accurate
machine model or open-source availability of such models is unfeasible, whereas using an
inaccurate model may lead to poor fault diagnostic performance in practice. Unlike the
model-based approaches, data-driven methods utilize the collected in-process data. These
data are analyzed, and the acquired knowledge is used to build a fault diagnosis model.
This allows a user to apply diagnostics even when there are no available mathematical
models of a particular machine. It also includes noise and a certain degree of variations
into the diagnostic model. This noise inclusion into the diagnostic model is simple, with
data-driven modeling compared to the model-based method [3], thus making it a more
desirable solution for fault diagnosis.

Recently, data-driven methods have been performing exceptionally well in predictive
fault diagnosis [4–7]. One of the main reasons for the increased performance of data-driven
models over model-based methods is the availability of open source datasets. Looking into
the state of the art for predictive maintenance in the manufacturing industry, most data-
driven approaches focus on finding bearing faults, as these are the most predominant source
of machine downtime [8]. There is a lot of research that shows very good classification
results for bearing fault detection on the standard datasets that exist for vibration-based
rolling element faults. Toma et al. show how a 1D Convolutional Neural Network (CNN)
can be used on time domain data to accurately predict a bearing fault [9]. Moreover,
by reshaping the time domain vibration data into a 2D array, i.e., into an image-style input,
the two dimensional convolutional operations were used for feature extraction [10,11]. This
study further presented the improved accuracy of the 2D CNNs for both normal and noisy
data using the time domain data as input. Unlike the above, other works have shown the
effectiveness of time-frequency transformed features for bearing fault detection [12]. In their
study, only a few selective features of Empirical Mode Decomposition were used along with
certain Machine Learning algorithms for effective classification of bearing faults. In [13],
the authors derived an entrogram from the time series data using Frequency Slice Wavelet
Transform, which they analyzed to see if the bearing faults can be distinguished from the
normal working condition. A state of the art (SOTA) survey on various methodologies
used for bearing fault diagnosis is detailed in [14]. As can be observed from this article,
there are numerous ways of detecting bearing faults. The results show that bearing fault
classification is effective when sufficient data from different conditions is available.

However, variability in the machine operating conditions poses a practical problem for
condition-based monitoring. Furthermore, it is impractical to collect the data for all these
variabilities (e.g., settings under which a machine operates, such as axial load, radial load,
rotation speed, etc.). As we know, general features from the observations X1 and X2 of
two different machine conditions do not always fall in a similar distribution. For example,
data collected in a lab setting can be different to the data acquired from a similar setup
in the field. Generic algorithms that are trained with the data from labs are then prone to
transfer errors when used to infer the results from data measured in the field [15]. Similarly,
the variation in the data can be caused by many parameters such as operating conditions,
sensor displacement, variation in the sensor, etc., and it is currently a challenge to develop
a model that is robust to these variations.

In an attempt to generalize the classification across conditions, researchers have
proposed several algorithms that transfer the learning from one condition to another [15],
where the class distribution from one condition is known (source domain) and some
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information of another condition (target domain) to which the class information will be
fitted and matched. To tackle the problem of needing data from all possible conditions,
unlike the existing methods, we propose a new approach based on latent features of Auto-
Encoders and nearest neighbor algorithms. This novel methodology considers any one
condition’s data and performs a robust classification across other conditions. For different
open-source datasets, we then compared our method to the best performing source only
methods and domain adaptation methods from the SOTA. This work is structured as
follows. Section 2 gives the detailed problem description, which is followed up by Section 3,
where we discuss some preliminaries necessary for understanding this work. The proposed
methodology is then described in Section 4, succeeded by Experimental Setup, Results,
and Conclusions in Sections 5–7, respectively.

2. Problem Description and Related Work

Before describing the problem, some notations and definitions regarding the problem
are introduced.

Transfer Learning: The process of learning the information from the data of one condi-
tion and transferring the knowledge to a new condition.

Source Domain: The condition of the machine from which the data are collected and is
used to train the fault diagnosis model.

Target Domain: The condition of the machine from which the data are collected and is
used to test the knowledge transfer.

Transfer of class knowledge in Transfer Learning (TL) tasks can be classified into two
methods. This is based on what is available during the training process:

Robust Learning: Refers to how to appropriately predict class label Yt
j of the jth ob-

servation Xt
j of the target domain when there is an available set of observations from the

source domain Ds = (Xs
i , Ys

i )
ns−1
i=0

Domain adaptation: In some cases, a few observations from the target domain Dt =

(Xt
i , Yt

i )
nt−1
i=0 are also available, and the model is adapted to the target domain. This is called

domain adaptation.
Here, Xs

i = (xi
0, xi

1, . . . , xi
m) is the sample set of the ith observation from the source

domain, and Ys
i is the corresponding label of that observation. In addition, Xt

i and Yt
i stand

for the sample set and corresponding label in the target domain, respectively.
While applying this to an industrial machine, the domains represent different condi-

tions. There are various TL tasks from the literature that learn the distribution of the Ds
and tries to adapt to the distribution of Dt. As represented in Figure 1, some methods train
using information from the target domain, which can be considered as Domain Adaptation
methods, and some do not; these can be considered as Robust Learners. The problem
considered in this work is robust learning as, most of the time, the target domain data are
scarce and infeasible to collect.

From the investigated literature, there are many transfer learning methodologies
between machine conditions which have achieved high accuracies. The majority of these
methods are domain-adaptation-based transfers of learning. The following are the state-
of-the-art articles in the domain adaptation for bearing fault diagnosis. Wang et al. [8]
proposed one such domain adaptation method named MDIAN. In [8], the authors use a
modified ResNet-50 structure to extract multiple scale features and to try to reduce the
conditional maximum mean discrepancy using the so extracted features of source and
target domain observations. As reported in their work, MDIAN outperforms several SOTA
approaches, such as Convolutional Neural Network (CNN) and CNN + Maximum Mean
Discrepancy, for various transfer learning tasks of fault diagnosis. In another domain
adaptation work, Li et al. [16] proposed a methodology where features from vibration data
are extracted using a Convolutional Neural Network. Along with the general prediction
loss of the source domain data, this CNN parallelly trains to minimize the central moment
discrepancy between the source and target distributions. They have achieved great transfer
learning accuracies across conditions for various datasets. To the knowledge of the authors,
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it has been the best performing algorithm yet for the task of transfer learning given some
target domain data. Furthermore, Li et al. [16] also described their implementation of
several algorithms such as CNN-NAP (Nuisance Attribute Projection) [17] and MCNN
(Multitask Convolutional Neural Network) [18] from the literature for transfer learning
of machine faults. The uniqueness of these implementations (CNN-NAP, MCNN) is that
they use a source-only dataset to train the classifier, similar to the consideration in this
work. Though they are the only other robust learning methodologies that are comparable
with this work, they are not much better than a simple Convolutional Neural Network
when considered for inter-conditional classification [18]. Thus, these above-mentioned
methodologies from the literature, indiscriminative of domain adaptation or robust learner,
will be further used to compare our proposal.

Figure 1. Different considerations for transfer learning. The top figure represents a domain adaptation
approach and the bottom figure represents a robust learning approach across different operational
conditions. The latter is the focus of this paper.

Contributions of this work are:

• The empirical evaluation of Auto-Encoder latent features as robust features across
conditions was performed. It was systematically performed using various transfer
tasks of two widely used open source bearing fault datasets.

• A simple methodology combining latent values of the Auto-Encoder and their proxim-
ity in the latent space is proposed for robust inter-conditional bearing fault diagnosis,
given only the source domain data for training.

• The results of the proposed method are presented and compared with the results of
the other state-of-the-art methods.
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Furthermore, in this work, the transfer learning experiments are considered to be
homogeneous and use source-only datasets for training (robust learner). Homogeneous
here refers to the classes being consistent across both source and target domain, whereas
a source-only dataset means the trained algorithm does not consider any information of
the target domain data. These constraints on the experiments are based on the practical
requirement for industries, where gathering data is a difficult task. Thus, to tackle the
challenge efficiently, a robust learner is proposed in this work.

3. Materials and Methods

First, we describe the used datasets for the experiments. Next, we describe the Transfer
Learning tasks from those datasets.

3.1. Data-Sets

Two open-source bearing fault diagnosis datasets were considered for experiments in
this work. One is from Case Western Reserve University (CWRU) and the other is from
Paderborn University (PU). Though the datasets are from 2015 and 2016, respectively,
a Scopus search based on terms ((’Case western’ OR ’Paderborn’) AND ’bearing fault’)
produced 205 research articles between 2020 and 2022. This shear number of high quality
research articles in the recent past signify the relevance and contribution of these two open
source datasets in evaluating state-of-the-art bearing fault diagnostic models.

Both the datasets provide vibration data for various faults of a bearing unit under
different machine operating conditions,; please refer to these articles for more details
regarding the datasets [19,20].

3.1.1. CWRU Dataset

This is an open source dataset provided by Case Western Reserve University bearing
data center. The motor in the setup is equipped with normal and faulty bearings Figure 2.
Different single point faults ranging from 0.007 to 0.14 to 0.021 inches are induced onto
the bearing’s rolling element, inner race and outer race. Along with the normal bearings,
the total number of grouped classes is thus 4 (normal, inner race, outer race and bearing
fault). These 4 classes of data were collected from 4 different loads of the motor, 0, 1, 2
and 3 hp. These multi-dimensional qualities of this dataset allow it to be used for different
application evaluations, particularly for inter-conditional bearing fault diagnosis.

a) b)
Figure 2. Setup of the open-source data-sets considered for validating the proposed method: (a) Case
Western Reserve University setup [19]; (b) Paderborn University setup [20].

3.1.2. PU Data-Set

The Paderborn University dataset is provided by the bearing data center of Paderborn
University. It comprises of vibration and electrical data collected for various artificial
and accelerated bearing faults. A total of 32 bearings were used with their motor setup,
among those 6 are normal condition bearings, 12 artificial faults and 14 natural faults
(Figure 2). Please note that, in this work, only the artificial faults of the PU dataset were
considered for analysis, similar to the work of [16]. The conditions in which these fault class
data were collected vary in rotation speed, load torque and radial force of the spindle. This
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dataset is thus very relevant and more complicated than the CWRU for inter-conditional
bearing fault diagnosis evaluation.

3.2. Transfer Tasks

The datasets mentioned above have different working conditions, as mentioned in
Table 1. The CWRU dataset has 4 conditions that are due to the variation in the load and
rotational speed of the shaft as a result of this changing load. The transfer of learning
between each of these conditions to another condition can be considered as one task. With 4
different working conditions based on the load applied (L = 0, 1, 2, 3 HP) and its respective
motor speeds (MS = 1797, 1772, 1750, 1730), 12 transfer learning tasks can be formulated
for the CWRU dataset. Accordingly, we can also formulate 12 transfer tasks for the PU
dataset as there are 4 different conditions in which this dataset exists based on varying load
torques (M = 0.7, 0.1 Newton meter), rotational speeds (N = 1500, 900 RPM) and radial
forces (F = 1000, 400 Newtons). The transfer tasks considered for the experiments are across
the conditions mentioned in Table 1.

3.3. Observation Definition

The data are processed and supplied to the algorithm by means of a moving window.
The length of this moving window is chosen such that it fits approximately two rotations’
information (CWRU dataset) and one rotations’ information (PU dataset) of the motor
spindle in any given condition. Furthermore, this window size is rounded to a power of
two to make it practically feasible for frequency domain transformation by Fast Fourier
Transform algorithm. Based on the different settings of the datasets, the window size of
each observation for the CWRU and PU datasets is chosen to be 1024 and 4096, respectively.
Another point to note is that there is no overlap between the windowed observations as we
can produce a large enough dataset as is. Some of the so-created observations both in raw
and frequency domains are shown in Figure 3.

Table 1. Different datasets and the settings in which they exist.

CWRU Dataset

Name Motor Speed (RPM) Load (HP) Sampling Frequency

C0 1797 0 12 KHz
C1 1772 1 12 KHz
C2 1750 2 12 KHz
C3 1730 3 12 KHz

Paderborn Dataset

Name Condition (N_M_F) Sampling Frequency

P0 N09_M07_F10 64 KHz
P1 N15_M01_F10 64 KHz
P2 N15_M07_F04 64 KHz
P3 N15_M07_F10 64 KHz
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Figure 3. Random observations of various faults from raw data (X-axis: sample number, Y-axis:
g) and frequency transformed data (X-axis: Harmonic order (HZ), Y-axis: g) of (a) CWRU and
(b) Paderborn dataset.

4. Proposed Method

The proposed method contains three key stages, (i) extracting and analyzing the
features using an encoder–decoder architecture; (ii) these latent values are used to train a
classifier; and (iii) the trained encoder and classifier will then be used to infer observations
from other conditions. The overview of training and testing is as shown in Figure 4.

Raw data
Condition a

FFT Scaler

Preprocessing Feature extraction & classification

Back propogation

Encoder Latent features Decoder

KNN Classifier

a)

b)
Raw data

Condition b
FFT Scaler Encoder Latent features

KNN Classifier

Figure 4. Structure of the proposed method train (a) and test (b). Note that every module that can be
trained in the proposed methodology will be trained using only one condition’s data.

4.1. Auto-Encoder for Feature Extractor

From the studied literature, it is evident that the generic features extracted based
on statistical methods do not provide much robustness across the conditions. Unlike the
statistical methods from the literature, here we investigated the usage of latent features of
an Auto-Encoder (AE) for designing a classifier that can be robust across conditions.

Auto-Encoder Architecture

Convolution layers have empowered many deep learning algorithms in computer
vision tasks and have followed the trend with one-dimensional data alike. In our approach,
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we use convolutional layers as the feature extractors followed by dense network layers for
further learning. Contrary to the typical implementation of CNN for bearing fault feature
extraction, we employ a Multi-Layer Convolutional AE network (MLCAE). This makes
network training feasible without the class labels.

The architecture of MLCAE has multiple things to consider. As the original application
of this work is to perform fault detection on resource-constrained devices, our main criteria
will be to keep the network simple while not losing the prediction accuracies. By simple
we mean as few parameters as possible to compute the necessary features for appropriate
cross-domain fault detection. After parameter tuning, a 7-layered convolutional AE struc-
ture was found to be producing good results in terms of fault detection accuracy. Thus,
a similar convolutional AE architecture was used for all the experiments going forward.
The structure of the AE is detailed below.

The Encoder (Ei) and Decoder (DEi) networks of an AE are generally understood as,

Ei : Xi 7→ Fi

DEi : Fi 7→ X
′
i

where i is the unique condition of the considered dataset, X is the input data, F is the
compressed representation or latent features of Xi and X

′
i is the reconstructed output

from latent features. The optimization of networks Ei and DEi is performed through
backpropagation while minimizing the objective function ’Mean Squared Error loss’:

Ei, DEi = argmin
( 1

N
ΣN

i=1(Xi − X
′
i)

2
)

(1)

where N represents the batch size.
The first part of the AE, an encoder Ei, compresses input data Xi to Fi using several

convolution, pooling, flatten and dense layers. Output of each layer differs based on the
type of the layer. In this paper, the first layer is a 1D convolution layer followed by a
pooling layer. Here, the convolution layer extracts features by performing convolution
operations, and a pooling operation reduces the number of parameters from convolution
layer and avoids over-fitting. Outputs of a lth combination of convolution and pooling
layer can be defined as

Xl
i = pool(σ(Xl−1

i ∗ kl + bl))

Here, pool represents an average pooling layer, σ represents an activation function
relu, ∗ represents a convolution operation, k is the kernel and b is the biases of the layer l.
In the Encoder, there are two such combinational layers which are followed by a flatten
layer and two dense layers. The last of the dense layers in the encoder network provides
the latent representation Fi of the input Xi.

The encoder Ei from input Xi to Fi thus looks like:

X1
i = pool(σ(Xi ∗ k1 + b1))

X2
i = pool(σ(X1

i ∗ k2 + b2))

X3
i = f latten(X2

i )

X4
i = (σ(W1X3

i + b1))

Fi = (σ(W2X4
i + b2)) (2)

W1, W2, b1, b2 in the above equations represent the weights and biases of the two dense
layers, respectively.

The second part of the AE, the decoder DEi is formed by a network which is similar but
mirrored in representation to that of encoder Ei. Two major differences are the transposed
alternatives to the pooling layer and convolution layer. Contrary to the pooling layer,
using the up-sampling layer, we repeat the features to increase the output sizes. Similarly,
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contrary to the convolution layer, using the transposed 1D convolution layer we achieve a
feature projection from lower dimensions to higher dimensions. The decoder network DEi
from latent features Fi to reconstructed output X

′
i looks like:

X3′
i = (σ(W3Fi + b3))

X2′
i = σ(Upsample(X3′

i ) ∗ k3 + b3)

X1′
i = σ(Upsample(X2′

i ) ∗ k4 + b4)

X
′
i = σ(X1′

i ∗ k5 + b5)

where k and b in the above equations represent Kernels and biases, respectively.
The exact composition of the AE layers and their parameters are detailed in Section 5.4.

4.2. Data Preparation for Auto-Encoders

The CWRU and PU datasets discussed above are originally in the time domain, which
can be used as inputs to the AE, whereas transformed data can also provide a different
perspective of the data. In this investigation, along with the raw data, we have used Fourier-
transformed frequency domain data. Furthermore, only the absolute value (magnitude) of
the positive spectrum was considered from the FFT-transformed data. Figure 3 shows data
of few observations of the CWRU and PU datasets in both time and frequency domains.
In addition, these time and frequency data are normalized within the range of [0,1] using
a Min–Max scaler according to Equation (3). The normalization step reduces the bias of
features due to very high or very low scales. These transformed and normalized data will
further become the inputs for our next step where features are extracted.

Xscaled =
( X−min(X)

max(X)−min(X)

)
(3)

4.3. Feature Extraction and Analysis

To understand the essence of these latent features in segregating similar classes of
different conditions, we considered random transfer tasks C0–C3 and P0–P3 from the
CWRU and PU datasets, respectively, where C0 data will be used for training the MLCAE,
and C0 and C3 data will be used for representing the data segregation results. The same
is implemented using the PU data. Four different MLCAEs were trained using raw and
frequency-transformed data of the conditions mentioned above. Latent features of those
4 MLCAEs using Equation (2) were then extracted to analyze and plot the data clusters.
For ease of representation of the data, we further reduced the latent features to 2 dimensions
using t-distributed Stochastic Neighbor Embedding (tSNE) [21].

As can be seen from Figure 5, the MLCAE features of the frequency transformed data
are better at clustering appropriate classes than the features of raw data, at least based on
the two components of the tSNE algorithm. We can also infer that the clustering results of
the PU dataset are suboptimal, suggesting the complex nature of the PU dataset. To further
classify observations, we train a K-Nearest Neighbors classifier.

4.4. K-Nearest Neighbors Classifier

The main assumption of this work is that the latent features inferred using an MLCAE
trained with one condition share an approximately similar distribution to other conditions’
data. Thus, proximity-based classifiers are preferred to boundary- or threshold-based
classifiers. To test our hypothesis of latent features across conditions sharing similar
distribution, we trained K-Nearest Neighbors (KNN). KNN is a well-known algorithm
that predicts class label based on the proximity of the input features. It measures the
distance to the K number of known observations in a multi-dimensional feature space and
votes for its class accordingly. Using above inferred latent features from the MLCAE as
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inputs for a KNN classifier, we tested its performance for various parameters of K and
distance function.

To benchmark the performance of KNN with different hyper-parameters, we investigated
the effect of varying K and distance functions on data from the two bearing fault datasets.
After splitting the data into 80% and 20% (training and validation, respectively) of one
randomly chosen condition from each dataset (C0 and P0), we first trained an MLCAE and
then used its latent features to train and validate various KNNs for classification accuracy.

For the K value, the range investigated was between 1 and 30 in steps of 3. For the
distance metric, which plays a major role in the performance of the KNN, we chose Chi-
square, Euclidean, Manhattan and Chebyshev distances. Chi-squared and Euclidean were
the best performing distance functions for numerical datasets such as ours according to [22],
while Euclidean, Manhattan and Chebyshev distances were among the top 10 performing
distance metrics for 28 datasets in a previous investigation [23]. It is to be noted that the
Hassanat distance performed well when the data were not normalized. If the inputs are
normalized, this distance metric may not perform at a similar level to the other known
metrics. Thus, in our benchmark study to find optimal hyper-parameters for KNN, we
omitted Hassanat.

Figure 5. tSNE-based clustering results of features from MLCAE for Raw and FFT data of both the
datasets. CWRU, raw and FFT features (a) and Paderborn, Raw and FFT features (b). Prefix A in
Inner Race and Outer Race fault labels of PU data refer to artificial faults.

As can be seen from Figure 6, the results of one of the iterations show that Chi-square
distance performs the worst for both bearing fault datasets, whereas Euclidean distance
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works well in both experiment cases (C0 and P0) and shows better performance over the
other considered distance functions. Euclidean distance is measured using the equation
mentioned in (4). In addition, multiple values of K have produced good results on the
validation data, making it a free choice within the range of 1 to 15. An absolute value of K
chosen for the robust learning experiments will be discussed in later sections.

deuclidean(q, p) =
√

Σm
i=1(qi − pi)2 (4)

Figure 6. Comparison of different K values and distance function of K Nearest Neighbors algo-
rithm for condition 0. Euclidean distance with K values around 1–15 seem to be producing good
classification results for both the datasets. The top and bottom comparisons are for CWRU and PU
datasets, respectively.

5. Experimental Validation

To prove the effectiveness of the proposed methodology for robust transfer learning
across conditions, we developed an experimental setup. There are important aspects
of this setup, considered datasets, transfer learning tasks and chosen methods from the
state-of-the-art to compare the results against.

5.1. Computational Unit and Training Time

The experiments have been performed on a DELL precision 5530. The configuration
of the computational unit used for further experiments is as follows: 32GB RAM, 6 2.6GHz
processors and an NVIDIA Quadro P2000 Graphical Programming Unit. The experimental
scripts are written in Python 3.7.8.

The loss function used for training the MLCAE is the Mean Squared Error loss, and the
stochastic optimizer used was Adam. The training times differ from task to task. For each
transfer task, it takes approximately about 30 s to train with CWRU data and 400 s with PU
data. Inference times are quite fast and were thus not measured.
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5.2. Compared Methods

As discussed in the related work section, state-of-the-art methods mentioned in Table 2
were chosen to compare the results. Two of the compared methodologies, Support Vector
Machine (SVM) and Convolutional Neural Network (CNN), are source-only methods
similar to our proposal, whereas CNN-MMD (CNN- Maximum Mean Discrepancy), MD-
DAN, MDIAN and CMD (Central Mean Discrepancy) use some information from the
target domain for the transfer tasks. Nevertheless, we made the comparisons to show the
effectiveness of the proposed method against state-of-the-art domain adaptation methods.

Table 2. Robust learning and domain adaptation methods from the literature are used to compare
with the proposed method.

Method Reference Source Only

SVM [8] Yes
CNN [8] Yes

CNN-MMD [8] No
MDDAN [8] No
MDIAN [8] No

CMD [16] No
MLCAE-KNN Proposed Yes

5.3. Evaluation Metric, Training and Testing Process

The evaluation of the proposed method is performed using Accuracy as a metric.
Accuracy here is sufficient, as the considered cases are balanced across different labels.

Accuracy =
TP+TN

Total number of samples

True Positives (TP) and True Negatives (TN) together form the total number of samples
that are predicted properly.

5.4. Architecture of the Auto-Encoder

Upon investigating the classification results of our methodology on the validation data
(a part of the training dataset), we understood that the frequency features as inputs to the
MLCAE are better at segregating appropriate classes than the raw data. Thus, the inputs
to the MLCAE in further experiments will be the magnitude of the positive spectrum of
the FFT data. In the case of the CWRU dataset, each observation consisted of 1024 sample
points so that it approximately fits information of two rotations of the motor spindle. This
means that considering only the positive spectrum of the FFT data will lead to an input
size of (512,1) for the CWRU dataset. Similarly, to approximately fit the information of two
spindle rotations, the samples in each observation for the Paderborn data were chosen as
4096. Thus, the input size of the architecture used for Paderborn will be of size (2048,1).
Some of the parameters used in architectures for CWRU and Paderborn are similar, whereas
some are not. Details of these parameters are also mentioned in Table 3.

Such AE-based extractors are trained with the FFT data of each condition. During the
process of training, it considers the loss of reconstruction and tries to minimize this loss
while optimizing the whole network. Once the stop criteria (non-reducing loss or suggested
epochs) are met, the training algorithm stops, and the encoder part of the so-trained AE is
considered for further usage. When an observation from a different condition is inferred
using this encoder, it produces a reduced number of features (values from the latent
dimension), which will then be used as inputs to train the classifier. Numerically, the
MLCAE (Multi Layer Convolutional AE) will train and bring sizes of (512,1) of CWRU
and (2048,1) of Paderborn to (20,1) latent dimensions, which will then be used by the KNN
classifier for further classification.
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Table 3. Used Multi-Layer Convolutional Auto-Encoder architecture for the experiments.

Layers Parameters

Conv1 Kernel size: (5,1), number of Kernels: 30, Stride: 1, activation: relu, Padding: Same
Pool1 Average Pooling, Size: 4, Stride: 1
Conv2 Kernel size: (3,1), number of Kernels: 15, Stride: 1, activation: relu, Padding: Same
Pool2 Average Pooling, Size: 2, Stride: 1
Flat1 converts 2d output from previous layer to 1d
Dense1 Dense, Size: (50,1), activation: relu
Latent Dense, Size: (20,1), activation: relu
Dense2 Dense, Size: (CWRU: (100,1), PU: (256,1)), activation: relu
UpSamp1 Upsampling1d, Size: 2
ConvT1 Conv1dTranspose, Kernel size: (3,1), number of Kernels: 15, Stride: 1, activation:

relu, Padding: Same
UpSamp2 Upsampling1d, Size: 4
ConvT2 Conv1dTranspose, Kernel size: (5,1), number of Kernels: 30 Stride: 1, activation:

relu, Padding: Same
ConvT3 Conv1dTranspose, Kernel size: (3,1), number of Kernels: 1

Stride: 1, activation: sigmoid, Padding: Same

We also discussed in the previous section that the choice of K value for the KNN
may fall anywhere between 1 and 15. Upon further investigation for random transfer
tasks, the classification results across conditions were inconsistent when the K values are
small and was showing degraded performance across conditions when the value is high.
The exact nearest number of observations to consider for predicting a new sample in case
of both the datasets was thus found to be optimal at k = 5.

The trained classifier from one condition was then tested against other conditions, and
the experimental results for various transfer tasks were discussed accordingly. The training
and testing process adopted in this article is as described in Algorithm 1.

Algorithm 1 Pseudo algorithm used for training and testing various transfer tasks of CWRU
and PU datasets.

1: Training Input: Labeled source domain data Ds = (Xs
i , Ys

i )
ns−1
i=0

2: Training Output: Min-Max Scaler (MMSi), Auto-Encoder Network (encoder Ei and
decoder DEi) and K-Nearest Neighbours classifier (KNNi)

3: Testing Input: Labeled target domain data Dt = (Xt
i , Yt

i )
nt−1
i=0 and MMSi, Ei and KNNi

4: Testing Output: Predicted labels of target domain data Yi
t
′

5: Begin:
6: for each value of i in range of n:
7: Train and transform Xi with MMSi as shown by Equation (3)
8: for (m epochs or stopping criteria met):
9: Optimize (Ei, DEi) with MSE as shown in (1)

10: end for
11: Compute latent features Fi of Xi using Equation (2)
12: Train KNNi with Fi and Yi
13: for each value of k in range of n and k 6= i:
14: Transform Xk with MMSi
15: Compute latent features Fk of Xk with Ei
16: Predict Y

′
k with Fk and KNNi

17: Compute accuracy of prediction with (Yk) and (Y
′
k)

18: end for
19: end for
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As an important note, the normalisation part of our pre-processing step has two
separate methods for the train and test datasets. Considering the goal of using a source-
only dataset for algorithm training, the test dataset (target domain data) will not be used
during the training process. The same scaler that is used to fit against and transform the
training data will be used to transform the test data. In this way, we make sure that no
information of the target domain is used during training.

6. Results

In this section, the results of the experiments are discussed. Since the two used datasets
are significantly different, they are handled separately. First, the results on the CWRU
dataset are discussed, and next the PU dataset results are detailed.

6.1. CWRU Data-Set

Considering the different conditions of the CWRU dataset as discussed in Section 3,
we have implemented 12 different transfer learning tasks. The results of our methodology
on the CWRU dataset are very good, as shown in Table 4. The best runs of our method have
a 100% accurate class transfer across different conditions. The exceptions are cases such as
C2–C0, C2–C1, etc., where the accuracy drops to 99.7%. Comparing the results with other
source-only methods or the domain adaptation methods, the MLCAE-KNN outperforms
other methods. One particular note about the presented table is that the method from
Reference [16], CMD, did not consider one condition from the dataset. Thus, we have left
the unconsidered tasks nill in the comparisons.

Table 4. Comparison of accuracies of various state-of-the-art methodologies on CWRU dataset.
Except for SVM, CNN and MLCAE-KNN, the other methods are for domain adaptation. Also
mentioned along with MLCAE-KNN is the accuracy variance across multiple iterations.

Transfer Task SVM CNN CNN-MMD MDDAN MDIAN CMD MLCAE-KNN

C0→ C1 70.70 72.25 81.00 87.15 99.60 - 100
C0→ C2 66.45 70.55 79.90 90.60 99.30 95.54 100
C0→ C3 63.40 62.45 55.85 91.65 99.10 99.54 100 (3%)
C1→ C0 71.30 87.30 88.95 84.00 99.70 - 100
C1→ C2 70.00 89.80 88.70 92.40 99.65 - 100
C1→ C3 74.00 74.70 80.50 94.20 99.80 - 100 (5%)
C2→ C0 62.85 60.35 64.65 87.40 97.60 100 99.8
C2→ C1 61.60 75.50 79.80 91.95 99.45 - 99.7
C2→ C3 67.65 84.30 79.95 91.50 99.45 96.9 100 (2%)
C3→ C0 65.30 66.90 75.25 84.25 97.45 100 99.9 (2%)
C3→ C1 65.70 81.15 71.15 87.35 98.60 - 99.9 (3%)
C3→ C2 63.25 74.95 74.85 92.15 99.50 100 100

As the AE structure trains without the necessity of class labels, the learned latent
features can be quite different from one iteration of the complete experiment to another.
As expected, few features make the distinction much better than the others. Thus, one
iteration produces exceptional results and some may not. The criteria of selecting the best
model for further practical usage is out of the scope of this work. The results presented
in this article are from the best performing models from the experiments, along with the
variability shown by our methodology across various experimental iterations. Though de-
viation of accuracy using our method is about 0–5%, it is low compared to the accuracy
variability mentioned for some of the other methods according to [16].

6.2. Paderborn Dataset

As the CMD was performing great along with our method during the previous
comparison, and as the CNN was the best of source-only method, we will use these two for
further comparisons on the Paderborn dataset. This dataset is known to be complicated
because of the multitude of variations considered in their setup. That said, our method
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shows promising results for various tasks, even on this dataset. The MLCAE-KNN clearly
outperforms the CNN for every transfer task. From the results, it is also evident that our
classifier is robust for some tasks such as P1–P3, P2–P3 and P3–P1 where even the CMD,
the state-of-the-art domain adaptation method, was underperforming compared to ours.

Further analyzing the results from this dataset, we notice that collecting data at higher
scales and using our methodology for prediction provides better class transfer across
conditions. For example, training on condition P0 and testing on conditions P1 and P3
have always provided better results than the other way around (From P1, P2 and P3 to P0).
Here, P0’s conditions are on a higher scale compared to the other three, as seen in Table 1,
whereas, between other conditions such as P1, P2 and P3, class information transfer has
been acceptable both ways. For this particular dataset, the CMD was better or as good as
our method in the majority of the transfer tasks, as shown in the comparisons in Table 5.
Overall, considering just the source domain data, the MLCAE-KNN has been robust in
transferring the class information from one condition to another, proving its usability in an
industrial context.

Table 5. Comparison of accuracies of CNN (Robust learner) and CMD (Domain adaptation) against
our methodology on the Paderborn University dataset. MLCAE-KNN outperforms CNN in all
the transfer tasks and performers better than CMD for a few tasks. Also mentioned along with
MLCAE-KNN accuracies is the variance across multiple iterations of the experiments.

Transfer Task CNN CMD MLCAE-KNN

P0→ P1 39.65 70.44 59.1 (6%)
P0→ P2 51.33 75.30 62.7 (6%)
P0→ P3 40.04 69.73 58.8 (6%)
P1→ P0 44.43 82.62 45.3 (5%)
P1→ P2 82.32 94.01 83.8 (3%)
P1→ P3 89.39 91.63 94.9 (1%)
P2→ P0 39.23 78.03 72.5 (5%)
P2→ P1 57.10 89.97 88.7 (6%)
P2→ P3 50.94 80.34 89.6 (6%)
P3→ P0 43.52 70.93 51.0 (4%)
P3→ P1 94.11 94.99 95.2 (1%)
P3→ P2 47.43 88.87 85.6 (5%)

7. Conclusions

In the context of condition-based monitoring, the collection of data from different
conditions/different machine settings is a difficult task and is sometimes even impossible.
Ideally, it is efficient to perform transfer of learning from one condition to another. We pro-
posed a source-only methodology to effectively transfer class learning between conditions
of a machine for bearing fault detection. We implemented and compared the performance
with various state-of-the-art transfer learning methods, both source-only methods (SVM
and CNN) and domain adaptation methods (CNN-MMD, MDDAN, MDIAN and CMD)
for a set of tasks. From the results, the following can be concluded:

(1) The proposed method performs more robust classification compared to other transfer
learning methods. For many inter-conditional transfer tasks, the MLCAE-KNN source-
only method performs as good or better than the other domain adaptation methods
that consider certain information from the target domain.

(2) Though the proposed methodology is robust, for some transfer tasks, it has a certain
deviation in the accuracies across different runs (up to 6% for certain tasks of the
Paderborn dataset, as presented in Table 5).

(3) In our observation with the experiments of MLCAE-KNN, training a classifier using
data from higher parameter settings (rotational speed, radial load, etc.) and trans-
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ferring the learning onto lower settings provides better a transfer of class learning
compared to the other way around.

As for how and what effects a transfer learning task has across conditions is still
a preliminary hypothesis, further investigation is needed. To further validate our pro-
posal and the preliminary hypothesis, as a future work we will investigate transfer of
class learning tasks by considering other datasets for a similar application. In addition,
as discussed in the proposed methodology, one of the criteria is to keep the AE structure
simple. This is due to its intended use on resource-constrained embedded devices. Thus,
our future work also extends to investigating the practicalities of inferring MLCAE-KNN
on an embedded device.

Author Contributions: Conceptualization, C.R.K.; software, C.R.K.; formal analysis, C.R.K.; investi-
gation, C.R.K.; data curation, C.R.K. writing—original draft preparation, C.R.K.; writing—review
and editing, J.V., D.V., J.B. and H.H.; visualization, C.R.K.; supervision, J.V., D.V., J.B. and H.H.;
funding acquisition, J.B. and H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by a research grant from the Flemish Agency for Innovation
and Entrepreneurship (VLAIO) within the HBC.2017.0650 RESSIAR-MID/TransSIMS project and
the HBC.2019.2644 WEAR-AI project. It is also partially funded by project number 180493 AIO-
PROEFTUIN-Industry4.0 and by project number 1301 Co-Creatie binnen het Competentiecentrum
Machinebouw en Mechatronica W-VL.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://engineering.case.edu/bearingdatacenter/download-data-file and https://mb.
uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Z.; Wang, K.; He, Y. Industry 4.0—Potentials for Predictive Maintenance. In 6th International Workshop of Advanced Manufacturing

and Automation; Atlantis Press: Paris, France, 2016. [CrossRef]
2. Teixeira, H.N.; Lopes, I.; Braga, A.C. Condition-based maintenance implementation: A literature review. Procedia Manuf. 2020, 51,

228–235. [CrossRef]
3. Jung, D.; Sundstrom, C. A Combined Data-Driven and Model-Based Residual Selection Algorithm for Fault Detection and

Isolation. IEEE Trans. Control Syst. Technol. 2019, 27, 616–630. [CrossRef]
4. Gonzalez-Jimenez, D.; Del-Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-driven fault diagnosis for electric drives: A review.

Sensors 2021, 21, 4024. [CrossRef]
5. Aherwar, A. An investigation on gearbox fault detection using vibration analysis techniques: A review. Aust. J. Mech. Eng. 2012,

10, 169–183. [CrossRef]
6. Wei, Y.; Li, Y.; Xu, M.; Huang, W. A review of early fault diagnosis approaches and their applications in rotating machinery.

Entropy 2019, 21, 409. [CrossRef]
7. Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and

roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [CrossRef]
8. Wang, X.; Shen, C.; Xia, M.; Wang, D.; Zhu, J.; Zhu, Z. Multi-scale deep intra-class transfer learning for bearing fault diagnosis.

Reliab. Eng. Syst. Saf. 2020, 202, 107050. [CrossRef]
9. Toma, R.N.; Prosvirin, A.E.; Kim, J.M. Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning

classifiers. Sensors 2020, 20, 1884. [CrossRef] [PubMed]
10. Zhang, Y.; Xing, K.; Bai, R.; Sun, D.; Meng, Z. An enhanced convolutional neural network for bearing fault diagnosis based on

time–frequency image. Meas. J. Int. Meas. Confed. 2020, 157, 107667. [CrossRef]
11. Zhang, J.; Sun, Y.; Guo, L.; Gao, H.; Hong, X.; Song, H. A new bearing fault diagnosis method based on modified convolutional

neural networks. Chin. J. Aeronaut. 2020, 33, 439–447. [CrossRef]
12. Patel, S.P.; Upadhyay, S.H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis. Expert Syst.

Appl. 2020, 154, 113400. [CrossRef]
13. Zhang, K.; Xu, Y.; Liao, Z.; Song, L.; Chen, P. A novel Fast Entrogram and its applications in rolling bearing fault diagnosis. Mech.

Syst. Signal Process. 2021, 154, 107582. [CrossRef]

https://engineering.case.edu/bearingdatacenter/download-data-file
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
http://doi.org/10.2991/iwama-16.2016.8
http://dx.doi.org/10.1016/j.promfg.2020.10.033
http://dx.doi.org/10.1109/TCST.2017.2773514
http://dx.doi.org/10.3390/s21124024
http://dx.doi.org/10.7158/M11-830.2012.10.2
http://dx.doi.org/10.3390/e21040409
http://dx.doi.org/10.1016/j.ymssp.2019.106587
http://dx.doi.org/10.1016/j.ress.2020.107050
http://dx.doi.org/10.3390/s20071884
http://www.ncbi.nlm.nih.gov/pubmed/32231167
http://dx.doi.org/10.1016/j.measurement.2020.107667
http://dx.doi.org/10.1016/j.cja.2019.07.011
http://dx.doi.org/10.1016/j.eswa.2020.113400
http://dx.doi.org/10.1016/j.ymssp.2020.107582


Appl. Sci. 2022, 12, 965 17 of 17

14. Hoang, D.T.; Kang, H.J. A survey on Deep Learning based bearing fault diagnosis. Neurocomputing 2019, 335, 327–335. [CrossRef]
15. Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing

2020, 407, 121–135. [CrossRef]
16. Li, X.; Hu, Y.; Zheng, J.; Li, M.; Ma, W. Central moment discrepancy based domain adaptation for intelligent bearing fault

diagnosis. Neurocomputing 2021, 429, 12–24. [CrossRef]
17. Ma, H.; Li, S.; An, Z. A fault diagnosis approach for rolling bearing based on convolutional neural network and nuisance attribute

projection under various speed conditions. Appl. Sci. 2019, 9, 1603. [CrossRef]
18. Guo, S.; Zhang, B.; Yang, T.; Lyu, D.; Gao, W. Multitask Convolutional Neural Network with Information Fusion for Bearing Fault

Diagnosis and Localization. IEEE Trans. Ind. Electron. 2020, 67, 8005–8015. [CrossRef]
19. Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark

study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [CrossRef]
20. Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems

by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the Third
European Conference of the Prognostics and Health Management Society 2016, Bilbao, Spain, 5–8 July 2016.

21. van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
22. Hu, L.Y.; Huang, M.W.; Ke, S.W.; Tsai, C.F. The distance function effect on k-nearest neighbor classification for medical datasets.

SpringerPlus 2016, 5, 1304. [CrossRef]
23. Abu Alfeilat, H.A.; Hassanat, A.B.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.S. Effects

of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 2019, 7, 221–248. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.neucom.2018.06.078
http://dx.doi.org/10.1016/j.neucom.2020.04.045
http://dx.doi.org/10.1016/j.neucom.2020.11.063
http://dx.doi.org/10.3390/app9081603
http://dx.doi.org/10.1109/TIE.2019.2942548
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1186/s40064-016-2941-7
http://dx.doi.org/10.1089/big.2018.0175
http://www.ncbi.nlm.nih.gov/pubmed/31411491

	Introduction
	Problem Description and Related Work
	Materials and Methods
	Data-Sets
	CWRU Dataset
	PU Data-Set

	Transfer Tasks
	Observation Definition

	Proposed Method
	Auto-Encoder for Feature Extractor
	Data Preparation for Auto-Encoders
	Feature Extraction and Analysis
	K-Nearest Neighbors Classifier

	Experimental Validation
	Computational Unit and Training Time
	Compared Methods
	Evaluation Metric, Training and Testing Process
	Architecture of the Auto-Encoder

	Results
	CWRU Data-Set
	Paderborn Dataset

	Conclusions
	References

