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Abstract: Diabetes, a metabolic disease in which the blood glucose level rises over time, is one of
the most common chronic diseases at present. It is critical to accurately predict and classify diabetes
to reduce the severity of the disease and treat it early. One of the difficulties that researchers face
is that diabetes datasets are limited and contain outliers and missing data. Additionally, there is a
trade-off between classification accuracy and operational law for detecting diabetes. In this paper,
an algorithm for diabetes classification is proposed for pregnant women using the Pima Indians
Diabetes Dataset (PIDD). First, a preprocessing step in the proposed algorithm includes outlier
rejection, imputing missing values, the standardization process, and feature selection of the attributes,
which enhance the dataset’s quality. Second, the classifier uses the fuzzy KNN method and modifies
the membership function based on the uncertainty theory. Third, a grid search method is applied
to achieve the best values for tuning the fuzzy KNN method based on uncertainty membership,
as there are hyperparameters that affect the performance of the proposed classifier. In turn, the
proposed tuned fuzzy KNN based on uncertainty classifiers (TFKNN) deals with the belief degree,
handles membership functions and operation law, and avoids making the wrong categorization.
The proposed algorithm performs better than other classifiers that have been trained and evaluated,
including KNN, fuzzy KNN, naïve Bayes (NB), and decision tree (DT). The results of different
classifiers in an ensemble could significantly improve classification precision. The TFKNN has time
complexity O(kn2d), and space complexity O(n2d). The TFKNN model has high performance and
outperformed the others in all tests in terms of accuracy, specificity, precision, and average AUC,
with values of 90.63, 85.00, 93.18, and 94.13, respectively. Additionally, results of empirical analysis of
TFKNN compared to fuzzy KNN, KNN, NB, and DT demonstrate the global superiority of TFKNN
in precision, accuracy, and specificity.

Keywords: diabetes; classifier; ensemble classifier; machine learning; Pima Indians diabetes dataset;
fuzzy KNN; uncertainty

1. Introduction

The term “diabetes” refers to a group of metabolic diseases most notably related
to glucose metabolism. Carbohydrates obtained by the body from bread, potatoes, rice,
cakes, and a variety of other meals are progressively broken down and destroyed [1]. This
disintegration and breakdown process begins in the stomach and continues through the
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duodenum and other segments of the small intestine. This breakdown and decomposition
process produces a collection of sugars (carbohydrates) that are taken into circulation [2].
Although the specific origin of diabetes mellitus is uncertain, scientists believe that both
environmental and genetic factors contribute to the condition [3]. Although it is incurable,
it can be managed with medications and medicines [4]. Individuals with DM are at risk
for the development of further health problems. Early diagnosis and treatment of DM will
also help prevent complications and reduce the risk of serious health problems [5]. There
have been numerous advances in recent technologies, such as machine learning, fuzzy
methods [6,7], and deep learning; Figure 1 illustrates these technologies, adopted from [8].
Recently, the integration between big data and IoT-based systems has played a main role
in the diagnosis and treatment process. According to [9], overweight and obesity (OO),
and type 2 diabetes (T2D) pose a major public health burden that is increasing globally.
Efficient preventive and control strategies for OO and T2D are critical not only to reduce
immediate epidemiological costs but also to ensure that the United Nations’ Sustainable
Development Goals (SDGs) are met, to reduce premature deaths from non-communicable
diseases (NCDs) by one-third by 2030 by prevention and recovery, and to improve mental
health and well-being [3]. Smart systems will be helpful to all researchers to perform
ground-breaking studies in OO and T2D using geo-tagged big data from smartphones,
wearables, and other sensors. Personal diagnosis, screening, exercise, therapy and implants,
and ultimately improved levels of telemedicine across the population, are all possible
applications of smart health systems [10].

Figure 1. Diabetes and recent technologies.

Researchers are still searching for an accurate answer to the following question: why
do the conditions of “prediabetes” and T2D specifically affect certain people and not others?
However, several factors appear to increase the risk of developing diabetes, including those
that are discussed in [11,12]; major dimensions affecting diabetes are shown in Figure 2.

The primary objective of this paper is to introduce an appropriate soft-computing
methodology for handling the diabetes of pregnant women. The proposed focus is on
handling the trade-off between machine learning accuracy versus the rationality of disease
diagnosis. The developed method classifies diabetes in pregnant women using hybrid
fuzzy membership concepts. Diabetes is a metabolic disease in which blood glucose
levels rise over time and is considered one of the most common chronic diseases today.
The significance of the study was determined by the importance of accurate prediction
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and classification of diabetes to reduce disease severity and start valid and appropriate
treatment at an early stage. The key novelty of the research is introducing an extended
version of Fuzzy KNN that depends on a hybrid membership function rather than regular
(s). The proposed algorithm is tuned and sets the optimal value(s) of the hyperparameters
using the grid search. The TFKNN is an enhanced version of the FKNN in the membership
decision function, which enables TFKNN to deal with the belief degree, handle membership
function and operation law, and avoid making the wrong categorization.

Figure 2. Major dimensions affecting diabetes.

In this paper, we concentrated on the determinants of gestational diabetes, which
include the stages listed below (See Section 4). The placenta generates hormones that help
and sustain pregnancy during pregnancy. Insulin resistance is increased by these hormones.
The placenta enlarges and generates a considerable amount of these hormones throughout
the second and third trimesters of pregnancy, making insulin action harder. To counteract
this resistance, the pancreas produces more insulin under normal conditions. However,
the pancreas occasionally fails to keep up with the rate, resulting in a very tiny amount
of sugar (glucose) reaching the cells, while a significant amount accumulates in the blood
circulation [13].

As a result, pregnant women could be affected by gestational diabetes, but some are
more vulnerable than others. Women over the age of 25, with a family or personal history
of diabetes, and who are overweight are all risk factors for diabetes [13,14]. Based on the
most recent epidemiological results [15], forecasts the global and regional effects of diabetes
for 2017 and 2045. Notably, the hit rate will increase to 693 million by 2045. The high
prevalence of diabetes has significant social, environmental, and growth consequences,
especially in low- and middle-income countries. The WHO’s objective is to encourage and
support successful diabetes monitoring, prevention, and control efforts, particularly in
poor and middle-income countries [16].

Fuzzy logic is close to human reasoning, as it can accommodate the inconsistencies
present in medical diagnosis results. Fuzzy logic is a Boolean logic extension dependent on
degrees of truth between 0 and 1, or true/false. The theme of degree, inaccuracy, linguistics,
and observation underpins fuzzy logic [8].

Many studies have been introduced to predict diabetes [17]. The best rules were opti-
mized using the cost estimation function after fuzzy classification rules were created [18].
In [8], fuzzy expert system (FES)-based data mining was used to analyze information from
the available evidence that could be ambiguous and to propose linguistic concepts with
large approximations as their key to medical texts. Recently, the speed of diabetes diagnosis
has increased based on the integration of recent technologies such as deep learning and a
novel optimized architecture of four Hadoop clusters for data classification using the multi-
level MapReduce fuzzy classifier (MMR-FC) and MapReduce-modified density-based
spatial clustering of applications with noise (MR-MDBSCAN) [18].
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In this study, the PIDD is well analyzed and preprocessed. A fuzzy KNN classification
model boosted by hyperparameter optimization is proposed to predict diabetes in the PIDD
versus other classification models. Although KNN achieves higher micro-average and
macro-average ROC curves, fuzzy KNN is the superior classifier for diabetes prediction in
the PIDD based on accuracy, precision, sensitivity, and average AUC. The PIDD is analyzed
to detect the relationship between the diabetes features and class labels and to detect the key
problems of the given dataset, including outliers, missing values, normalization, feature
importance, and imbalanced categories.

The major contributions of this paper can be summarized as follows:

• A reliable preprocessing batch procedure (s) is proposed to resolve the interference of
feature impacts and contradictions, determining the discriminator plans of the binary
category for dealing with the PIDD;

• Initial crisp logic rules are extracted from the processed data using a decision tree,
Naïve Bayes, and a basic KNN classifier (s) for diabetes classification;

• The training dataset is used as a base for resolving the uncertainty membership of each
instance for reducing the misclassification coefficient cost and categorizing instance (s)
reliably;

• A modified Fuzzy KNN classifier (TFKNN) is proposed that uses an uncertainty
membership function instead of regular fuzzy membership or a classical member
function for the KNN classifier (s);

• It is assumed that some performances lack hyperparameter values for the classification
model, and a grid search optimizer is used to determine the tuned value(s) of the
hyperparameter (s) for the fuzzy KNN, DT, NB, and the proposed TFKNN classifiers;

• The performance of the classifier (s) with the best values for model parameters using
the PIDD regarding the classification metrics is benchmarked and validated.

• A hybrid cross-hold-fold validation framework is applied to validate the proposed
methodology using different classifiers, including uncertainties.

The rest of the paper is organized as follows: the related work and the current contri-
butions to classify diabetes are given in Section 2. Section 3 includes the steps of the applied
methodologies, including the problem definition, preprocessing, and the utilized methods.
The proposed fuzzy KNN algorithm is investigated in Section 4. PIDD descriptions are
discussed in Section 5, and the results and discussion are presented. Finally, the conclusion
and directions for future work are given in Section 6.

2. Recent Contributions to Classify Diabetes

Researchers in the field of data science have recently made efforts to discover, detect,
and diagnose diabetes in its early stage. The use of classification and regression algorithms
can handle and aggregate large-scale patients simultaneously to help track disease. Al-
though tracking diabetes is helpful, efforts to recommend a suitable treatment protocol are
being made using machine learning and computer vision methodologies [19,20]. The PIDD
was considered one of the most well-known datasets used in classification and prediction
issues in diabetes diseases. A comparative review of prediction approaches for diabetes was
presented by Ganesh and Sripriya [21]. Moreover, a systematic review of machine learning
and artificial intelligence approaches utilized to predict and self-manage diabetes based on
the PIDD was presented by Chaki et al. [5]. A framework for a semantic retrieval algorithm
to diagnose diabetes based on fuzzy ontology orientation was presented by El-Sappagh
et al. [22]. The results achieved based on fuzzy ontology were 97.67% for 54 (fuzzy) object
properties, 138 (fuzzy) datatype properties, 105 fuzzy data types, and 2640 instances.

A prediction of diabetes using classification algorithms such as decision tree, support
vector machine (SVM), and NB are presented by Sisodia et al. [23]. In this work, diabetes
was predicted at an early stage. The accuracy achieved was 76.3 on the PIDD. A hybrid
model based on a GA and a backpropagation network (BPN) was proposed by Karegowda
et al. [24], in which the weights of the BPN were optimized in the initialization based
on the GA. The obtained accuracy value was between 77.07% and 84.71% when using
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correlation-based feature selection GA and BPN. A sequential minimal optimization (SMO)
based on quadratic programming was used on the PIDD dataset by Khanwalkar and
Soni [25] with an average accuracy reaching 77.35%. The clinical PIDD dataset was further
utilized to predict diabetes in women of Pima Indian heritage using supervised learning
approaches investigated by Bhoi et al. [26]. They compared and evaluated the results in
terms of accuracy, precision, recall, F1 score, and AUC for the output of the classification
tree (CT)-, SVM-, KNN-, NB-, random forest (RF), neural network (NN)-, AdaBoost (AB)-
and logistic regression (LR)-supervised classifiers. Benbelkacem and Atmani [27] presented
an RF algorithm for the Pima dataset using 768 instances and 100 trees for the applied forest,
and the results obtained were between 70% and 80% accuracy. The AB can be utilized
efficiently to classify the enrolled data based on a genetic algorithm [28].

Ramesh et al. [29] presented an end-to-end healthcare monitoring framework for
managing diabetes and predicting risk cases on the Pima dataset. They achieved 83.20%,
87.20%, and 79% accuracy, sensitivity, and specificity, respectively. An algorithm based on
backward elimination and SVM was presented by Maulidina et al. [30] to classify the PIDD.
They utilized 268 diabetic patients and 500 normal patients with 8 well-known attributes,
and they achieved an average accuracy of 85.71%. Hrimov et al. [31] presented an LR
method to predict the probability of diabetes based on the PIDD dataset, and they achieved
77.06% accuracy based on Python.

An enhanced early detection method for diabetes based on type 2 diabetes mellitus
(T2DM) using multiple classifier approaches was presented by Zhu et al. [32]. Multiple
weighted factors based on a dynamic weighted voting scheme were used to adapt the
prediction decision of this method to employ all voters in an equal manner and to combine
these decisions. Ordás et al. [33] proposed diabetic prediction approaches that include
data augmentation using variational autoencoder (VAE), and the features are augmented
using sparse autoencoder (SAE). The PIDD is further utilized and classified based on a
convolutional neural network for classification, taking the number of pregnancies, glucose
or insulin level, blood pressure, and age of patients into consideration. Table 1 illustrates
in detail the most recent approaches related to diabetes, including the accuracy, problem
statement, preprocessing, feature selection, the selected classifier, the major contribution,
and the minor drawbacks of each recent approach. Although deep learning (DL) approaches
are a very interesting and hot topic to solve the classification and regression problem
in many different applications, some medical applications require the determination of
uncertainty values of the features without the need to obtain higher accuracy. Naz and
Ahuja [34] present a DL model based on the PIDD dataset with a promising achieved
accuracy of 98.07%, precision of 95.22%, recall of 98.46%, and F1 score of 96.81%. They
utilized a limited number of layers from one layer to four layers and used SoftMax and a
rectifier activation function without fine-tuning hyperparameters, which generally leads
to instability of the results and an overfitting problem [35]. Another deep neural network
(DNN) for diabetes prediction is presented by Ayon and Islam [36]. They utilized both
5-fold and 10-fold cross-validation with higher accuracy, which reached 98.04%, and 97.27%,
respectively, on the PIDD dataset. Moreover, they determined both the recall and F1 score
so that the results are 98.80% and 99.00%, respectively, for a 5-fold validation and 97.80%
and 96.00% for a 10-fold validation. Even the accuracy is higher; the utilization of only
5-fold or 10-fold cross-validations is considered the simplest validation approach of the
machine learning pipeline. Therefore, a pretraining model with hyperparameter fine tuning
is required to ensure the reliability and stability of the model. Moreover, it is very important
to determine the uncertainty of the values and calculate the area under the curve to boost
the results obtained.



Appl. Sci. 2022, 12, 950 6 of 26

Table 1. The key characteristics of recent diabetes studies.

Author/Year Accuracy Problem Preprocessing Feature
Selection Classifier Major Contribution Minor Drawbacks

El-Sappagh et al.
[20], 2015 97.67%

Case-based
reasoning (CBR)

applied to
diabetes patients

7
3

Fuzzy ontology

Fuzzy ontology
based on

case-based
reasoning

The study used fuzzy
ontology to facilitate

more efficient
knowledge acquisition

and enable the
retrieval of semantic

similarity measures for
diabetes patients.

Adaptation and
maintenance of

case-based reasoning
using fuzzy reasoning

is difficult and
demanding. If the

number of patients is
excessive, the system

may crash.

Ramesh et al.
[30], 2021 83.20%

Regular
monitoring and
management of

diabetes

3
Feature scaling

3
Chi-squared test,

extremely
randomized

trees classifier
(extra trees), and

least absolute
shrinkage and

selection
operator
(LASSO)

KNN
logistic

Gaussian naïve
Bayes

SVM-radial basis
function

It automates diabetes
detection and alerts

medical professionals
to intervene on time.

The method remains to
be tested on large-scale

patient datasets, and
system testing should

be carried out with
additional hardware

integration and
patient information.

Maulidina et al.
[31], 2021 85.71%.

Accurate
diagnosis of

diabetes and the
removal of
irrelevant

features without
losing the most

essential
information

7
3

Backward
elimination

SVM

The irrelevant features
were stripped away by
backward elimination

to identify the most
essential features.

Consideration should
be given to using a
dataset with many

features to ascertain
whether feature

selection is important
to improve accuracy

during testing.

Ordás et al. [33],
2021 92.31%

Developing
methods for

early diagnosis
of diabetes with

large-scale
patient cohorts

3
Normalization
augmentation

using VAE
7

SAE+CNN
SAE+MLP

MLP

A full deep learning
architecture was used

for diabetes prediction;
a VAE and SAE for
data augmentation;

and a CNN for
classification.

This work is limited by
the small number of
patients in the PIDD.

3. Preliminaries

In this section, we introduce the problem formulation of the applied data to determine
the diabetes scenarios within the preserved features. Afterward, we investigated the
difference between fuzzy KNN and regular KNN.

3.1. Problem Formulation

To achieve high precision of data analysis, we need perfect consideration of the
different aspects of features affecting the classification procedure. Hence, we consider
C = c(1), c(2), . . . , c(k) to represent the corresponding labels for U, which is a given universe
of discourse, as the input set of instances and which can be defined as U = I(1), I(2), . . . , I(k).
Due to the U definition, k represents a labeled instance in diabetes analysis environments.
U consists of t and f, denoting samples with and without diabetes, such that t + f = k. To
describe the diabetes diagnosis scenario with an imbalanced dataset, we assume t � f .
Determining the label (i.e., diabetic or normal state) mentioned as C is a major challenge.
In addition, each instance I(i) is an n-dimensional attribute vector. It can be described as
I(i) = < A(i)

1 , A(i)
2 , . . . , A(i)

n >. It is known that I(i) is typically a high-dimensional feature
vector from clinical settings. Thus, another task is to represent the [37]. See Table 2 for a
visual representation of the problem according to the stated mathematical description.

In turn, the major intention of our problem focuses on supervised algorithms that
are capable of handling different instances of binary classes in imbalanced datasets. In
the subsequent sections, we will discuss the available algorithms that can be utilized as
classification twisting models in diabetes analysis, especially in uncertainty mode or fuzzy
models. Here, in the forthcoming section, we explain the major differences between fuzzy
KNN and regular KNN to investigate the importance of the fuzzy algorithm to tackle the
crisp variations in the applied features.
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Table 2. Visualization of the research problem.

Groups Attribute Vector Class

t

U A1 A2 A3 . . . An C

I(1) V1
1 V1

2 V1
3 . . . V1

n c(1)

I(2) V2
1 V2

2 V2
3 . . . V2

n c(2)

. . . . . . . . . . . . . . . . . . . . .

f

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

I(k) Vk
1 Vk

2 Vk
3 . . . Vk

n c(k)

3.2. K Nearest Neighbors (KNN) Classifier

KNN, a common form of the NN rule in supervised learning, considers the use of
the many comparable (nearest) k patterns in a training set to originate the class of a test
pattern. The KNN classifier correctly classifies the target class for an unidentifiable instance
by calculating the class label with the highest frequency among those nearest k instances. It
can be mathematically formulated as in Equations (1) and (2):

C(I) = argmaxC∈[Ci |i=1,2] Aj∈mk

m

∑
j=1

f
(

Aj, c
)

(1)

where mk is the KNN of instance I.

f
(

Aj, c
)
=

{
1 i f Aj ∈ c
0 else

(2)

The term C(I) is called the class label, for instance, I. In more formal terms, consider aj
to be the train features, where 1 < j < M, and M is the number of features in a train set,
and ai is a test pattern from the test set where 1 < i < N, and N is the number of features
in a test set. The training procedure is carried out, during which the KNN classifier stores
the true w class for each training feature aj based on the true class w of the majority of k of
its closest neighbors. In the event of a tie, the nearest neighbor who belongs to one of the
restricted classes assumes c [38].

One of the benefits of KNN is its simplicity, although there have been extensive studies
from several viewpoints of the KNN classifier to improve the accuracy of the classification and
reduce its defects. The most important disadvantage of it is the necessity to store the complete
training set when performing the classification, as most machine learning requires only the
model to be stored; other disadvantages include its somewhat low efficiency when calculating
the decision rule and the low tolerance of noise, especially when k = 1. The KNN classifier
depends on the existing data. It is the training that defines the boundaries of the decision.

To improve the classification efficiency, researchers have studied and analyzed the
mentioned defects and accordingly created fast and accurately estimated models of the
NN rule to speed up the calculation of nearest neighbors [39,40] and reduce the size
of the training dataset [41,42]. New methods such as the computation of local mean,
distance weight [43], and specific weight are distributed to various features based on their
importance [44]. A modified KNN called the hybrid fuzzy weighted KNN algorithm [45] is
a novel concept for determining accurate test instance memberships from an imbalanced
dataset by combining an adaptive KNN approach for dealing with an imbalanced issue
and then joining it with fuzzy KNN [46].

All these attempts have been made with a distinct goal: to increase the precision of
the NN rule. Soft memberships (which characterize instances that did not correspond
to the typical models of each class), improved similarity measures (which adjust the
method of computing distances to the fuzzy memberships), and new decision standards
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are expected to improve the classifier’s accuracy by integrating both the memberships and
the distances to the testing data’s final prediction. A few fuzzy KNN algorithms have
additional distinguishing characteristics, such as the absence of a special k measurement
configuration [47].

3.3. A Fuzzy KNN Algorithm

Jóźwik [48] made the first fuzzy KNN classifier proposal. Keller et al. [49]’s proposal
became the main reference in this field. Algorithm 1 describes the pseudocode of the
basic steps denoting the membership function formula in line 10. The formula is used to
determine the appropriate class based only on the distance from the prototype of the class.

Algorithm 1. Fuzzy KNN based on distance from the prototype of the class.

Input: x instance
Output: l class Label

1 BEGIN
2 Input x, vector to be classified.
3 Initialize i = 1.
4 DO UNTIL (distance from each prototype to x computed)
5 Compute distance from Zi to x.
6 Increment i.
7 END DO UNTIL
8 Initialize i = 1.
9 DO UNTIL (x assigned membership in all classes)
10 Compute ui(x) = 1/‖x−Zi‖2/(m−1)

∑c
j=1(1/‖x−Zi‖2/(m−1))

11 Increment i
12 END DO UNTIL
13 Classify y: set l maxi≤j≤n{ui(x)}
14 END

It is a more developed edition KNN algorithm. The majority class label is used to
specify the class label of an unspecified instance in the conventional KNN algorithm. In
the first stage of development, the membership of training instances for each class is
determined by mathematical calculation using Equation (3):

ϑc(A) =

{
0.51 +

(mc
k
)
∗ 0.49 i f c = i(mc

k
)
∗ 0.49 else

(3)

where ϑc(A) : denotes membership of A in class c,the class of A is j and mc is all neighbors
in class C.

Regardless of the increasing improvement and proposals of KNN, which have created
different methods of solving fuzzy NN classification algorithms, the use of fuzzy sets in
conjunction with the NN classifier has enhanced work in dataset identification. Most of
these works were already based on the application of fuzzy nearest neighbor rules to a range
of domains or on alternative ways of combining FST and KNN. The fuzzy KNN algorithm
computes the uncertainty membership function for each instance before classification
relative to the complete number of instances, which yields a square computation relation.
This relation is very important to determine the relative class of the current instance verse
other algorithms that classify it without inspecting the uncertainty value of instance for
each category. The Fuzzy KNN algorithm has the worst value(s) at the complexity levels
O(kn2d) where k represents the number of available clusters, n represents the number of
available instances, and d represents the dimensionality of the instance data.

4. Research Methodology

Recent literature was analyzed to determine the state-of-the-art diabetes classification
methods and discover how diabetes patients are currently identified. In this section, the
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designed research is discussed and handled with regards to different aspects of implemen-
tation to achieve research objectives. First, the PIDD dataset is analyzed statistically and
through visualization to pioneer the challenges and research problem. Second, in response
to discovered requirements, a possible preprocessing procedure is demonstrated. Third,
the proposed uncertainty membership function of the proposed TFKNN is introduced to
overcome the drawbacks of the Fuzzy KNN classifier. Additionally, the designed work-
flow for fine-tuning the proposed TFKNN, fuzzy KNN, DT, and NB is described. Finally,
the implemented validation method is explained, showing the main advantages of other
validation methods.

4.1. Pima Indians Diabetes Dataset

The PIDD is one of the most familiar and publicly available datasets with rich, empirical
data. It is widely applied in comparative studies with recent state-of-art approaches. During the
analysis of patients with diabetes from the PIDD neighboring Phoenix, Arizona, all pregnant
female patients with diabetic symptoms, regardless of demographic values such as social status
and previous surgery, were included in the study. The collected dataset is publicly available
(the PIDD for use in (ML) modelling during the training and testing procedures, available
at https://www.kaggle.com/uciml/pima-indians-diabetes-database last accessed 10 October
2021). The PIDD includes 768 female diabetic patients with 8 attributes, such that the PIDD is
classified into 2 groups: 268 patients with diabetes and 500 normal patients without diabetes.
Before enrolment, laboratory tests and personal medical records were obtained from all patients
during the acute phase of collecting data. Table 3 describes the attributes of the PIDD and
provides a brief statistical summary. Moreover, it illustrates a sample of the acquired instances
in the PIDD. A sample of the PIDD with different features and the corresponding values with
the predicted outcomes is investigated in Table 4.

Table 3. A statistical summary of the PIDD.

Attribute Caption Unit Comments Min Max Mean ± Std

A1 Pregnancies - Number of times pregnant 0.0 17.0 3.85 ± 3.37

A2 Glucose - Plasma glucose concentration 2 h in an oral
glucose tolerance test 0.0 199.0 120.90 ± 31.97

A3 Blood Pressure Mm Hg Diastolic blood pressure 0.0 122.0 69.11 ± 19.36

A4 Skin Thickness mm Triceps skin fold thickness 0.0 99.0 20.54 ± 15.95

A5 Insulin mu U/mL 2-h serum insulin 0.0 846.0 79.81 ± 115.24

A6 BMI Weight: kg
Height: m Body mass index (weight in kg/(height in m)2) 0.0 67.1 32.00 ± 7.88

A7 Diabetes Pedigree Function - Diabetes pedigree function 0.08 2.42 0.47 ± 0.33

A8 Age Years Person’s age 21.0 81.0 33.24 ± 11.76

Table 4. Sample of the data points from the PIDD including the features and the outcomes.

Features Values

Pregnancies 6 1 8 1 0 5

Glucose 148 85 183 89 137 116

Blood Pressure 72 66 64 66 40 74

Skin Thickness 35 29 0 23 35 0

Insulin 0 0 0 94 168 0

BMI 33.6 26.6 23.3 28.1 43.1 25.6

Diabetes Pedigree Function 0.627 0.351 0.672 0.167 2.288 0.201

Age 50 31 32 21 33 30

Outcome 1 0 1 0 1 0

https://www.kaggle.com/uciml/pima-indians-diabetes-database


Appl. Sci. 2022, 12, 950 10 of 26

4.2. Preprocessing

Reviewing the maximum values, they appear to be extremely high; for example, (A5),
the maximum value of insulin cannot be 850. As a result, it is an outlier. Box plots can be
used to verify our assumptions about such outliers, as shown in Figure 3.

Figure 3. Boxplot showing features (A1, A2, . . . , A8) and outliers.

The preprocessing step in the proposed algorithm contains outlier rejection (P), imput-
ing missing values (Q), the standardization process (S), and the selection of features.

When an observation deviates from the other observations in the data, it is called an
outlier [50]. The classifiers are affected by the distribution of the data and are sensitive;
thus, the data deviating from the distribution need to be rejected. We used the IQR tech-
nique to remove outliers. The mathematical formulation for outlier rejection is described
mathematically as in Equation (4).

P(I) =

{
I i f Q1 − 1.5 ∗ IQR ≤ I ≤ Q3 + 1.5 ∗ IQR
Reject Otherwise

(4)

where I denotes the enrolled feature vector (FV) instances in the dimension space M, such
as I ∈ RM. Q1 represents the 1st quartile, Q3 represents the 3rd quartile and the IQR are the
range of interquartile of the applied attributes, knowing that Q1, Q3, and the IQR belongs
to RM. It is important to process the data by filling in the missing or blank values after
outlier rejection, as this affects the classifiers with incorrect predictions. After the data
became continuous without entering outliers, the null and absent values were processed by
the average values of the enrolled features, as shown in Equation (5) [51].

Q(I) =
{

mean(I), i f I = null/missed
I, otherwise

(5)
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The Z-score normalization was performed based on rescaling parameters such that
the normal distribution with zero mean and one variance were achieved. As shown in
Equation (6), the term standardization (S) refers to the process of reducing the skewness of
the data distribution.

S(A) =
I − I

σ
(6)

where the enrolled FV (I, I) ∈ RM, where I ∈ RM is the mean, and the standard deviation
is σ ∈ RM.

The statistical analyses in Figure 4 show that the correlation of the features with the
intended results is enhanced after imputing the missing outlier rejection values, wherever
the correlation coefficient has improved significantly, particularly for A3, A4, and A5. The
benefit of feature selection is an improved correlation. The classifiers’ accuracy increases as
the dimension of the feature increases. However, as the domain of the feature increases
without increasing the sample size, the efficiency of the classifiers needs to be improved.
In machine learning, such a scenario is known as overfitting. The space of the feature
becomes denser and denser because of the curse of dimensionality, forcing the classifiers to
be overfitted and lose functional generalizability [52].

Figure 4. Boxplot of the feature distribution with (a) existing and (b) rejected outliers, so the first row
is for features A1, A2, A3, and A4, and the second row is for features A5, A6, A7, and A8 (from left to
right). (a) The appearance of a data outlier. (b) After outlier rejection.
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However, feature standardization is unlikely to provide a guarantee of significant
improvement in many ML models, such as the NB model. The correlation’s confusion
matrix combines the results of outlier rejection and imputation of missing values. The
confusion matrix that represents the correlation of features based on the applied PIDD
dataset before and after processing is shown in Figure 5.

Figure 5. The resulting confusion matrix represents the correlation of features based on PIDD.
(a) Before processing. (b) After processing.

4.3. The Proposed Fuzzy KNN (TFKNN) Based on Uncertainty

Based on the discovered research gap of the regular fuzzy KNN, Algorithm 1 demon-
strates the steps of the standard fuzzy KNN classifier that has been proposed by Keller
et al. [49]. It is based on calculating the membership value using Equation (8) in line 10. It
has complexity estimated as O(kn2d), where k represents the number of available cluster(s),
n represents the number of available instance(s), and d represents the dimensionality of the
instance data. Their proposal has been widely used for classification based on measuring
the distance of instance (x) between different available classes. The algorithm works to
indicate the belief degree of classification in a simulation of the expert’s experience and
knowledge. The proposed fuzzy KNN works on handling the trade-off between classi-
fication accuracy and operational law for detecting diabetes. In [49], Keller et al. have
proposed a fuzzy KNN that differ from the regular classic fuzzy KNN in terms of the
membership function. In which, they have used Equation (8) instead of Equation (7) as
the membership function. This change in the membership function allows instance (x) to
be assigned in each class based only on the distance from the class prototype. We use the
uncertainty membership function, Equation (9), instead of Equation (8) to enhance the
fuzzy KNN classification for the PIDD. If we deal with the belief degree (i.e., classification
output) by probability theory, it will lead to wrong decisions. However, decision-making in
the health system is critical, and the fuzzy set is not suitable for unsharp concepts. We need
to enhance the uncertainty theory that is mainly characterized by the membership function
and operation law.

ui(x) =
∑K

j=1 uij

(
1/‖x− Xj‖2/(m−1)

)
∑K

j=1

(
1/‖x− Xj‖2/(m−1)

) (7)
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ui(x) =
1/‖x− Zi‖2/(m−1)

∑c
j=1

(
1/‖x− Zi‖2/(m−1)

) (8)

ui(x) = 0 ≤
(

m

∑
j=1

wj uij
(x)

)
≤ 1 (9)

Let us consider that Equations (7) and (8) are two available empirical member-
ship functions by two domain experts. These empirical values can be applied using
max (0, Z) where Z = 1

1−euα(x) to make it easy for the model to generalize or adapt to a
variety of possible ranges and to distinguish between the decisions. Hence, the membership
value of instance (x) can be defined using Equation (10) as follows:

µ1(x) = 0 ≤ (ω1µA(x) + ω2µB(x)) ≤ 1 (10)

where (ω1, ω2) are convex combination coefficients representing weights,

ω1 = max
(

0,
1

1− euA(x)

)
, ω2 = max

(
0,

1
1− euB(x)

)
, and ω1 + ω2 = 1

where µA(x) is a membership for x by Equation (7), and µB(x) is a membership for x
by Equation (8). In turn, µ1(x) is an uncertainty member function for instance (x). The
proposed function has been widely accepted as effective for forecasting classification groups
and applicable in a wide range of applications. The proposed membership function is
used as a judgment or decision-aiding. Algorithm 2 has the same time complexity as
Algorithm 1, determined by O(kn2d).

Algorithm 2. Fine-Tuning Fuzzy KNN based on Uncertainty (TFKNN).

Input: x instance
Output: l class Label

1 BEGIN
2 Input x, vector to be classified.
3 Initialize i = 1.
4 DO UNTIL (distance from each prototype to x computed)
5 Compute distance from Zi to x.
6 Increment i.
7 END DO UNTIL
8 Initialize i = 1.
9 DO UNTIL (x assigned membership in all classes)

10 Compute uA(x) =
∑K

j=1 uij

(
1/‖x−Xj‖2/(m−1)

)
∑K

j=1

(
1/‖x−Xj‖2/(m−1)

)
11 ω1 = max

(
0, 1

1−euA (x)

)
12 Compute uB(x) = 1/‖x−Zi‖2/(m−1)

∑c
j=1

(
1/‖x−Zi‖2/(m−1)

)
13 ω2 = max

(
0, 1

1−euB (x)

)
14 Compute ui(x) = (ω1µA(x) + ω2µB(x))
15 Increment i
16 END DO UNTIL
17 Classify y: set l maxi≤j≤n{ui(x)}
18 END

We have calculated the time and space complexity of the different classification algo-
rithms in terms of Big-O. Even though fuzzy KNN has the worst value(s) at the complexity
levels, it is the best in practice in terms of evaluation metrics. In turn, to achieve higher
accuracy, precision, recall, and f-measure, we have to pay the cost in terms of complex-
ity. The fuzzy KNN computes the uncertainty membership function for each instance
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before classification relative to the complete number of instances, which yields a square
computation relation. This relation is very important to determine the relative class of the
current instance versus other algorithms that classify it without inspecting the uncertainty
value of the instance for each category. We think it is acceptable to be in the second level
of complexity compared to improvements in the classification metrics at the healthcare
system, where decisions are critical and have a direct impact on human care. Hence, the
uncertainty and membership function helps improve predictions about human lives and
health decisions to be more reliable, accurate, and concise. Additionally, as a plan to
overcome this challenge(s), there is scheduled work to re-arrange the membership function
of TFKNN to be referenced pre-computed once as a lookup map, as shown in Table 5.

Table 5. Time complexity versus space complexity of the TFKNN compared with KNN, NB, DT, and
fuzzy KNN.

Machine Learning Methods Time Complexity Space Complexity

KNN O (knd) O (nd)
NB O (nd) O (cd)
DT O (kdnlg(n)) O (kdnlg(n))

Fuzzy KNN O (kn2d) O (n2d)
TFKNN O (kn2d) O (n2d)

where k represents the number of available cluster(s), n represents the number of available instance(s), and d
represents the dimensionality of the instance data.

Because the proposed TFKNN based on uncertainty membership function has hyper-
parameters, it is subject to performance leakage due to their value(s). In turn, the proposed
TFKNN is tuned by a grid search to identify the best values of the hyperparameters for
deriving the optimal performance in terms of classification metrics for PIDD. The fine-
tuning process includes searching for optimal values of other regular classifiers such as
KNN, NB, and DT to benchmark and empirically analye the classifiers’ performance in
response to the fine-tuning. Figure 6 represents the fine-tuning and proposed workflow of
the proposed algorithm, TFKNN, Fuzzy KNN, KNN, NB, and DT for classifying diabetes
in pregnant women. The major objective of the fine-tuning procedure is to improve the
classification metrics like accuracy, recall, and AUC. In the workflow, the input dataset is
evaluated using the cross-hold validation method; this is described below in detail as a
hybrid mix of cross-fold and hold-out validation methods. The validation method supports
the avoidance of overfitting problems and estimates the hyperparameters to derive the best
accuracy rate. During the preprocessing phase, a correlation matrix is calculated to investi-
gate the relationship between the features, as well as the relationship between the input
features and the class label. The membership values for each sample are calculated using
Equations (7)–(9), as all the neighbors closest to the class are distinguished based on their
closeness to it. For each instance (x), a Euclidean distance is estimated for each category
in the classification space, and the appropriate membership value(s) is assigned using a
suitable membership formula. The process is iterative and repetitive until unclassified
instance(s) are assigned to a class.

4.4. Cross-Hold Validation Method

Although [53] has proposed a work based on the cross-validation strategy using the
PIDD, in practice, with the PIDD including 768 instances, there are 2 different challenges.
First, the cross-fold validation is perfect during the computation of model parameter(s),
but the error is the average of values across folds. Second, the hold-out method fits the
testing model based on an evaluation using test samples and is not recommended to adjust
the parameter(s) of the model as shown in Figure 7.
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Figure 6. The proposed fine-tuning workflow to optimize the diabetes classification algorithm.

Hence, the proposed algorithm is conducted based on the training/testing strategy
to overcome the interference of the stated challenges. It is worth mentioning that the
training/testing strategy (80% and 20%, respectively) truly reflects the effectiveness and
power of the proposed algorithm. We have designed a custom validation method to
overcome the drawback of each method and gain the promotion of each method. Although
the dataset samples can be used for cross-fold validation instead of hold-out validation, we
decided to apply training then tested and validated using 80% as 10 cross-folds (training,
testing) and 20% hold out (validation).
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Figure 7. The training, testing, validation, and 10-cross-fold validation of the applied PIDD dataset.

5. Empirical Evaluation: Setup and Findings

This section is designed to explore the effectiveness of the proposed algorithm and
the compared state-of-the-art methods. During the phases of the proposed algorithm,
different phases are conducted to enrich the efficiency of the proposed algorithm, and
various ML methods, such as KNN, NB, DT, and fuzzy KNN, that have indeed been trained
and evaluated.

5.1. Experimental Setup

In this section, we demonstrate all experiments on the Python 3.7 development envi-
ronment using a package of software executed and performed on a workstation machine
with the following specifications: processor Core i7, RAM 16 GB, and 4G-GT NVIDIA with
GPU-740 m. Table 6 shows the key-value pair for the hyperparameters that will be tuned
using grid search.

Table 6. Key-value pair for hyperparameters of different ML approaches used by the grid-search.

Machine Learning Methods A Key-Value Pair for Hyperparameters

KNN

• No. of queries’ neighbors => 27
• Computing the NN such that:

3 Each node represents a D-dimensional hyper-sphere (ball-tree);
3 Every leaf node represents a D-dimensional point given that the

leaf size is 30KD (KD-tree);
3 A search based on brute-force (BF).

• The size of the leaf based on the nature of the problem for BT or
KDT

• Determination of the Euclidean distance

NB • A part of the feature’s largest variance
• Var smoothing => 0.01

DT • Criterion: GINI
• Number of estimators => 100

Proposed Model
(TFKNN)

• No. of s of the query => 23
• Nearest neighbors search Method

3 Ball tree (BT)
3 Brute force (BF)

• Distance => Euclidean distance

5.2. Selected Ensemble Model

The ensemble of machine learning models X [54,55] is a recognized technique for
improving performance via several classifiers. The collection of the outcome from various
ensemble models could truly enhance prediction precision [56]. Equation (10) was used to
perform weighted aggregation as follows:

Conven
i =

∑n=4
j=1
(
Wj × Convij

)
∑C=2

i=1 ∑n=4
j=1
(
Wj × Convij

) (11)

where Wj is the corresponding AUC, j is the classifier number, Conven
i represents confidence

values ∈ [0, 1], and i is the class number. Each model’s output, Yj (j = 1, 3, . . . , n = 4) ∈ RC,



Appl. Sci. 2022, 12, 950 17 of 26

assigns C (diabetes or not) confidence values Convi ∈ R. Therefore, the final class label Ci
of the unobserved data is determined such that for the ensemble X ∈ RC, the Conven

i = max
(Y (X)).

5.3. Evaluation Matrix

Machine learning model performance can be measured using the confusion matrix
demonstrated in Table 7, and Table 8 describes the evaluation metrics of the results. Four
classification algorithms were used: KNN, NB, DT, and fuzzy KNN, which were compared
in terms of classification accuracy, specificity, precision, recall, and AUC. The classifica-
tion metrics TP, TN, FP, and FN were used to calculate classification accuracy, specificity,
precision, recall, F1 score, and AUC.

Table 7. Classification matrix elements of the PIDD.

Classification of Diabetes
in Pregnant Women

Classification of Healthy
Pregnant Women Total

Actual diabetes in
pregnant women True Positive (TP) False Positive (FP) P

Actual healthy
pregnant women False Negative (FN) True Negative (TN) N

Table 8. Evaluation metrics definition and the description.

Measures Formula Description

Accuracy (TP + TN)/(N + P)
The number of pregnant women correctly
classified as having diabetes or not having

diabetes for each instance.

Specificity (TN)/(TN + FP)
The number of samples correctly classified as

non-diabetes in pregnant women for each
non-diabetes instance.

Precision (TP)/(TP + FP)
The number of samples correctly classified as

diabetes in pregnant women for each
diabetes instance.

Recall (TP)/(TP + FN) The ratio correctly identified as diabetes in
pregnant women out of all diabetes instances.

F1 score 2 × ((Precision ×
Recall)/(Precision + Recall))

The harmonics mean of the model’s recall
and precision.

5.4. Evaluation and Analysis of the Results

This section is designed to discuss and analyze the results of the proposed algorithm as
well as the compared state-of-the-art methods. Table 9 represents the experimental results
of different ML classifiers. Each experiment is illustrated using different classification
performance metrics, including precision, recall, accuracy, specificity, and area under
the curve (AUC). However, each classifier is supported using a confusion matrix for the
consolidation of the stated values. Each classifier is trained and validated using the PIDD
in the training set and test set at 80% and 20%, respectively.

Table 9 represents the results of TFKNN, fuzzy KNN, NB, and DT regarding the
proposed workflow in Figure 6. Table 9 holds notable values of the fine-tuning in terms
of precision, accuracy, recall, specificity, and AUC. More precisely, Table 9 demonstrates
the validation results and compares the different behaviors of the model using different
validation test sets. Due to the AUC, the proposed TFKNN classifier achieves the highest
table average value of 94.13, exceeding the nearest classifier by +3.37. Hence, the proposed
TFKNN is considered an excellent classification model that can diagnose patients with the
disease or condition based on the test. Since precision and recall are generally inversely
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related, the TFKNN achieves a high precision rate and a low recall percentage, indicating
the model’s ability to discriminate diabetes patients from non-diabetes patients, achieving
the intended objective of the overall analysis.

Table 9. Evaluation analysis of the results (best results in bold).
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In contrast, the fuzzy KNN model investigates recognizing non-diabetes cases versus
diabetes cases. Hence, we can observe the benefits of noticed accuracy rates where the
proposed TFKNN achieves 90.63% as the best classifier beating the rates of the decision tree,
fuzzy KNN, and NB. The major objective of the ML model is rejecting healthy patients and
accepting unhealthy patients without a condition. Regarding the specificity proportion, the
proposed TFKNN achieves the highest rate for correctly rejecting healthy patients without
a condition versus others.

Even though decision trees and NB do not compete for classifiers over precision,
recall, specificity, and accuracy, they compete well over the average AUC. The decision tree
is considered the second most excellent model in discriminating healthy and unhealthy
patients, and the NB model sets in the tail with a minor differentiation by 4.21 from the
TFKNN classifier.

Figure 8 illustrates the performance of the decision tree model versus the performance
of the NB model. Both figures (a, and b) demonstrate the performance of the model for
diabetes and non-diabetes (e.g., the unhealthy class and healthy class, respectively) classes.
Figure 8a shows that the total average of the ROC curve for both classes is 0.91, while the
total average of the ROC curve for both classes in Figure 8b is 0.90. Hence, Figure 8 indicates
that the decision tree is a better model than the NB model by +0.01 due to the average ROC
curve for both classes. From the receiver operating characteristic curve investigated in
Figure 9, we can notice that the test set variation of the area under the curve for the TFKNN
is more than Fuzzy KNN, which confirms the strength of the TFKNN classifier using this
test set. However, the overall AUC performance from Table 10 shows that the TFKNN is
the superior classifier for diabetes prediction on the PIDD.

Figure 9 demonstrate the performance of the model for diabetes and non-diabetes
(e.g., unhealthy class and healthy class, respectively) classes, such that Figure 9a shows that
the total average of the ROC curve for both classes is 0.95, while the total average of the
ROC curve for both classes in Figure 9b is 0.94.

Table 10 demonstrates a comprehensive comparative analysis of different classification
models. Each model is trained for the prediction of healthy versus unhealthy instances.
Furthermore, Table 10 shows the micro-average ROC curve versus the macro-average
ROC curve for different classification algorithms. From this table, it could be noticed that
TFKNN achieves better rates than fuzzy KNN in micro- and macro-average ROC curve
analysis. Depending on Table 9, we can confirm that TFKNN is better than other classifiers
in average experiments instead of a single beating during a certain test set in the ROC curve
analysis. Therefore, the prediction of diabetes based on the PIDD using a TFKNN classifier
achieves good results compared with other traditional classifiers.
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Figure 8. (a) ROC curve of the DT classifier for PIDD and (b) ROC curve of the NB classifier for PIDD.

Figure 9. (a) ROC curve of the fuzzy KNN classifier for PIDD. (b) ROC curve of the TFKNN classifier
for PIDD.

Table 11 has been designed to illustrate the empirical analysis of the noted results
by different KNN classifiers, fuzzy KNN, uncertainty Fuzzy KNN, different decision tree,
and different naïve Bayes classifiers versus the tuned classifier in terms of precision, recall,
accuracy, and specificity. The results have been investigated using the 80:20 hold-out
validation method and 10-fold cross-validation method. Table 12 demonstrates the global
superiority of the proposed uncertainty fuzzy KNN classifier in terms of precision, accuracy,
and specificity. For recall, the fuzzy KNN has global superiority at 95.45% versus all others
regardless of the validation method.
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Table 10. Micro- vs macro-average ROC curve.

Average ROC Curve

Classifier Micro Macro

Naïve Bayes 90.00 91.00

Decision Tree 93.00 91.00

Fuzzy KNN 96.00 96.00

Proposed TFKNN 95.00 94.00

Table 11. Comparative empirical results analysis of the proposed uncertainty fuzzy KNN versus others.

Base
Classifier Classifier

Precision Recall Accuracy Specificity

80/20 10-Folds 80/20 10-Folds 80/20 10-Folds 80/20 10-Folds

Decision
Tree

Fine Tree 71.00 80.20 78.89 78.32 68.63 72.66 53.99 61.33

Medium Tree 82.00 82.00 81.19 78.39 75.82 73.58 65.36 63.27

Coarse Tree 87.00 87.60 79.09 76.98 76.47 74.87 69.77 68.84

DT (Tuned) 84.78 89.66 81.89 65.00

Naïve Bayes

Gaussian NB 82.00 83.80 78.85 79.81 73.86 75.65 63.27 66.67

Kernel NB 91.00 89.40 73.98 75.38 73.20 74.09 70.00 69.71

NB (Tuned) 85.71 88.64 81.89 66.67

KNN

Fine KNN 72.00 79.60 75.00 74.95 66.01 69.40 50.88 56.96

Medium KNN 86.00 88.20 79.63 75.00 76.47 73.18 68.89 67.22

Coarse KNN 96.00 95.60 71.64 72.64 72.55 73.70 78.95 80.00

Cosine KNN 86.00 86.60 81.90 76.91 78.43 74.35 70.83 67.32

Cubic KNN 86.00 87.60 75.44 74.87 72.55 72.79 64.10 66.12

Weighted KNN 78.00 83.40 79.59 76.37 72.55 72.40 60.00 62.61

Fuzzy KNN 91.30 95.45 90.55 79.49

Proposed TFKNN 93.18 93.18 90.63 85.00

Table 12. The comparative evaluation results of the proposed model with the recent approaches in
terms of precision, recall, F1 score, and accuracy for the applied PIDD dataset.

Author Methodology Precision
(%)

Recall Value
(%)

F1 Score
(%)

Accuracy
(%)

Khanwalkar and Soni [25]
NB 75.90 76.00 76.00 76.30

SMO 76.90 77.30 76.30 77.34

Bhoi et al. [26]

DT 70.10 70.82 70.30 70.80

SVM 67.10 66.50 67.10 66.50

KNN 70.30 71.10 70.60 71.11

NB 74.50 73.60 73.90 73.60

RF 75.10 75.40 75.20 75.40

NN 75.40 75.80 75.50 75.80

AB 71.00 71.00 71.00 71.00

LR 73.30 76.80 76.00 76.80

Benbelkacem et al. [27] RF 74.30 77.00 76.58 77.00

Ramesh et al. [29]

KNN - 87.20 - 79.80

LR - 70.20 - 73.30

NB - 66.60 - 73.10

SVM+RBF - 87.30 - 83.20

Hrimov et al. [31] LR - - - 77.06

Proposed fine-tuned
hyperparameters

DT 84.78 89.66 87.15 81.89

NB 85.71 88.64 87.15 81.89

Fuzzy KNN 91.30 95.45 93.32 90.55

TFKNN 93.18 93.18 93.18 90.63
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5.5. Discussion

To present a comprehensive evaluation of the proposed fine-tuned classifiers, we
have evaluated the dataset versus different recent works of literature,s including shallow
classifiers and deep learning models. A comparative study is given in Table 12 between
the state-of-art methods with the proposed fine-tuned hyperparameter model based on
fuzzy KNN, DT, KNN, and NB. The comparative study depends on determining the
confusion matrix precision, recall, F1 score, and accuracy for the applied PIDD dataset.
Table 12 concludes the importance and impact of preprocessing efficiency on classification
performance.

As shown in Figure 10, based on the NB classifier, Khanwalkar and Soni [25] and
Ramesh et al. [29] achieved accuracies 76.30%, and 73.10%, respectively, compared with
the proposed 81.89% NB accuracy. On the other hand, Bhoi et al. [26] achieved an accuracy
of 76.80% for the logistic regression (LR) classifier, compared with Ramesh et al. [29],
who achieved an accuracy of 73.30% with LR. Furthermore, Khanwalkar and Soni [25]
introduced sequential minimal optimization, which achieved an accuracy rate of 77.34%
versus 90.63% by fuzzy KNN and 90.55% by KNN for the proposed fine-tuned classifier.

Figure 10. Comparative analysis of various configurations of NB using the PIDD.

The improvement of the proposed algorithm is a result of perfect preprocessing,
feature quality analysis, and hyperparameter optimization using the grid search algorithm.
Figure 10 represents a comparative evaluation of the NB classifier using the PIDD regarding
the accuracy metric. The proposed fine-tuned classifier achieves better accuracy by +6.39%,
and the evaluation of the proposed records the testing output of the experiment. Figure 11
illustrates the behavior of the DTRF classifier regarding the accuracy, in which the proposed
fine-tuned classifier achieves +4.89% better accuracy than the decision tree by Benbelkacem
and Atmani [27] and the classical decision tree random forest by Bhoi et al. [26]. Figure 12
compares the evaluation of different KNN classifiers using the PIDD. The proposed method
reaches a 90.55% accuracy rate, improving it by +17.39. Generally, the KNN classifier
reaches higher accuracy rates than other classifiers. Hence, resolving the uncertainty issue
of KNN leads to the improvement of the fuzzy KNN model.

As investigated in Table 12, KNN is better than the fuzzy KNN in terms of the
recall; however, this is not the major role of medicine assistance systems. However, the
precision and F1 score are more confidential for correctly rejecting healthy patients without
a condition versus others. In terms of precision, the fuzzy KNN is better than KNN,
confirming the ability of our proposed model to discriminate diabetes patients from non-
diabetes patients. Even though there are slight improvements in KNN over fuzzy KNN
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regarding the F1 score, overall, the accuracy of the fuzzy KNN is 90.63%, which is better
than the 90.55% achieved by the KNN. The average value of the area under the curve (AUC)
is 94.13% for fuzzy KNN and 90.55% for KNN, which proves the superiority of the fuzzy
KNN classifier for uncertainty values.

Figure 11. Comparative analysis of various configurations of decision tree algorithms using the PIDD.

Figure 12. Comparative analysis for various configurations of KNN using the PIDD.

In this work, we have supported our study with comparison and analysis with some
of the deep learning. After focused research using academic research engines, we have
compared and analyzed some studies using the PIDD and different deep learning methods
which were published recently [34,36]. Furthermore, we have survived different available
taxonomies for modeling diabetes using the PIDD. We further agree with the opinion
about the comparison and analysis with some deep learning methods; however, let us
demonstrate more about PIDD meta-data and its relation to deep learning methods.

• In PIDD, the normal and abnormal instances are imbalanced, which increases the
probability of model biasing;
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• The total number of instances is 768 in PIDD, which is not fair enough to build a stable
model using deep learning in the hold-out validation method. However, this can be
used in cross-fold validation, although this method is not used for our experiment;

• Despite the importance of PIDD data preprocessing, which was clarified and docu-
mented in the proposed methodology, it was inferred for its importance for building a
classification model before and after the preprocessing. However, the researchers who
dealt with data processing and the creation of a deep learning model did not deal with
data preprocessing and were interested in accuracy only, which negatively affected
the confidence in the applied results of their model;

• The uncertainty-based membership function is tackled for outlier values which are
difficult using DL approaches;

• The ROCs and available AUC of the deep learning models are increased in response
to a small number of cross-validation and vice versa;

• The pretrained well-known models (e.g., AlexNet, VGG-16, VGG-19...etc.) which are
capable of transfer learning and which are fine-tuned were not fit to help in PIDD.
This facilitied deep learning model construction.

While there are slight improvements in accuracy using the deep learning approaches
compared with the fuzzy KNN, the proposed approach fits the uncertainty of the data
based on fine-tuned hyperparameter and grid search, leading to model stability and the
uncertainty classification. The authors of [34] designed a limited number of layers that start
from one layer to four layers and used SoftMax and a rectifier activation function without
fine-tuning the hyperparameters, which generally leads to instability of the results and
an overfitting problem [35]. Moreover, in [36], even though the accuracy achieved by the
authors is greater than the tuned fuzzy KNN, it is based on 5-fold cross-validation, which is
considered the simplest validation approach of the machine learning pipeline. In contrast,
the tuned fuzzy KNN classifier is validated randomly using hold-out training and a test
set. In the same mentality, the deep learning model is subject to be affected by the number
of cross-fold batches proved by the ROC figures [57], in which the ROC values decrease
with an increase in the number of validation folds.

6. Conclusions and Future Work

In real life, a model for medical diagnosis should care about accuracy and how certain
the prediction is. Diabetes is considered a major chronic disease that requires stability of the
model and considers uncertain areas. In turn, if the uncertainty is too high, a doctor would
consider this in his decision process, which is why we consider uncertainty classification
rather than classification only.

This study contains valuable information for classifying women into two differ-
ent groups, diabetics and non-diabetics, using different supervised classification models.
TFKNN and fuzzy KNN produced the best classification performances in terms of evalua-
tion metrics such as accuracy, precision, recall, F1 score, AUC, and average weighted ROC.
In this study, the PIDD is well analyzed and preprocessed, and the TFKNN classification
model is built and boosted by hyperparameter optimization to predict diabetes in PIDD
versus other classification models. Although the KNN approach achieves a higher micro-
and macro-average ROC curves, the TFKNN model is the superior classifier for diabetes
prediction in the PIDD based on accuracy, precision, sensitivity, and average AUC. The
results indicated that the precision, recall, and F1 score of the TFKNN was 93.18%, while
the obtained accuracy was 90.63. This is as compared with the fuzzy KNN, which achieved
precision, recall, F1 score, and accuracy values of 91.30%, 95.45%, 93.32%, and 90.55, respec-
tively. On the other hand, in terms of specificity, the proposed TFKNN achieved 85.00%
compared with the fuzzy KNN, which achieved 79.49%s. At the same time, the average
area under the curve indicated that the proposed TFKNN achieved 94.13% compared with
the Fuzzy KNN, which achieved 90.55%. These numerical results all refer to the superiority
of the proposed FTKNN compared with recent state-of-art methodologies.
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However, the TFKNN classifier helps in handling uncertainty classification instead of
crisp using a membership function that measures the estimation of loyalty for an instance
to a certain class. Although the fuzzy KNN has the worst value(s) at the complexity levels,
it is the best in practice in terms of evaluation metrics. Some limitations must be addressed,
however, including the threshold election and hyperparameter optimization. Additionally,
the uncertainty classification considers instances individually without awareness of global
features and instances that are considered a challenge. In the future, we intend to support
the classification model in an uncertainty mode with the explainability of machine learning
and engage a global context during the learning process for medical diagnostic models
of diabetes. Additionally, there is an intention to design a deep learning architecture for
handling preprocessing, uncertainty classification, and hold-out validation and overcome
the fuzzy KNN challenge(s) based on a scheduled work to re-arrange the membership
function of fuzzy KNN to be referenced and pre-computed once as a lookup map.
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