
����������
�������

Citation: Kim, S.-H.; Park, D.-Y.; Lee,

K.-H. Hybrid Deep Reinforcement

Learning for Pairs Trading. Appl. Sci.

2022, 12, 944. https://doi.org/

10.3390/app12030944

Academic Editors: Jinho Kim and

Young-ho Park

Received: 29 November 2021

Accepted: 14 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Hybrid Deep Reinforcement Learning for Pairs Trading
Sang-Ho Kim, Deog-Yeong Park and Ki-Hoon Lee *

School of Computer and Information Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu,
Seoul 01897, Korea; ksh3247610@naver.com (S.-H.K.); spdla6124@naver.com (D.-Y.P.)
* Correspondence: kihoonlee@kw.ac.kr

Abstract: Pairs trading is an investment strategy that exploits the short-term price difference (spread)
between two co-moving stocks. Recently, pairs trading methods based on deep reinforcement learning
have yielded promising results. These methods can be classified into two approaches: (1) indirectly
determining trading actions based on trading and stop-loss boundaries and (2) directly determining
trading actions based on the spread. In the former approach, the trading boundary is completely
dependent on the stop-loss boundary, which is certainly not optimal. In the latter approach, there
is a risk of significant loss because of the absence of a stop-loss boundary. To overcome the disad-
vantages of the two approaches, we propose a hybrid deep reinforcement learning method for pairs
trading called HDRL-Trader, which employs two independent reinforcement learning networks; one
for determining trading actions and the other for determining stop-loss boundaries. Furthermore,
HDRL-Trader incorporates novel techniques, such as dimensionality reduction, clustering, regres-
sion, behavior cloning, prioritized experience replay, and dynamic delay, into its architecture. The
performance of HDRL-Trader is compared with the state-of-the-art reinforcement learning methods
for pairs trading (P-DDQN, PTDQN, and P-Trader). The experimental results for twenty stock pairs
in the Standard & Poor’s 500 index show that HDRL-Trader achieves an average return rate of 82.4%,
which is 25.7%P higher than that of the second-best method, and yields significantly positive return
rates for all stock pairs.

Keywords: algorithmic trading; pairs trading; deep learning; reinforcement learning

1. Introduction

Pairs trading is a statistical arbitrage strategy that exploits short-term price divergences
between a pair of assets that have historically moved together. In the stock market, pairs
traders simultaneously open a short position in an overvalued stock and a long position in
an undervalued stock. When the prices of the two stocks converge, the opened positions
are closed by taking the opposite positions. Figure 1 illustrates the similar price movements
of a stock pair of A. O. Smith Corp. (AOS, Milwaukee, WI, USA) and Carnival Corp. (CCL,
Miami, FL, USA) in the Standard & Poor’s (S&P) 500 index, which is a collection of the
stocks of 500 large companies in the United States. As shown in the figure, pairs trading
exploits divergence and convergence movements using both long and short positions.

To find stock pairs with arbitrage opportunities, we check whether the spread, which is
the difference between the prices of two stocks, forms a mean-reverting stationary process.
Figure 2 illustrates the normalized spread of the stock pair shown in Figure 1. Traditionally,
pairs trading methods open positions when the spread touches a trading boundary (e.g., T1
in Figure 2), which is predetermined as a constant multiple of the standard deviation of
the spread. The constant value may vary for different pairs-trading methods. When the
spread returns to the mean (e.g., T2 in Figure 2) or the specified trading window ends, the
positions are closed. The spread may diverge too far from the mean (e.g., T3 in Figure 2),
possibly resulting in a great loss. To limit potential losses in such situations, pairs trading
methods set stop-loss boundaries to close the positions by force.

Appl. Sci. 2022, 12, 944. https://doi.org/10.3390/app12030944 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12030944
https://doi.org/10.3390/app12030944
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4284-399X
https://orcid.org/0000-0003-4661-0982
https://doi.org/10.3390/app12030944
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12030944?type=check_update&version=5

Appl. Sci. 2022, 12, 944 2 of 23Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 23

Figure 1. Similar price movements of a stock pair (AOS and CCL).

To find stock pairs with arbitrage opportunities, we check whether the spread, which
is the difference between the prices of two stocks, forms a mean-reverting stationary pro-
cess. Figure 2 illustrates the normalized spread of the stock pair shown in Figure 1. Tradi-
tionally, pairs trading methods open positions when the spread touches a trading bound-
ary (e.g., 𝑇ଵ in Figure 2), which is predetermined as a constant multiple of the standard
deviation of the spread. The constant value may vary for different pairs-trading methods.
When the spread returns to the mean (e.g., 𝑇ଶ in Figure 2) or the specified trading win-
dow ends, the positions are closed. The spread may diverge too far from the mean (e.g., 𝑇ଷ in Figure 2), possibly resulting in a great loss. To limit potential losses in such situa-
tions, pairs trading methods set stop-loss boundaries to close the positions by force.

Figure 2. Normalized spread of the stock pair in Figure 1 (AOS and CCL).

Algorithmic trading enables pairs traders to execute complex trading strategies with-
out human intervention. In recent years, deep reinforcement learning has received con-
siderable attention in the field of algorithmic trading because it has both the perception
ability of deep learning and the decision-making ability of reinforcement learning. Pairs
trading methods based on deep reinforcement learning can be classified into two ap-
proaches: (1) indirectly determining trading actions, such as long and short, based on the
trading and stop-loss boundaries [1,2] and (2) directly determining trading actions based
on the spread [3–5]. The former approach has a fixed gap between the trading and stop-
loss boundaries, as shown in Figure 2, which is certainly not optimal because the trading
boundary is completely dependent on the stop-loss boundary. The latter approach has no
stop-loss boundaries, which presents the risk of a great loss.

In this paper, we propose a hybrid deep reinforcement learning method for pairs
trading called HDRL-Trader, which overcomes the disadvantages of the two aforemen-
tioned approaches. HDRL-Trader uses two independent reinforcement learning net-
works: one for determining trading actions and the other for determining stop-loss bound-
aries. First, it extracts robust features from observations by applying dimensionality

Figure 1. Similar price movements of a stock pair (AOS and CCL).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 23

Figure 1. Similar price movements of a stock pair (AOS and CCL).

To find stock pairs with arbitrage opportunities, we check whether the spread, which
is the difference between the prices of two stocks, forms a mean-reverting stationary pro-
cess. Figure 2 illustrates the normalized spread of the stock pair shown in Figure 1. Tradi-
tionally, pairs trading methods open positions when the spread touches a trading bound-
ary (e.g., 𝑇ଵ in Figure 2), which is predetermined as a constant multiple of the standard
deviation of the spread. The constant value may vary for different pairs-trading methods.
When the spread returns to the mean (e.g., 𝑇ଶ in Figure 2) or the specified trading win-
dow ends, the positions are closed. The spread may diverge too far from the mean (e.g., 𝑇ଷ in Figure 2), possibly resulting in a great loss. To limit potential losses in such situa-
tions, pairs trading methods set stop-loss boundaries to close the positions by force.

Figure 2. Normalized spread of the stock pair in Figure 1 (AOS and CCL).

Algorithmic trading enables pairs traders to execute complex trading strategies with-
out human intervention. In recent years, deep reinforcement learning has received con-
siderable attention in the field of algorithmic trading because it has both the perception
ability of deep learning and the decision-making ability of reinforcement learning. Pairs
trading methods based on deep reinforcement learning can be classified into two ap-
proaches: (1) indirectly determining trading actions, such as long and short, based on the
trading and stop-loss boundaries [1,2] and (2) directly determining trading actions based
on the spread [3–5]. The former approach has a fixed gap between the trading and stop-
loss boundaries, as shown in Figure 2, which is certainly not optimal because the trading
boundary is completely dependent on the stop-loss boundary. The latter approach has no
stop-loss boundaries, which presents the risk of a great loss.

In this paper, we propose a hybrid deep reinforcement learning method for pairs
trading called HDRL-Trader, which overcomes the disadvantages of the two aforemen-
tioned approaches. HDRL-Trader uses two independent reinforcement learning net-
works: one for determining trading actions and the other for determining stop-loss bound-
aries. First, it extracts robust features from observations by applying dimensionality

Figure 2. Normalized spread of the stock pair in Figure 1 (AOS and CCL).

Algorithmic trading enables pairs traders to execute complex trading strategies with-
out human intervention. In recent years, deep reinforcement learning has received consid-
erable attention in the field of algorithmic trading because it has both the perception ability
of deep learning and the decision-making ability of reinforcement learning. Pairs trading
methods based on deep reinforcement learning can be classified into two approaches:
(1) indirectly determining trading actions, such as long and short, based on the trading
and stop-loss boundaries [1,2] and (2) directly determining trading actions based on the
spread [3–5]. The former approach has a fixed gap between the trading and stop-loss
boundaries, as shown in Figure 2, which is certainly not optimal because the trading
boundary is completely dependent on the stop-loss boundary. The latter approach has no
stop-loss boundaries, which presents the risk of a great loss.

In this paper, we propose a hybrid deep reinforcement learning method for pairs
trading called HDRL-Trader, which overcomes the disadvantages of the two aforemen-
tioned approaches. HDRL-Trader uses two independent reinforcement learning networks:
one for determining trading actions and the other for determining stop-loss boundaries.
First, it extracts robust features from observations by applying dimensionality reduction
and clustering. Second, an accurate state representation is derived from the preprocessed
features using state representation learning (SRL). This SRL method co-trains a regression
model that predicts the next spread alongside a reinforcement learning model. Third, rein-
forcement learning and behavior cloning are combined to learn the behavior of a prophetic
expert who sees future spread movements. Fourth, the twin delayed deep deterministic
policy gradient (TD3) algorithm [6] is extended to determine trading actions for pairs
trading. The SRL method, behavior cloning, prioritized experience replay (PER), and
dynamic delay are all incorporated into the extended TD3 algorithm. Fifth, the double
deep Q-network (DDQN) algorithm [7] is extended to determine stop-loss boundaries and
combined with the extended TD3 algorithm. Compared with state-of-the-art pairs trading

Appl. Sci. 2022, 12, 944 3 of 23

methods, HDRL-Trader yields higher profits and has superior generalization ability for
different stock pairs in the S&P 500 index.

The remainder of this paper is organized as follows. Section 2 introduces pairs
trading and reinforcement learning methods, and Section 3 reviews the existing work.
Sections 4 and 5 present HDRL-Trader and the experimental procedure and results, re-
spectively. Finally, Section 6 presents our conclusions. For ease of reading, Table A2 in
Appendix B lists the abbreviations used in this paper.

2. Background
2.1. Pairs Trading

Pairs trading is a popular market-neutral trading strategy that uses highly correlated
and cointegrated stock pairs. If two non-stationary time series (i.e., stock prices) are
cointegrated, we can combine them into one stationary time series (i.e., a spread) according
to Equation (1). The augmented Dickey–Fuller test [8] is widely used to analyze whether
a time series is stationary. In Equation (1), PA and PB are the prices of stocks A and B,
respectively, and β is the cointegration factor (or hedge ratio).

Spread = log PA − β ∗ log PB (1)

The hedge ratio β indicates that pairs traders longs (or shorts) one share of stock A
and shorts (or longs) β shares of stock B for hedging. Linear regression methods, such
as ordinary least squares (OLS) and total least squares (TLS), can be used to calculate β.
OLS minimizes the sum of squared errors, while TLS minimizes the sum of the squared
orthogonal distances from data points to the regression line [1].

2.2. Reinforcement Learning

In reinforcement learning, an agent is a learner and decision maker that autonomously
learns how to maximize the total reward by interacting with its environment through
sensors that observe the environment and effectors that execute the action selected by the
agent and provide the reward to the agent [9–14]. The agent develops a deterministic
policy µ(s) that maps a state to an action, or a stochastic policy π(a|s) that maps a state to a
probability distribution over actions. At each time step t, the agent observes a state st, selects
an action at, receives a reward rt, and then transitions to a new state st+1. This interaction
is modeled as a Markov decision process (MDP) represented by 〈S, A, P, R, γ〉, where S is
the state space, A is the action space, P(st, at, st+1) is the state transition probability, R(s, a)
is the reward function, and γ ∈ [0, 1] is the discount factor, which determines the present
value of future rewards. The sum of the discounted rewards is defined as the discounted
return Gt as follows:

Gt =
∞

∑
i=0

γirt+i = rt + γGt+1 (2)

In algorithmic trading, states are not directly provided; rather, they must be con-
structed from a history of observations. We can model this by extending the MDP model
with observation space O and observation probability Z(o|s, a). This extended model is
referred to as a partially observable MDP model [15].

2.2.1. Deep Q-Network

In value-based reinforcement learning, the agent estimates the expected discounted
return, or value, for each state according to Equation (3) or for each state and action pair
according to Equation (4). The ε-greedy strategy is widely used to derive a new policy π′

from Qπ(s, a). With probability (1− ε), the agent performs the action with the maximum
Q-value (i.e., greedy action), that is, π′(s) = argmaxa∈AQπ(s, a). With probability ε, the
agent performs a random action for exploration.

Vπ(s) = Ea∼π [Gt|St = s] (3)

Appl. Sci. 2022, 12, 944 4 of 23

Qπ(s, a) = Ea∼π [Gt|St = s, At = a] (4)

For a large state and action space, a deep Q-network (DQN) [16] employs deep neural
networks to approximate Q-values. The techniques of experience replay and, using a target
network, enable stable learning. An experience replay buffer stores transitions as tuples
of 〈st, at, rt, st+1〉, and the agent learns by sampling batches from the buffer. The online
network Qθ is periodically copied to the target network Qθ′ during learning. The mean
squared error (MSE) between the target value YDQN in Equation (5) and Qθ(st, at) is the
loss function of the DQN (Equation (6)), which uses the Bellman equation [17].

YDQN = r + γmax
a

Qθ′(st+1, a) (5)

LossDQN = E
[
(YDQN −Qθ(st, at))

2
]

(6)

The DDQN solves the overestimation problem of the DQN by selecting the greedy ac-
tion using Qθ and estimating the Q-value of the action using Qθ′ , as shown in Equation (7).

YDDQN = r + γQθ′

(
st+1, argmax

a
Qθ(st+1, a)

)
(7)

The PER [18] samples important transitions more frequently to learn more efficiently.
The probability P(i) of transition i being sampled is defined in Equation (8). The pi in
Equation (8) is the priority of transition i, which is computed using the temporal difference
error δi = YDDQN − Qθ(s, a). There are two variants of prioritization: proportional and
rank-based prioritization. In proportional prioritization, pi = |δi|+ ξ, where ξ is a small
positive number used to ensure a non-zero probability for transitions with δi = 0. In rank-
based prioritization, pi =

1
rank(i) , where rank(i) is the rank of transition i when the replay

buffer is sorted by |δi|. To guarantee that every transition is sampled at least once, new
transitions have the maximum priority. The α in Equation (8) determines the extent to
which the probability is affected by priority. By adjusting α, we can interpolate between
greedy prioritization and uniform sampling (α = 0).

P(i) =
pα

i
∑k pα

k
(8)

Non-uniform sampling in the PER results in a biased estimate of Q-values. To correct
this bias, the PER employs importance sampling weights according to Equation (9), where
B is the size of the replay buffer, β is the bias-annealing factor for annealing the amount
of importance sampling correction over time, and maxkωk is the maximum weight for
normalizing weights. The weights are incorporated into the Q-learning updates by using
ωiδi instead of δi.

ωi = (B · P(i))−β/maxkωk (9)

Rainbow DQN [19] is a comprehensive improvement of the DQN that combines
several techniques, such as the DDQN, PER, dueling networks [20], multistep learning [21],
distributional reinforcement learning [22], and noisy networks [23].

2.2.2. Deep Deterministic Policy Gradient

In policy-based reinforcement learning, the agent directly learns a stochastic or deter-
ministic policy. Actor-critic methods combine the advantages of value- and policy-based
methods, where the critic network estimates the state value or Q-value, and the actor
network updates the policy in the direction suggested by the critic. In stochastic actor-critic
methods, the loss function of the critic network (Vθ) is defined using the Bellman equation
in Equation (11), where Y is the target value defined in Equation (10). The loss function

Appl. Sci. 2022, 12, 944 5 of 23

of the actor network (πφ) is defined using the stochastic policy gradient theorem [24]
according to Equation (12).

Y = r + γVθ(st+1) (10)

Losscritic = E[(Y−Vθ(st))
2] (11)

Lossactor = E
[
− log πφ(Y−Vθ(st))

]
(12)

The deterministic policy gradient (DPG) [25] is an actor-critic method that aims to
find an optimal deterministic policy µφ(s). The deep DPG (DDPG) [26] combines the DPG
and DQN. It employs the experience replay and target network of the DQN, but it does
not use the ε-greedy strategy. For the exploration, random noise N is added to the policy,
as shown in Equation (13). The loss function of the critic network is defined using the
Bellman equation, as in Equation (15), where Y is the target value defined in Equation (14).
The loss function of the actor network is defined using the DPG theorem [25], as shown in
Equation (16). The target networks are soft updated, as shown in Equation (17).

at = µφ(st) +N (13)

Y = r + γQθ′

(
st+1, µφ′(st+1)

)
(14)

Losscritic = E[(Y−Qθ(st, at))
2] (15)

Lossactor = E
[
−Qθ

(
st, µφ(st)

)]
(16)

θ′ ← τθ + (1− τ)θ′, φ′ ← τφ + (1− τ)φ′ (17)

2.2.3. Twin Delayed DDPG

TD3 enhances the DDPG using three techniques. The first technique is known as target
policy smoothing, which is a regularization strategy. To avoid overfitting, random noise is
added to the target action, as in Equation (18), where clipping is used to limit the impact of
the noise. The target action is used to compute the target value Y in Equation (19).

ãt+1 = µφ′(st+1) + ε, ε ∼ clip(N ,−c, c) (18)

The second technique is known as clipped double Q-learning. To solve the overestima-
tion problem of the DDPG, two critic networks (and two target critic networks) are used.
For computing the target value Y, the minimum Q-value of the two target critic networks
is used, as shown in Equation (19).

Y = r + γmin
j=1,2

Qθ′j
(st+1, ãt+1) (19)

The third technique is known as delayed policy updates, which updates the actor (and
target) networks less frequently than the critic networks to obtain more accurate Q-values
before updating the actor network.

3. Related Work
3.1. Algorithmic Trading

Considerable studies have been conducted on algorithmic trading, including on super-
vised learning-based methods [27–32] and reinforcement learning-based methods [33–36].
Supervised learning-based methods predict stock prices but do not decide trading actions.
Reinforcement learning-based methods can decide trading actions by learning a profitable
trading policy. Fengqian and Chao [33] proposed a deep reinforcement learning method
that uses a candlestick (or K-line) as a summary of price movements. In this method, a
candlestick is decomposed into the lengths of the upper shadow line, lower shadow line,
and body. After applying clustering to each component, the cluster centers and body
color are used to represent the input state for reinforcement learning. Lei et al. [34] pro-

Appl. Sci. 2022, 12, 944 6 of 23

posed a time-driven feature-aware jointly deep reinforcement learning algorithm, which
uses a gate structure, gated recurrent unit (GRU) [37] network, temporal attention mech-
anism, and auto-encoder that predicts the next closing price, where the encoding part
of the auto-encoder is used for state representation. Liu et al. [35] proposed an imita-
tive deep reinforcement learning method that uses a demonstration buffer and behavior
cloning for imitation learning. Park and Lee [36] proposed a practical algorithmic trading
method called SIRL-Trader, which achieves good profit using only long positions. SIRL-
Trader uses offline/online SRL, imitative reinforcement learning, multistep learning, and
dynamic delay.

In this work, we study a pairs-trading problem based on hybrid reinforcement learn-
ing, which is a fundamentally different problem from those of the above studies. This
fundamental difference raises new challenges, such as how to define action spaces and
reward functions for pairs trading, how to clone the behavior of a prophetic pairs-trading
expert, and how to hybridize two reinforcement learning algorithms, as described in
Section 4.

3.2. Pairs Trading

Deep reinforcement learning methods for pairs trading can be classified into two
approaches. The first approach [1,2] indirectly determines trading actions based on trading
and stop-loss boundaries. Kim and Kim [1] proposed the pairs trading DQN (PTDQN)
algorithm, which dynamically optimizes the boundaries for daily stock data. The action
space consists of six predetermined boundary pairs; for example, the action A0 is defined
as (trading boundary = ±0.5, stop-loss boundary = ±2.5). The gap between the trading
and stop-loss boundaries is fixed at 2.0 for all actions. Lu et al. [2] focused on intraday
trading, where the cointegration relationship is much weaker than that of interday trading.
To detect structural breaks in which the cointegration relationship vanishes, the authors
proposed a spread wavelet-aware hybrid network that combines a continuous wavelet
convolutional neural network [38] for frequency-domain features and a long short-term
memory (LSTM) network [39] for time-domain features. The authors also proposed a
structural break-aware DQN algorithm to determine the trading and stop-loss boundaries.
The action space consists of six predetermined boundary pairs and a hold action, and the
gap between the trading and stop-loss boundaries is fixed at 2.0. In the above methods, the
trading boundary is completely dependent on the stop-loss boundary, which is certainly
not optimal.

The second approach [3–5] directly determines trading actions based on the spread.
Brim [3] used the DDQN to determine trading actions based on the technical indicators
of the spread, and to reduce trading actions with negative rewards, it multiplies negative
rewards by a large constant value. Wang, Sandås, and Beling [4] used the deuling DQN
algorithm and proposed a reward shaping method that employs a baseline policy with
a fixed trading boundary as a guidance to learn a robust policy and reduce overfitting.
Kim, Park, and Lee [5] proposed a DDQN-based pairs trading method called P-Trader that
uses technical indicators for the spread, the candlestick clustering technique used in [33],
a gate structure, a GRU network, a temporal attention mechanism, and the auto-encoder
technique used in [34]. The above methods do not have stop-loss boundaries, which leads
to high risk.

In this paper, we propose a hybrid reinforcement learning method that combines the
above two approach types, which is the first one to do so to the best of our knowledge.
First, we extend the TD3 algorithm to directly determine trading actions by incorporating
the auto-encoder technique, behavior cloning, PER, and dynamic delay. Second, we extend
the DDQN algorithm to determine stop-loss boundaries and combine it with the extended
TD3 algorithm.

Appl. Sci. 2022, 12, 944 7 of 23

4. Hybrid Deep Reinforcement Learning for Pairs Trading

In this section, we propose the novel pairs trading method called HDRL-Trader, which
uses hybrid deep reinforcement learning.

4.1. Architecture of HDRL-Trader

Figure 3 illustrates the architecture of HDRL-Trader for pairs trading in a stock market
environment. For data preprocessing, we apply dimensionality reduction and clustering
to extract robust features. For SRL, we use a gate structure, LSTM layer, and regression
network to generate states from the features. For hybrid reinforcement learning, we com-
bine extended versions of the TD3 and DDQN algorithms. Each component is explained in
detail in the following subsections.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 23

the spread, and to reduce trading actions with negative rewards, it multiplies negative
rewards by a large constant value. Wang, Sandås, and Beling [4] used the deuling DQN
algorithm and proposed a reward shaping method that employs a baseline policy with a
fixed trading boundary as a guidance to learn a robust policy and reduce overfitting. Kim,
Park, and Lee [5] proposed a DDQN-based pairs trading method called P-Trader that uses
technical indicators for the spread, the candlestick clustering technique used in [33], a gate
structure, a GRU network, a temporal attention mechanism, and the auto-encoder tech-
nique used in [34]. The above methods do not have stop-loss boundaries, which leads to
high risk.

In this paper, we propose a hybrid reinforcement learning method that combines the
above two approach types, which is the first one to do so to the best of our knowledge.
First, we extend the TD3 algorithm to directly determine trading actions by incorporating
the auto-encoder technique, behavior cloning, PER, and dynamic delay. Second, we ex-
tend the DDQN algorithm to determine stop-loss boundaries and combine it with the ex-
tended TD3 algorithm.

4. Hybrid Deep Reinforcement Learning for Pairs Trading
In this section, we propose the novel pairs trading method called HDRL-Trader,

which uses hybrid deep reinforcement learning.

4.1. Architecture of HDRL-Trader
Figure 3 illustrates the architecture of HDRL-Trader for pairs trading in a stock mar-

ket environment. For data preprocessing, we apply dimensionality reduction and cluster-
ing to extract robust features. For SRL, we use a gate structure, LSTM layer, and regression
network to generate states from the features. For hybrid reinforcement learning, we com-
bine extended versions of the TD3 and DDQN algorithms. Each component is explained
in detail in the following subsections.

Figure 3. Architecture of the proposed HDRL-Trader.

4.2. Data Preprocessing
We select stock pairs through correlation and cointegration tests. To test the cointe-

gration relationship, the Engle-Granger two-step test [40] is widely used [41–43]. Accord-
ing to the Engle-Granger test, we calculate the spread for closing prices of stocks using the
OLS regression method and performs a stationarity test using the augmented Dickey-
Fuller test. For large datasets, pre-selection based on Pearson’s correlation coefficient is a
widely used technique to reduce computationally expensive cointegration tests [43–46].
We apply this technique using normalized closing prices.

For data preprocessing, we extract a low-dimensional feature vector from the spread
data, as shown in Figure 4. First, we compute the candlestick components and technical
indicators listed in Table 1 from the spread data, which consist of opening, high, low,

Figure 3. Architecture of the proposed HDRL-Trader.

4.2. Data Preprocessing

We select stock pairs through correlation and cointegration tests. To test the cointegra-
tion relationship, the Engle-Granger two-step test [40] is widely used [41–43]. According to
the Engle-Granger test, we calculate the spread for closing prices of stocks using the OLS
regression method and performs a stationarity test using the augmented Dickey-Fuller test.
For large datasets, pre-selection based on Pearson’s correlation coefficient is a widely used
technique to reduce computationally expensive cointegration tests [43–46]. We apply this
technique using normalized closing prices.

For data preprocessing, we extract a low-dimensional feature vector from the spread
data, as shown in Figure 4. First, we compute the candlestick components and technical
indicators listed in Table 1 from the spread data, which consist of opening, high, low,
closing, and volume spreads. Second, we normalize the input features using the z-score
standardization method. Third, we apply dimensionality reduction to each feature group
in Table 1. We reduce the dimensionality to the threshold F in Figure 4 using principal
component analysis (PCA). Fourth, we cluster each feature generated by PCA using fuzzy
c-means clustering [47]. After clustering, we represent each feature value, except the body
color, as the cluster center to which it belongs.

Appl. Sci. 2022, 12, 944 8 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 23

closing, and volume spreads. Second, we normalize the input features using the z-score
standardization method. Third, we apply dimensionality reduction to each feature group
in Table 1. We reduce the dimensionality to the threshold F in Figure 4 using principal
component analysis (PCA). Fourth, we cluster each feature generated by PCA using fuzzy
c-means clustering [47]. After clustering, we represent each feature value, except the body
color, as the cluster center to which it belongs.

Figure 4. Data preprocessing.

Table 1. Input features.

Feature Group Features

Candlestick components [33]
Lengths of the upper shadow line, lower shadow line, and
body; body color

Overlap studies [48]
BBANDS, DEMA, EMA, HT-TRENDLINE, KAMA, MA,
MAMA, MIDPOINT, MIDPRICE, SAR, SAREXT, SMA, T3,
TEMA, TRIMA, WMA

Momentum indicators [48]

ADX, ADXR, APO, AROON, AROONOSC, BOP, CCI,
CMO, DX, MACD, MACDEXT, MACDFIX, MFI, MI-
NUS_DI, MINUS_DM, MOM, PLUS_DI, PLUS_DM, PPO,
ROC, ROCP, ROCR, RSI, STOCH, STOCHF, STOCHRSI,
TRIX, ULTOSC, WILLR

Volume indicators [48] AD, ADOSC, OBV
Volatility indicators [48] ATR, NATR, TRANGE

4.3. State Representation Learning
State representation is crucial for reinforcement learning. To observe historical

spread movements, our SRL model takes a sliding window of preprocessed data, as
shown in Figure 3. To adaptively select features, we assign a weight to each feature using
the gate structure [34]. The gate 𝑔 shown in Figure 5a is defined as in Equation (20) where 𝑓 is the input feature vector, 𝑊 and 𝑏 are parameters learned by end-to-end training,
and 𝜎 is a sigmoid activation function. Using gate 𝑔, we generate the weighted feature
vector 𝑓ᇱ from the element-wise multiplication (⊙) of vectors 𝑔 and 𝑓 in Equation
(21). 𝑔 = 𝜎(𝑊 ∙ 𝑓 + 𝑏) (20) 𝑓ᇱ = 𝑔 ⊙ 𝑓 (21)

The LSTM network layer shown in Figure 5b takes a sliding window of weighted
feature vectors as the input and outputs the hidden state of the last time step. We employ
the LSTM network because it can effectively capture the long-term dependency in the time
series and has shown superior performance in stock price prediction over other types of

Figure 4. Data preprocessing.

Table 1. Input features.

Feature Group Features

Candlestick components [33] Lengths of the upper shadow line, lower shadow line, and body;
body color

Overlap studies [48]
BBANDS, DEMA, EMA, HT-TRENDLINE, KAMA, MA,
MAMA, MIDPOINT, MIDPRICE, SAR, SAREXT, SMA, T3,
TEMA, TRIMA, WMA

Momentum indicators [48]

ADX, ADXR, APO, AROON, AROONOSC, BOP, CCI, CMO,
DX, MACD, MACDEXT, MACDFIX, MFI, MINUS_DI,
MINUS_DM, MOM, PLUS_DI, PLUS_DM, PPO, ROC,
ROCP, ROCR, RSI, STOCH, STOCHF, STOCHRSI, TRIX,
ULTOSC, WILLR

Volume indicators [48] AD, ADOSC, OBV

Volatility indicators [48] ATR, NATR, TRANGE

4.3. State Representation Learning

State representation is crucial for reinforcement learning. To observe historical spread
movements, our SRL model takes a sliding window of preprocessed data, as shown in
Figure 3. To adaptively select features, we assign a weight to each feature using the gate
structure [34]. The gate g shown in Figure 5a is defined as in Equation (20) where f is the
input feature vector, W and b are parameters learned by end-to-end training, and σ is a
sigmoid activation function. Using gate g, we generate the weighted feature vector f ′ from
the element-wise multiplication (�) of vectors g and f in Equation (21).

g = σ(W· f + b) (20)

f ′ = g� f (21)

The LSTM network layer shown in Figure 5b takes a sliding window of weighted
feature vectors as the input and outputs the hidden state of the last time step. We employ
the LSTM network because it can effectively capture the long-term dependency in the time
series and has shown superior performance in stock price prediction over other types of
deep neural networks and traditional machine learning algorithms [49–51]. We refer to the
network up to the LSTM layer as the SRL network. The output of the LSTM layer is used in
reinforcement learning, as well as in a regression network that predicts the next closing
spread to provide accurate state information. The predicted spread does not participate in
reinforcement learning, but the underlying SRL network does because it is shared with the
actor network, as explained in the next section.

Appl. Sci. 2022, 12, 944 9 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 23

deep neural networks and traditional machine learning algorithms [49–51]. We refer to
the network up to the LSTM layer as the SRL network. The output of the LSTM layer is
used in reinforcement learning, as well as in a regression network that predicts the next
closing spread to provide accurate state information. The predicted spread does not par-
ticipate in reinforcement learning, but the underlying SRL network does because it is
shared with the actor network, as explained in the next section.

(a) (b)

Figure 5. State representation learning. (a) Gate structure. (b) Architecture of the SRL.

4.4. Hybrid Reinforcement Learning
We extend the TD3 algorithm to directly determine trading actions. We incorporate

the proposed SRL model, behavior cloning, PER, and dynamic delay into this extended
TD3 algorithm. To determine stop-loss boundaries, we extend the DDQN algorithm and
combine it with the extended TD3 algorithm.

4.4.1. Action Spaces for Pairs Trading
The agent starts with a certain amount of money and allocates half of the total to each

of the two stocks in a pair. When the positions are closed and cashed out, the agent real-
locates half of the total money to each stock. For each trading day t, the extended TD3
algorithm determines the trading action 𝑎௧௧௔ ∈ {𝑙𝑜𝑛𝑔஺/𝑠ℎ𝑜𝑟𝑡஻, ℎ𝑜𝑙𝑑, 𝑠ℎ𝑜𝑟𝑡஺/𝑙𝑜𝑛𝑔஻}. The 𝑙𝑜𝑛𝑔஺/𝑠ℎ𝑜𝑟𝑡஻ action longs an undervalued stock A and shorts an overvalued stock B. The 𝑠ℎ𝑜𝑟𝑡஺/𝑙𝑜𝑛𝑔஻ action is the opposite of 𝑙𝑜𝑛𝑔஺/𝑠ℎ𝑜𝑟𝑡஻, and the ℎ𝑜𝑙𝑑 action takes no posi-
tion. For the sake of simplicity, the agent longs/shorts the maximum number of shares of
a stock at the closing price. The extended DDQN algorithm determines the stop-loss
boundary 𝑎௧௦௟ ∈ {±1.5, ±2.0, ±2.5, ±3.0, ±3.5}. When the stop-loss boundary is met by the
spread, the trading action 𝑎௧௧௔ is ignored and overridden. Opened positions are closed
when (1) the spread returns to the mean (referred to as normal close), (2) the spread does
not return to the mean during the trading window (referred to as exit), or (3) the spread
reaches the stop-loss boundary (referred to as stop-loss close).

4.4.2. Reward Functions for Pairs Trading
The reward function for the trading actions is designed to consider both the risk of

exit and transaction cost. An exit usually results in a loss because the positions are closed
by force at the end of the trading window (or the exit time), even if the spread has not
returned to the mean. In each trading window, the ratio 𝑅𝑇௧௘௫௜௧ of time interval between
the exit time 𝑡௘௫௜௧ and position closing time 𝑡௖௟௢௦௘ is computed by Equation (22). If the
positions are closed near the exit time (i.e., 𝑅𝑇௧௘௫௜௧ is small), we consider that the risk of
exit is high.

Figure 5. State representation learning. (a) Gate structure. (b) Architecture of the SRL.

4.4. Hybrid Reinforcement Learning

We extend the TD3 algorithm to directly determine trading actions. We incorporate
the proposed SRL model, behavior cloning, PER, and dynamic delay into this extended
TD3 algorithm. To determine stop-loss boundaries, we extend the DDQN algorithm and
combine it with the extended TD3 algorithm.

4.4.1. Action Spaces for Pairs Trading

The agent starts with a certain amount of money and allocates half of the total to
each of the two stocks in a pair. When the positions are closed and cashed out, the agent
reallocates half of the total money to each stock. For each trading day t, the extended TD3
algorithm determines the trading action ata

t ∈ {longA/shortB, hold, shortA/longB}. The
longA/shortB action longs an undervalued stock A and shorts an overvalued stock B. The
shortA/longB action is the opposite of longA/shortB, and the hold action takes no position.
For the sake of simplicity, the agent longs/shorts the maximum number of shares of a stock
at the closing price. The extended DDQN algorithm determines the stop-loss boundary
asl

t ∈ {±1.5, ±2.0, ±2.5, ±3.0, ±3.5}. When the stop-loss boundary is met by the spread,
the trading action ata

t is ignored and overridden. Opened positions are closed when (1) the
spread returns to the mean (referred to as normal close), (2) the spread does not return
to the mean during the trading window (referred to as exit), or (3) the spread reaches the
stop-loss boundary (referred to as stop-loss close).

4.4.2. Reward Functions for Pairs Trading

The reward function for the trading actions is designed to consider both the risk of
exit and transaction cost. An exit usually results in a loss because the positions are closed
by force at the end of the trading window (or the exit time), even if the spread has not
returned to the mean. In each trading window, the ratio RTexit

t of time interval between the
exit time texit and position closing time tclose is computed by Equation (22). If the positions
are closed near the exit time (i.e., RTexit

t is small), we consider that the risk of exit is high.

RTexit
t =

texit − tclose
|trading window| (22)

In a real trading environment, there are transaction costs, such as fees, taxes, and
trading slippages. Here, slippage is the difference between the expected price and actual
price at which a trade is executed. The transaction cost is factored into the stock price,

Appl. Sci. 2022, 12, 944 10 of 23

as in Equation (23), where ζ is the transaction cost rate used to discount the price. The
discounted price ˘pricet is applied when the stocks are sold.

˘pricet = pricet × (1− ζ) (23)

We use the returns of the long and short positions to define the reward function. The
return Rlong

t for the long position is defined in Equation (24), where nlong is the number
of shares, and tclose and t are the position closing time and current time, respectively. The
difference in stock prices is normalized by the stock price at t. The stock price at tclose is
discounted by the transaction cost rate because the stock is sold at tclose. Similarly, the
return Rshort

t for the short position is defined in Equation (25).

Rlong
t = nlong ×

(
˘pricelong

tclose
− pricelong

t

)
/pricelong

t (24)

Rshort
t = nshort ×

(
˘priceshort

t − priceshort
tclose

)
/ ˘priceshort

t (25)

We define the reward rta
t for trading actions in Equation (26). For a normal close, the

reward is the portfolio return (Rlong
t + Rshort

t) multiplied by RTexit
t , which is designed to

reduce the risk of exit. For an exit or stop-loss close, the reward is the portfolio return itself,
which is usually negative.

rta
t =


(

Rlong
t + Rshort

t

)
× RTexit

t if a normal close occurs

Rlong
t + Rshort

t if an exit or stop-loss close occurs
0 otherwise

(26)

We define the reward rsl
t for the stop-loss boundary in Equation (27). When the current

spread St touches or transgresses the stop-loss boundary asl
t (i.e., St/asl

t ≥ 1), the reward
is computed as the rate of change between the current spread St and next spread St+1.
If St+1 diverges more than St (i.e., St+1/St > 1), the reward is positive, which indicates
that the stop-loss boundary is correctly determined. If St+1/St < 1, then the reward is
negative. When the current spread St diverges more than the spread So at the position
opening (i.e., St/So > 1), the reward is computed as the rate of change between So and St.
In this case, the reward is always negative, which indicates that the stop-loss boundary is
incorrectly determined.

rsl
t =


St+1−St

St
if St

asl
t
≥ 1

So−St
So

if St
So

> 1
0 otherwise

(27)

4.4.3. Behavior Cloning

We employ a behavior cloning technique for actor network training, which learns the
actions of a prophetic trading expert. The expert determines an action on dayt using
information about future spread movements. The expert sets a trading boundary tb
for opening positions, which is a hyperparameter. If the current spread St touches or
transgresses tb (i.e., St/tb ≥ 1), and the future spread returns to the mean within the
trading window, TW, a normal close is guaranteed. Thus, the expert selects shortA/longB
or longA/shortB on dayt depending on the sign of St. Otherwise, the expert selects the hold
action. Figure 6 illustrates how the expert acts. The expert’s action at t2 is shortA/longB
because the spread returns to the mean within t2 + |TW|. However, at t1, the spread does
not return to the mean within t1 + |TW|, so the hold action is selected. Similarly, the selected
actions at t3 and t4 are hold and longA/shortB, respectively.

Appl. Sci. 2022, 12, 944 11 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 23

𝑠ℎ𝑜𝑟𝑡஺/𝑙𝑜𝑛𝑔஻ because the spread returns to the mean within 𝑡ଶ + |𝑇𝑊|. However, at 𝑡ଵ,
the spread does not return to the mean within 𝑡ଵ + |𝑇𝑊|, so the ℎ𝑜𝑙𝑑 action is selected.
Similarly, the selected actions at 𝑡ଷ and 𝑡ସ are ℎ𝑜𝑙𝑑 and 𝑙𝑜𝑛𝑔஺/𝑠ℎ𝑜𝑟𝑡஻, respectively.

Figure 6. An example of the expert’s actions.

4.4.4. Hybrid Reinforcement Learning Algorithm
Figure 7 illustrates the proposed architecture for hybrid reinforcement learning,

which combines the extended TD3 and DDQN algorithms. The extended TD3 algorithm
uses an actor network 𝜇థ , SRL network 𝜆జ for 𝜇థ , regression network that shares 𝜆జ
with the actor network, two critic networks 𝑄ఏభ and 𝑄ఏమ, and two SRL networks 𝑜ఎభ and 𝑜ఎమ for 𝑄ఏభ and 𝑄ఏమ, respectively. The actor network is trained with behavior cloning.
The extended DDQN algorithm uses a Q-network 𝑄ట for the stop-loss boundary (called
the stop-loss network) and the SRL network 𝜅ఐ for 𝑄ట . All networks, except the
regression network, have corresponding target networks. In Figure 7, the SRL networks
correspond to the sensors, and the trading system corresponds to the effector. Figure 8
shows the structure of each network.

Figure 6. An example of the expert’s actions.

4.4.4. Hybrid Reinforcement Learning Algorithm

Figure 7 illustrates the proposed architecture for hybrid reinforcement learning, which
combines the extended TD3 and DDQN algorithms. The extended TD3 algorithm uses
an actor network µφ, SRL network λυ for µφ, regression network that shares λυ with the
actor network, two critic networks Qθ1 and Qθ2 , and two SRL networks oη1 and oη2 for Qθ1
and Qθ2 , respectively. The actor network is trained with behavior cloning. The extended
DDQN algorithm uses a Q-network Qψ for the stop-loss boundary (called the stop-loss
network) and the SRL network κι for Qψ. All networks, except the regression network,
have corresponding target networks. In Figure 7, the SRL networks correspond to the
sensors, and the trading system corresponds to the effector. Figure 8 shows the structure of
each network.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 23

𝑠ℎ𝑜𝑟𝑡஺/𝑙𝑜𝑛𝑔஻ because the spread returns to the mean within 𝑡ଶ + |𝑇𝑊|. However, at 𝑡ଵ,
the spread does not return to the mean within 𝑡ଵ + |𝑇𝑊|, so the ℎ𝑜𝑙𝑑 action is selected.
Similarly, the selected actions at 𝑡ଷ and 𝑡ସ are ℎ𝑜𝑙𝑑 and 𝑙𝑜𝑛𝑔஺/𝑠ℎ𝑜𝑟𝑡஻, respectively.

Figure 6. An example of the expert’s actions.

4.4.4. Hybrid Reinforcement Learning Algorithm
Figure 7 illustrates the proposed architecture for hybrid reinforcement learning,

which combines the extended TD3 and DDQN algorithms. The extended TD3 algorithm
uses an actor network 𝜇థ , SRL network 𝜆జ for 𝜇థ , regression network that shares 𝜆జ
with the actor network, two critic networks 𝑄ఏభ and 𝑄ఏమ, and two SRL networks 𝑜ఎభ and 𝑜ఎమ for 𝑄ఏభ and 𝑄ఏమ, respectively. The actor network is trained with behavior cloning.
The extended DDQN algorithm uses a Q-network 𝑄ట for the stop-loss boundary (called
the stop-loss network) and the SRL network 𝜅ఐ for 𝑄ట . All networks, except the
regression network, have corresponding target networks. In Figure 7, the SRL networks
correspond to the sensors, and the trading system corresponds to the effector. Figure 8
shows the structure of each network.

Figure 7. Architecture of the hybrid deep reinforcement learning.

Appl. Sci. 2022, 12, 944 12 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 23

Figure 7. Architecture of the hybrid deep reinforcement learning.

(a) (b) (c) (d)

Figure 8. Neural network structures. (a) Actor. (b) Regression. (c) Critics. (d) Stop-Loss.

Algorithm 1 presents the proposed hybrid reinforcement learning algorithm. The
input for the SRL networks is a sliding window 𝑤௧ௗ௔௧௔ of weighted feature vectors {𝑥௧ିேೢାଵ, . . . , 𝑥௧ିଵ, 𝑥௧} obtained from data preprocessing. After interacting with the
environment, a transition of ൏ 𝑤௧ௗ௔௧௔, 𝑎௧௧௔, 𝑎௧௦௟, 𝑟௧௧௔, 𝑟௧௦௟, 𝑤௧ାଵௗ௔௧௔, 𝑝௧ > is stored to ℬ where the
priority 𝑝௧ is set to the maximum (line 13). Using the sampling probability in Equation
(8), a minibatch of transitions is sampled (line 14).

In the extended TD3 algorithm, the actor network 𝜇థ is combined with the SRL
network 𝜆జ, and updates on 𝜇థ are back-propagated to 𝜆జ. In the actor network shown
in Figure 8a, a softmax layer is used as the output layer to support discrete actions. To
select an action with exploration noise, a different amount of noise is added to each output
of the softmax layer (line 9), and then argmax is applied to the outputs. To avoid
overfitting, we employ the target policy smoothing technique of TD3 (line 15). To provide
accurate state information to the actor network, we train the regression network, whose
structure is shown in Figure 8b, by minimizing the MSE between the real and predicted
closing spreads (line 24). The actor network is indirectly affected by this training through
the underlying SRL network 𝜆జ, which is shared with the regression network. To learn
the expert’s action 𝑎௘௫௣௘௥௧௧௔ , we train the actor network by minimizing the cross-entropy
(CE) loss between the softmax output vector of 𝑎௜௧௔ and the expert’s action 𝑎௘௫௣௘௥௧௧௔ , which
is represented as a one-hot vector (line 25).

The critic networks 𝑄ఏభ and 𝑄ఏమ , whose structures are shown in Figure 8c, are
combined with the corresponding SRL networks 𝑜ఎభ and 𝑜ఎమ , respectively. To avoid
overestimation, we employ the clipped double Q-learning technique of TD3 when com-
puting the target value 𝑌௖௥௜௧௜௖ (line 16). 𝑌௖௥௜௧௜௖ is used in computing the temporal differ-
ence errors (line 17). The critic networks are updated by minimizing the MSE loss with
the importance sampling weight 𝜔௜ in Equation (9) (line 18). The updates on each critic
network are back-propagated to the corresponding SRL network. The transition priority 𝑝௜ is updated using the minimum of the temporal difference errors (line 19).

In contrast to the static delay used in the delayed policy updates technique of TD3,
the dynamic delay technique [36] is applied when updating the actor and target networks
for more stable and efficient training. At each epoch, the delay value 𝑑 is computed using
Equation (28), where 𝑐 and 𝑏 are parameters for controlling the variance and minimum
delay value, respectively (line 7).

Figure 8. Neural network structures. (a) Actor. (b) Regression. (c) Critics. (d) Stop-Loss.

Algorithm 1 presents the proposed hybrid reinforcement learning algorithm. The input
for the SRL networks is a sliding window wdata

t of weighted feature vectors {xt−Nw+1, . . . ,
xt−1, xt} obtained from data preprocessing. After interacting with the environment, a
transition of

〈
wdata

t , ata
t , asl

t , rta
t , rsl

t , wdata
t+1 , pt

〉
is stored to B where the priority pt is set to

the maximum (line 13). Using the sampling probability in Equation (8), a minibatch of
transitions is sampled (line 14).

In the extended TD3 algorithm, the actor network µφ is combined with the SRL
network λυ, and updates on µφ are back-propagated to λυ. In the actor network shown in
Figure 8a, a softmax layer is used as the output layer to support discrete actions. To select
an action with exploration noise, a different amount of noise is added to each output of
the softmax layer (line 9), and then argmax is applied to the outputs. To avoid overfitting,
we employ the target policy smoothing technique of TD3 (line 15). To provide accurate
state information to the actor network, we train the regression network, whose structure is
shown in Figure 8b, by minimizing the MSE between the real and predicted closing spreads
(line 24). The actor network is indirectly affected by this training through the underlying
SRL network λυ, which is shared with the regression network. To learn the expert’s action
ata

expert, we train the actor network by minimizing the cross-entropy (CE) loss between
the softmax output vector of ata

i and the expert’s action ata
expert, which is represented as a

one-hot vector (line 25).
The critic networks Qθ1 and Qθ2 , whose structures are shown in Figure 8c, are com-

bined with the corresponding SRL networks oη1 and oη2 , respectively. To avoid overes-
timation, we employ the clipped double Q-learning technique of TD3 when computing
the target value Ycritic (line 16). Ycritic is used in computing the temporal difference errors
(line 17). The critic networks are updated by minimizing the MSE loss with the importance
sampling weight ωi in Equation (9) (line 18). The updates on each critic network are
back-propagated to the corresponding SRL network. The transition priority pi is updated
using the minimum of the temporal difference errors (line 19).

In contrast to the static delay used in the delayed policy updates technique of TD3,
the dynamic delay technique [36] is applied when updating the actor and target networks
for more stable and efficient training. At each epoch, the delay value d is computed using
Equation (28), where c and b are parameters for controlling the variance and minimum
delay value, respectively (line 7).

d = (e mod c) + b (28)

Appl. Sci. 2022, 12, 944 13 of 23

In the extended DDQN algorithm (red parts in Algorithm 1), the stop-loss network
Qψ, whose structure is shown in Figure 8d, is combined with the SRL network κι shown in
Figure 7. To support discrete stop-loss boundaries, a softmax layer is used as the output
layer of the stop-loss network. An action asl

t is selected using the ε-greedy strategy (lines 10
and 11). The target value Ysl is computed as in the DDQN, and then, the stop-loss network
is updated using Ysl (lines 20 and 21). When the stop-loss network is updated, the SRL
network κι is also updated by backpropagation.

Algorithm 1. The hybrid reinforcement learning algorithm of HDRL-Trader

Input: Sliding-window data wdata
t ← {xt−Nw+1, . . . , xt−1, xt} obtained from the data preprocessing

Output: actor network µφ, SRL network λυ for µφ, stop-loss network Qψ, SRL network κι for Qψ

1. Initialize an actor network µφ, an SRL network λυ for µφ, and a regression network
2. Initialize critic networks Qθ1 , Qθ2 , SRL networks oη1 , oη2 for Qθ1 , Qθ2

3. Initialize a stop-loss network Qψ, an SRL network κι for Qψ

4. Initialize target networks : φ′ ← φ , υ′ ← υ , θ′1,2 ← θ1,2 , η′1,2 ← η1,2 , ψ′ ← ψ , ι′ ← ι

5. Initialize a prioritized replay buffer B

6. for e = 1 to Nepochs do
7. Compute the delay value for each epoch: d← (e mod c) + b

8. for t = 1 to T − 1 do
9. Select a trading action ata

t with exploration noise ε v N (0, σ) : ata
t ← µφ(st) + ε where st = λυ

(
wdata

t

)
10. With probability ε, select a random stop-loss boundary asl

t
11. Otherwise, select asl

t ← argmax
asl

Qψ

(
st, asl

)
where st = κι

(
wdata

t

)
12. Observe rewards rta

t , rsl
t and the next input wdata

t+1
13. Store a transition 〈wdata

t , ata
t ,asl

t , rta
t ,rsl

t , wdata
t+1 , pt〉 to B where pt = maxi<t pi

14. Sample a minibatch of B transitions 〈wdata
i , ata

i ,asl
i , rta

i ,rsl
i , wdata

i+1 , pi〉 from B with P(i) in Equation (8)
15. Smooth the target policy with ε v clip(N (0, σ′),−c, c) : ã′i+1 ← µφ′

(
s′i+1

)
+ ε where s′i+1 = λυ′

(
wdata

i+1

)
16. Ycritic ← rta

i + γmin
j=1,2

Qθ′j

(
sj′

i+1, ã′i+1

)
where sj′

i+1 = oη′j

(
wdata

i+1

)
17. Compute temporal difference errors: δ

j
i ← Ycritic −Qθj

(
sj

i , ata
i

)
where sj

i = oηj

(
wdata

i

)
18. Update the critics θj by the MSE loss 1

B ∑ (δ
j
i)

2
with the importance sampling weight ωi in Equation (9)

19. Update the transition priority: pi ← min
j=1,2

(∣∣∣δj
i

∣∣∣+ ξ
)

20. Ysl ← rsl
i + γQψ′ (s′i+1, argmax

asl
Qψ

(
si+1, asl

)
) where s′i+1 = κι′

(
wdata

i+1

)
, si+1 = κι

(
wdata

i+1

)
21. Update the stop-loss network ψ by the MSE loss: 1

B ∑ (Ysl −Qψ

(
si, asl

i

)
)

2
where si = κι

(
wdata

i

)
22. if t mod d then
23. Update the actor φ by the deterministic policy gradient:

1
B ∑ ∇Qθ1

(
s1

i , ata
i
)

where s1
i = oη1

(
wdata

i

)
, ata

i = µφ

(
λυ

(
wdata

i

))
24. Update the regression network by the MSE loss: 1

B ∑ (spreadreal
i+1 − spreadpredicted

i+1)
2

25. Update the actor φ by the CE loss for the behavior cloning: 1
B ∑ ∇CE

(
ata

i , ata
expert

)
where ata

i = µφ

(
λυ

(
wdata

i

))
26. Soft-update the target networks: φ′ ← τφ + (1− τ)φ′ , υ′ ← τυ + (1− τ)υ′,

θ′1,2 ← τθ1,2 + (1− τ)θ′1,2 , η′1,2 ← τη1,2 + (1− τ)η′1,2,
ψ′ ← τψ + (1− τ)ψ′ , ι′ ← τι + (1− τ)ι′

27. end if
28. end for
29. end for

Appl. Sci. 2022, 12, 944 14 of 23

4.5. Discussion

Table 2 summarizes the pairs trading methods in terms of their data preprocessing,
SRL, and reinforcement learning abilities. The notation “#” in Table 2 indicates that the
corresponding technique is used, and “×” indicates that it is not used. HDRL-Trader is
the only method that integrates all novel techniques (dimensionality reduction, cluster-
ing, gate structure, regression model, behavior cloning, PER, dynamic delay, and hybrid
reinforcement learning).

Table 2. Comparison of pairs trading methods.

Methods

Data Preprocessing State Representation Learning Reinforcement Learning

Dim.
Reduction Clustering Gating Regression Behavior

Cloning PER Dynamic
Delay Hybrid

HDRL-Trader # # # # # # # #

P-Trader [5] × # # # × × × ×
PTDQN [1] × × × × × × × ×
P-DDQN [3] × × × × × × × ×

5. Experiments and Results
5.1. Experimental Setup
5.1.1. Datasets for Training and Testing

We evaluate pairs trading methods using two datasets with different numbers of stock
pairs in the S&P 500 index. The stock data are obtained from Yahoo Finance [52]. Stock
pairs are selected if their absolute Pearson’s correlation coefficient is greater than or equal
to 0.85, and the p-value of their augmented Dickey-Fuller test is less than or equal to 0.05 for
the training period. A smaller dataset with diverse price trends is used to compare HDRL-
Trader with other methods in detail. The smaller dataset consists of six stock pairs with
three different price trends in the test period (upward, sideways, and downward), as shown
in Figures 9–11, respectively. A larger dataset of 20 stock pairs (Table A1 in Appendix A) is
used to verify the generalization ability of the methods. For the two datasets, the period of
the training data is from January 2013 to December 2018 (1510 days), and the period of the
test data is from January 2019 to December 2020 (504 days).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 23

4.5. Discussion
Table 2 summarizes the pairs trading methods in terms of their data preprocessing,

SRL, and reinforcement learning abilities. The notation “○” in Table 2 indicates that the
corresponding technique is used, and “×” indicates that it is not used. HDRL-Trader is the
only method that integrates all novel techniques (dimensionality reduction, clustering,
gate structure, regression model, behavior cloning, PER, dynamic delay, and hybrid rein-
forcement learning).

Table 2. Comparison of pairs trading methods.

Methods
Data Preprocessing State Representation Learning Reinforcement Learning
Dim.

Reduction Clustering Gating Regression
Behavior
Cloning PER

Dynamic
Delay Hybrid

HDRL-Trader ○ ○ ○ ○ ○ ○ ○ ○

P-Trader [5] × ○ ○ ○ × × × ×
PTDQN [1] × × × × × × × ×
P-DDQN [3] × × × × × × × ×

5. Experiments and Results
5.1. Experimental Setup
5.1.1. Datasets for Training and Testing

We evaluate pairs trading methods using two datasets with different numbers of
stock pairs in the S&P 500 index. The stock data are obtained from Yahoo Finance [52].
Stock pairs are selected if their absolute Pearson’s correlation coefficient is greater than or
equal to 0.85, and the p-value of their augmented Dickey-Fuller test is less than or equal
to 0.05 for the training period. A smaller dataset with diverse price trends is used to com-
pare HDRL-Trader with other methods in detail. The smaller dataset consists of six stock
pairs with three different price trends in the test period (upward, sideways, and down-
ward), as shown in Figures 9–11, respectively. A larger dataset of 20 stock pairs (Table A1
in Appendix A) is used to verify the generalization ability of the methods. For the two
datasets, the period of the training data is from January 2013 to December 2018 (1510
days), and the period of the test data is from January 2019 to December 2020 (504 days).

 (a) (b)

Figure 9. Stock pairs trending upward. (a) A, PLD. (b) ARE, DRL. Figure 9. Stock pairs trending upward. (a) A, PLD. (b) ARE, DRL.

Appl. Sci. 2022, 12, 944 15 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 23

(a) (b)

Figure 10. Stock pairs trending sideways. (a) HIG, BK. (b) O, EVRG.

 (a) (b)

Figure 11. Stock pairs trending downward. (a) COG, MRO. (b) GPS, MRO.

5.1.2. Evaluation Metrics
We evaluate the methods in terms of the rate of return and risk indicators, such as

the Sharpe ratio (SR) [53] and maximum drawdown (MDD) [2]. The rate of return is com-
puted by Equation (29), where 𝑃𝑉௦௧௔௥௧ is the initial money of $10,000, and 𝑃𝑉௘௡ௗ is the
portfolio value at the end of the test period, which is the sum of the values of long and
short positions and the remaining money. (𝑃𝑉௘௡ௗ − 𝑃𝑉௦௧௔௥௧)/𝑃𝑉௦௧௔௥௧ (29)

The SR in Equation (30) measures the return of an investment compared to its risk.
In Equation (30), 𝔼[𝑅] is the expected return, and 𝜎[𝑅] is the standard deviation of the
return, which measures fluctuation (i.e., risk). A higher SR indicates a higher risk-adjusted
return. We use the change rate of the portfolio value at each day as the return for the day. SR = 𝔼[𝑅]𝜎[𝑅] (30)

The MDD in Equation (31) measures the maximum loss rate from the peak to the
trough of a portfolio over a specified period 𝑇. In Equation (31), the inner max term com-
putes the drawdown for time 𝜏. A lower MDD indicates a lower risk. MDD(𝑇) = maxఛ ∈ (଴,்) ൤ max௧ ∈ (଴,ఛ) 𝑃𝑉௧ − 𝑃𝑉ఛ𝑃𝑉௧ ൨ (31)

5.1.3. Baseline Methods
HDRL-Trader is compared with the state-of-the-art methods listed below. For a fair

comparison, we optimize the network structures and hyperparameters for each method,
as described below. The Adam optimizer is used for all methods with momentum param-
eters 𝛽ଵ of 0.9 and 𝛽ଶ of 0.999, an epsilon of 10ି଻, and a decay of 0.99.
• Buy and Hold (B&H) buys two stocks in a pair on the first day of the test period,

holds them, and then sells them on the last day of the test period.

Figure 10. Stock pairs trending sideways. (a) HIG, BK. (b) O, EVRG.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 23

(a) (b)

Figure 10. Stock pairs trending sideways. (a) HIG, BK. (b) O, EVRG.

 (a) (b)

Figure 11. Stock pairs trending downward. (a) COG, MRO. (b) GPS, MRO.

5.1.2. Evaluation Metrics
We evaluate the methods in terms of the rate of return and risk indicators, such as

the Sharpe ratio (SR) [53] and maximum drawdown (MDD) [2]. The rate of return is com-
puted by Equation (29), where 𝑃𝑉௦௧௔௥௧ is the initial money of $10,000, and 𝑃𝑉௘௡ௗ is the
portfolio value at the end of the test period, which is the sum of the values of long and
short positions and the remaining money. (𝑃𝑉௘௡ௗ − 𝑃𝑉௦௧௔௥௧)/𝑃𝑉௦௧௔௥௧ (29)

The SR in Equation (30) measures the return of an investment compared to its risk.
In Equation (30), 𝔼[𝑅] is the expected return, and 𝜎[𝑅] is the standard deviation of the
return, which measures fluctuation (i.e., risk). A higher SR indicates a higher risk-adjusted
return. We use the change rate of the portfolio value at each day as the return for the day. SR = 𝔼[𝑅]𝜎[𝑅] (30)

The MDD in Equation (31) measures the maximum loss rate from the peak to the
trough of a portfolio over a specified period 𝑇. In Equation (31), the inner max term com-
putes the drawdown for time 𝜏. A lower MDD indicates a lower risk. MDD(𝑇) = maxఛ ∈ (଴,்) ൤ max௧ ∈ (଴,ఛ) 𝑃𝑉௧ − 𝑃𝑉ఛ𝑃𝑉௧ ൨ (31)

5.1.3. Baseline Methods
HDRL-Trader is compared with the state-of-the-art methods listed below. For a fair

comparison, we optimize the network structures and hyperparameters for each method,
as described below. The Adam optimizer is used for all methods with momentum param-
eters 𝛽ଵ of 0.9 and 𝛽ଶ of 0.999, an epsilon of 10ି଻, and a decay of 0.99.
• Buy and Hold (B&H) buys two stocks in a pair on the first day of the test period,

holds them, and then sells them on the last day of the test period.

Figure 11. Stock pairs trending downward. (a) COG, MRO. (b) GPS, MRO.

5.1.2. Evaluation Metrics

We evaluate the methods in terms of the rate of return and risk indicators, such as the
Sharpe ratio (SR) [53] and maximum drawdown (MDD) [2]. The rate of return is computed
by Equation (29), where PVstart is the initial money of $10,000, and PVend is the portfolio
value at the end of the test period, which is the sum of the values of long and short positions
and the remaining money.

(PVend − PVstart)/PVstart (29)

The SR in Equation (30) measures the return of an investment compared to its risk. In
Equation (30), E[R] is the expected return, and σ[R] is the standard deviation of the return,
which measures fluctuation (i.e., risk). A higher SR indicates a higher risk-adjusted return.
We use the change rate of the portfolio value at each day as the return for the day.

SR =
E[R]
σ[R]

(30)

The MDD in Equation (31) measures the maximum loss rate from the peak to the
trough of a portfolio over a specified period T. In Equation (31), the inner max term
computes the drawdown for time τ. A lower MDD indicates a lower risk.

MDD(T) = max
τ ∈ (0, T)

[
max

t ∈ (0, τ)

PVt − PVτ

PVt

]
(31)

Appl. Sci. 2022, 12, 944 16 of 23

5.1.3. Baseline Methods

HDRL-Trader is compared with the state-of-the-art methods listed below. For a fair
comparison, we optimize the network structures and hyperparameters for each method, as
described below. The Adam optimizer is used for all methods with momentum parameters
β1 of 0.9 and β2 of 0.999, an epsilon of 10−7, and a decay of 0.99.

• Buy and Hold (B&H) buys two stocks in a pair on the first day of the test period, holds
them, and then sells them on the last day of the test period.

• PTDQN [1] determines trading and stop-loss boundaries using a DQN. The Q-network
comprises two ReLU dense layers with 15 units and a softmax output layer. We set
the sliding window size to 30, mini-batch size to 32, learning rate to 0.001, and ε to 0.5
with a decay of 0.95.

• P-DDQN [3] determines trading actions using a DDQN with a negative reward multi-
plier. The Q-network comprises two ReLU dense layers with 50 units and a softmax
output layer. We set the mini-batch size to 32, learning rate to 0.0001, and ε to 0.3.

• P-Trader [5] determines trading actions using a DDQN and employs techniques such
as clustering, a gate structure, a temporal attention mechanism, and a regression
network. The Q-network comprises two ReLU dense layers with 128 and 64 units and
a softmax output layer. The regression network comprises a ReLU dense layer with
128 units and a linear output layer. We set the sliding window size to 15, mini-batch
size to 32, learning rate to 0.0001, and ε to 0.5 with a decay of 0.95.

5.1.4. Implementation Details of HDRL-Trader

In the data preprocessing, we set the tumbling window size for the z-score normaliza-
tion to 20, the dimensionality threshold F in Figure 4 to 8, and the number of clusters to 10.
In the SRL, we set the sliding window size for input to 10 and the number of units of the
LSTM layer to 128. In the hybrid reinforcement learning, we set the trading window size in
Equation (22) to 60; transaction cost rate ζ in Equation (23) to 0.3%; trading boundary tb
for the behavior cloning to 1.0; c and b in Equation (28) for the dynamic delay to 4 and 2,
respectively; α, β, and ξ for the PER to 0.6, 0.4, and 0.0001, respectively; probability ε to 0.3;
noise size σ for exploration to 0.7; noise size σ′ for regularization to 0.7; clipping size c to 1;
mini-batch size to 32; and learning rate to 0.0001.

5.2. Experimental Results
5.2.1. Comparison with Other Methods

To compare HDRL-Trader with the other methods in detail, the smaller dataset with
various price trends is used. Table 3 shows that the pairs trading methods (P-DDQN,
PTDQN, P-Trader, and HDRL-Trader) achieve good profits for all price trends because
pairs trading is a market-neutral trading strategy. HDRL-Trader has the highest return
rate, highest SR, and lowest MDD for all price trends because it integrates all of the
novel techniques in Table 2. Compared with the second-best method, P-Trader, which
directly determines trading actions without a stop-loss boundary, HDRL-Trader shows
significantly higher performance because of the hybrid reinforcement learning with the
stop-loss network. For the downward trend, the MDDs are higher than those for the other
trends for all methods because they suffer from exits with a great loss due to the large
divergence, as shown in Figure 11. Even in this situation, HDRL-Trader has the lowest
MDD because it reduces significant losses using hybrid reinforcement learning with the
stop-loss network.

To verify the generalization ability of the methods, the larger dataset is used. As
shown in Figure 12 and Table A1 in Appendix A, HDRL-Trader outperforms all other
methods in terms of the minimum, maximum, and average return rate, SR, and MDD.
HDRL-Trader archives an average return rate of 82.4%, which is 25.7%P higher than that of
the second-best method. The average SR of HDRL-Trader is 1.24, which is 0.26 higher than
the second-best method. The average MDD of HDRL-Trader is 0.36, which is 0.08 lower
than the second-best method. These results indicate that the hybrid reinforcement learning

Appl. Sci. 2022, 12, 944 17 of 23

algorithm of HDRL-Trader with its novel techniques is very effective for generalization.
The experimental results can be statistically analyzed using the metrics for measuring
machine intelligence [54], and we leave this as future work.

Table 3. Experimental results on the smaller dataset.

Rate of Return (the Higher the Better)

Stock Pairs B&H P-DDQN PTDQN P-Trader HDRL-Trader

Upward
Trending

A, PLD 76.8% 92.9% 115.3% 109.2% 151.7%

ARE, DRL 46.5% 42.9% 75.6% 91.8% 129.0%

Sideways
Trending

HIG, BK −0.4% 27.8% 51.8% 49.6% 79.8%

O, EVRG 0.8% 59.2% 65.8% 73.5% 104.0%

Downward
Trending

COG, MRO −42.8% 107.0% 104.5% 99.1% 132.3%

GPS, MRO −38.2% 37.8% 13.7% 37.5% 64.0%

Minimum −42.8% 27.8% 13.7% 37.5% 64.0%

Maximum 76.8% 107.0% 115.3% 109.2% 151.7%

Average 7.1% 61.2% 71.1% 76.8% 110.1%

Sharpe Ratio (the Higher the Better)

Stock Pairs B&H P-DDQN PTDQN P-Trader HDRL-Trader

Upward
Trending

A, PLD 1.57 1.88 1.82 2.06 2.25

ARE, DRL 1.13 1.26 1.72 1.49 1.74

Sideways
Trending

HIG, BK 0.25 0.82 0.98 0.86 1.25

O, EVRG 0.30 0.66 0.84 1.20 1.64

Downward
Trending

COG, MRO −0.62 1.49 1.16 1.33 1.61

GPS, MRO −0.12 0.54 0.48 0.63 0.93

Minimum −0.62 0.54 0.48 0.63 0.93

Maximum 1.57 1.88 1.82 2.06 2.25

Average 0.42 1.11 1.17 1.26 1.57

Maximum Drawdown (the Lower the Better)

Stock Pairs B&H P-DDQN PTDQN P-Trader HDRL-Trader

Upward
Trending

A, PLD 0.45 0.38 0.40 0.27 0.24

ARE, DRL 0.36 0.30 0.35 0.33 0.22

Sideways
Trending

HIG, BK 0.43 0.25 0.39 0.21 0.16

O, EVRG 0.51 0.49 0.35 0.36 0.21

Downward
Trending

COG, MRO 0.65 0.70 0.59 0.46 0.43

GPS, MRO 0.81 0.51 0.53 0.52 0.48

Minimum 0.36 0.25 0.35 0.21 0.16

Maximum 0.81 0.70 0.59 0.52 0.48

Average 0.53 0.44 0.43 0.36 0.29

5.2.2. Ablation Studies

To evaluate the contribution of each technique used in HDRL-Trader, ablation studies
are conducted using the smaller dataset. The techniques excluded one-by-one are the stop-
loss network (SL), PER, behavior cloning (BC), clustering (Clu), dimensionality reduction
(Dim), regression network (Reg), and gate structure (Gat). Figure 13 shows the results,
where “All” denotes HDRL-Trader with all techniques. All the techniques contribute
significantly to the performance improvement. In particular, the hybrid with the stop-

Appl. Sci. 2022, 12, 944 18 of 23

loss network is very crucial because it reduces significant losses. For the dynamic delay
technique, we compare its performance with those of static delays ranging from two to five.
Figure 14 shows that the dynamic delay outperforms all the static delays, demonstrating
its contribution.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 23

Maximum 76.8% 107.0% 115.3% 109.2% 151.7%
Average 7.1% 61.2% 71.1% 76.8% 110.1%

Sharpe Ratio (the Higher the Better)
Stock Pairs B&H P-DDQN PTDQN P-Trader HDRL-Trader

Upward
Trending

A, PLD 1.57 1.88 1.82 2.06 2.25
ARE, DRL 1.13 1.26 1.72 1.49 1.74

Sideways
Trending

HIG, BK 0.25 0.82 0.98 0.86 1.25
O, EVRG 0.30 0.66 0.84 1.20 1.64

Downward
Trending

COG, MRO −0.62 1.49 1.16 1.33 1.61

GPS, MRO −0.12 0.54 0.48 0.63 0.93

Minimum −0.62 0.54 0.48 0.63 0.93
Maximum 1.57 1.88 1.82 2.06 2.25
Average 0.42 1.11 1.17 1.26 1.57

Maximum Drawdown (the Lower the Better)
Stock Pairs B&H P-DDQN PTDQN P-Trader HDRL-Trader

Upward
Trending

A, PLD 0.45 0.38 0.40 0.27 0.24
ARE, DRL 0.36 0.30 0.35 0.33 0.22

Sideways
Trending

HIG, BK 0.43 0.25 0.39 0.21 0.16
O, EVRG 0.51 0.49 0.35 0.36 0.21

Downward
Trending

COG, MRO 0.65 0.70 0.59 0.46 0.43
GPS, MRO 0.81 0.51 0.53 0.52 0.48

Minimum 0.36 0.25 0.35 0.21 0.16
Maximum 0.81 0.70 0.59 0.52 0.48
Average 0.53 0.44 0.43 0.36 0.29

To verify the generalization ability of the methods, the larger dataset is used. As
shown in Figure 12 and Table A1 in Appendix A, HDRL-Trader outperforms all other
methods in terms of the minimum, maximum, and average return rate, SR, and MDD.
HDRL-Trader archives an average return rate of 82.4%, which is 25.7%P higher than that
of the second-best method. The average SR of HDRL-Trader is 1.24, which is 0.26 higher
than the second-best method. The average MDD of HDRL-Trader is 0.36, which is 0.08
lower than the second-best method. These results indicate that the hybrid reinforcement
learning algorithm of HDRL-Trader with its novel techniques is very effective for gener-
alization. The experimental results can be statistically analyzed using the metrics for
measuring machine intelligence [54], and we leave this as future work.

(a) (b) (c)

Figure 12. Experimental results on the larger dataset. (a) Rate of return. (b) Sharpe ratio. (c) Maxi-
mum drawdown.

Figure 12. Experimental results on the larger dataset. (a) Rate of return. (b) Sharpe ratio. (c) Maximum
drawdown.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 23

5.2.2. Ablation Studies
To evaluate the contribution of each technique used in HDRL-Trader, ablation stud-

ies are conducted using the smaller dataset. The techniques excluded one-by-one are the
stop-loss network (SL), PER, behavior cloning (BC), clustering (Clu), dimensionality re-
duction (Dim), regression network (Reg), and gate structure (Gat). Figure 13 shows the
results, where “All” denotes HDRL-Trader with all techniques. All the techniques con-
tribute significantly to the performance improvement. In particular, the hybrid with the
stop-loss network is very crucial because it reduces significant losses. For the dynamic
delay technique, we compare its performance with those of static delays ranging from two
to five. Figure 14 shows that the dynamic delay outperforms all the static delays, demon-
strating its contribution.

(a) (b) (c)

Figure 13. Experimental results of the ablation studies. (a) Rate of return. (b) Sharpe ratio. (c) Max-
imum drawdown.

(a) (b) (c)

Figure 14. Comparison of static and dynamic delays. (a) Rate of return. (b) Sharpe ratio. (c) Maxi-
mum drawdown.

5.2.3. Comparison with Other Hyperparameter Values
Figure 15 shows the effect of the major hyperparameters used in HDRL-Trader, i.e.,

the dimensionality reduction threshold, number of clusters, sliding window size, and
noise size for exploration. The average return rate is evaluated on the smaller dataset. As
shown in Figure 15a–c, the performance is degraded if the dimensionality threshold, num-
ber of clusters, or sliding window size is set too small or too large. This is because there is
information underload (overload) if they are set too small (large). Figure 15d shows that
if the noise size for exploration is set too small or too large, the performance is degraded
because of the exploration-exploitation trade-off.

Figure 13. Experimental results of the ablation studies. (a) Rate of return. (b) Sharpe ratio. (c) Maximum
drawdown.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 23

5.2.2. Ablation Studies
To evaluate the contribution of each technique used in HDRL-Trader, ablation stud-

ies are conducted using the smaller dataset. The techniques excluded one-by-one are the
stop-loss network (SL), PER, behavior cloning (BC), clustering (Clu), dimensionality re-
duction (Dim), regression network (Reg), and gate structure (Gat). Figure 13 shows the
results, where “All” denotes HDRL-Trader with all techniques. All the techniques con-
tribute significantly to the performance improvement. In particular, the hybrid with the
stop-loss network is very crucial because it reduces significant losses. For the dynamic
delay technique, we compare its performance with those of static delays ranging from two
to five. Figure 14 shows that the dynamic delay outperforms all the static delays, demon-
strating its contribution.

(a) (b) (c)

Figure 13. Experimental results of the ablation studies. (a) Rate of return. (b) Sharpe ratio. (c) Max-
imum drawdown.

(a) (b) (c)

Figure 14. Comparison of static and dynamic delays. (a) Rate of return. (b) Sharpe ratio. (c) Maxi-
mum drawdown.

5.2.3. Comparison with Other Hyperparameter Values
Figure 15 shows the effect of the major hyperparameters used in HDRL-Trader, i.e.,

the dimensionality reduction threshold, number of clusters, sliding window size, and
noise size for exploration. The average return rate is evaluated on the smaller dataset. As
shown in Figure 15a–c, the performance is degraded if the dimensionality threshold, num-
ber of clusters, or sliding window size is set too small or too large. This is because there is
information underload (overload) if they are set too small (large). Figure 15d shows that
if the noise size for exploration is set too small or too large, the performance is degraded
because of the exploration-exploitation trade-off.

Figure 14. Comparison of static and dynamic delays. (a) Rate of return. (b) Sharpe ratio. (c) Maximum
drawdown.

5.2.3. Comparison with Other Hyperparameter Values

Figure 15 shows the effect of the major hyperparameters used in HDRL-Trader, i.e.,
the dimensionality reduction threshold, number of clusters, sliding window size, and noise
size for exploration. The average return rate is evaluated on the smaller dataset. As shown
in Figure 15a–c, the performance is degraded if the dimensionality threshold, number
of clusters, or sliding window size is set too small or too large. This is because there is

Appl. Sci. 2022, 12, 944 19 of 23

information underload (overload) if they are set too small (large). Figure 15d shows that
if the noise size for exploration is set too small or too large, the performance is degraded
because of the exploration-exploitation trade-off.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 23

(a) (b) (c) (d)

Figure 15. Comparison with other hyperparameter values. (a) Dimensionality. (b) Number of
Clusters. (c) Sliding Window Size. (d) Noise Size.

5.2.4. Robustness Study
Figure 16 shows the effect of the transaction cost rate 𝜁, which demonstrates the ro-

bustness of HDRL-Trader. The average return rate is evaluated on the smaller dataset.
The results show that the profit decreases as the transaction cost rate increases for all
methods. However, HDRL-Trader achieves the best profit compared with the other meth-
ods regardless of the transaction cost rate. Furthermore, HDRL-Trader achieves a good
profit even for a transaction cost rate of 0.5%, which is much higher than that of a real
trading environment.

Figure 16. Experimental results of robustness study.

6. Conclusions and Future Work
In this study, we proposed a novel hybrid reinforcement learning method for pairs

trading called HDRL-Trader that solves the dependency problem between the stop-loss
and trading boundaries and the problem of the absence of the stop-loss boundary. We
extended the twin delayed deep deterministic policy gradient algorithm to determine the
trading action and the double deep Q-network algorithm to determine the stop-loss
boundary. We then proposed a hybrid algorithm that combines the extended algorithms
and incorporated novel techniques, such as dimensionality reduction, clustering, regres-
sion, behavior cloning, prioritized experience replay, and dynamic delay, into the hybrid
algorithm. We compared the performance of HDRL-Trader with the state-of-the-art rein-
forcement learning methods for pairs trading (P-DDQN, PTDQN, and P-Trader). The ex-
perimental results for the twenty stock pairs showed that HDRL-Trader achieves an aver-
age return rate of 82.4%, which is 25.7%P higher than that of the second-best method, and
yielded significantly positive return rates for all the stock pairs. Future work can over-
come limitations of the present study. First, we plan to extend HDRL-Trader for continu-
ous action spaces. Second, we plan to investigate the effect of various methods of selecting
stock pairs. Last, we plan to statistically analyze the experimental results using the intel-
ligence metrics.

Figure 15. Comparison with other hyperparameter values. (a) Dimensionality. (b) Number of Clusters.
(c) Sliding Window Size. (d) Noise Size.

5.2.4. Robustness Study

Figure 16 shows the effect of the transaction cost rate ζ, which demonstrates the
robustness of HDRL-Trader. The average return rate is evaluated on the smaller dataset.
The results show that the profit decreases as the transaction cost rate increases for all
methods. However, HDRL-Trader achieves the best profit compared with the other meth-
ods regardless of the transaction cost rate. Furthermore, HDRL-Trader achieves a good
profit even for a transaction cost rate of 0.5%, which is much higher than that of a real
trading environment.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 23

(a) (b) (c) (d)

Figure 15. Comparison with other hyperparameter values. (a) Dimensionality. (b) Number of
Clusters. (c) Sliding Window Size. (d) Noise Size.

5.2.4. Robustness Study
Figure 16 shows the effect of the transaction cost rate 𝜁, which demonstrates the ro-

bustness of HDRL-Trader. The average return rate is evaluated on the smaller dataset.
The results show that the profit decreases as the transaction cost rate increases for all
methods. However, HDRL-Trader achieves the best profit compared with the other meth-
ods regardless of the transaction cost rate. Furthermore, HDRL-Trader achieves a good
profit even for a transaction cost rate of 0.5%, which is much higher than that of a real
trading environment.

Figure 16. Experimental results of robustness study.

6. Conclusions and Future Work
In this study, we proposed a novel hybrid reinforcement learning method for pairs

trading called HDRL-Trader that solves the dependency problem between the stop-loss
and trading boundaries and the problem of the absence of the stop-loss boundary. We
extended the twin delayed deep deterministic policy gradient algorithm to determine the
trading action and the double deep Q-network algorithm to determine the stop-loss
boundary. We then proposed a hybrid algorithm that combines the extended algorithms
and incorporated novel techniques, such as dimensionality reduction, clustering, regres-
sion, behavior cloning, prioritized experience replay, and dynamic delay, into the hybrid
algorithm. We compared the performance of HDRL-Trader with the state-of-the-art rein-
forcement learning methods for pairs trading (P-DDQN, PTDQN, and P-Trader). The ex-
perimental results for the twenty stock pairs showed that HDRL-Trader achieves an aver-
age return rate of 82.4%, which is 25.7%P higher than that of the second-best method, and
yielded significantly positive return rates for all the stock pairs. Future work can over-
come limitations of the present study. First, we plan to extend HDRL-Trader for continu-
ous action spaces. Second, we plan to investigate the effect of various methods of selecting
stock pairs. Last, we plan to statistically analyze the experimental results using the intel-
ligence metrics.

Figure 16. Experimental results of robustness study.

6. Conclusions and Future Work

In this study, we proposed a novel hybrid reinforcement learning method for pairs
trading called HDRL-Trader that solves the dependency problem between the stop-loss and
trading boundaries and the problem of the absence of the stop-loss boundary. We extended
the twin delayed deep deterministic policy gradient algorithm to determine the trading
action and the double deep Q-network algorithm to determine the stop-loss boundary. We
then proposed a hybrid algorithm that combines the extended algorithms and incorporated
novel techniques, such as dimensionality reduction, clustering, regression, behavior cloning,
prioritized experience replay, and dynamic delay, into the hybrid algorithm. We compared
the performance of HDRL-Trader with the state-of-the-art reinforcement learning methods
for pairs trading (P-DDQN, PTDQN, and P-Trader). The experimental results for the twenty
stock pairs showed that HDRL-Trader achieves an average return rate of 82.4%, which
is 25.7%P higher than that of the second-best method, and yielded significantly positive
return rates for all the stock pairs. Future work can overcome limitations of the present
study. First, we plan to extend HDRL-Trader for continuous action spaces. Second, we

Appl. Sci. 2022, 12, 944 20 of 23

plan to investigate the effect of various methods of selecting stock pairs. Last, we plan to
statistically analyze the experimental results using the intelligence metrics.

Author Contributions: Conceptualization, K.-H.L., S.-H.K. and D.-Y.P.; methodology, K.-H.L., S.-H.K.
and D.-Y.P.; software, S.-H.K. and D.-Y.P.; validation, K.-H.L., D.-Y.P. and S.-H.K.; investigation,
S.-H.K. and D.-Y.P.; data curation, S.-H.K. and D.-Y.P.; writing—original draft preparation, D.-Y.P. and
S.-H.K.; writing—review and editing, K.-H.L.; visualization, D.-Y.P. and S.-H.K.; supervision, K.-H.L.;
project administration, K.-H.L.; funding acquisition, K.-H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07043727).
The work reported in this paper was conducted during the sabbatical year of Kwangwoon University
in 2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Stock data used in this study are available at https://finance.yahoo.
com/ (accessed on 22 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Experimental results on the larger dataset.

Stock Pairs

Rate of Return Sharpe Ratio Maximum Drawdown

B&H P-
DDQN

PT-
DQN

P-
Trader

HDRL-
Trader B&H P-

DDQN
PT-

DQN
P-

Trader
HDRL-
Trader B&H P-

DDQN
PT-

DQN
P-

Trader
HDRL-
Trader

AAPL, TXT 109.3% 88.8% 109.6% 99.8% 125.2% 1.81 1.51 1.74 1.72 2.12 0.58 0.63 0.57 0.54 0.47

AOS, CCL −15.4% 51.6% 13.4% 50.0% 68.4% −0.04 0.37 0.17 0.54 0.86 0.59 0.49 0.64 0.69 0.51

FE, RE 53.8% 20.7% 43.3% 57.9% 65.3% 1.20 0.55 1.07 0.98 1.05 0.41 0.42 0.36 0.39 0.27

MMM, RE 0.3% 11.3% 23.1% 10.6% 29.7% 0.22 0.48 0.64 0.54 0.66 0.37 0.47 0.43 0.45 0.33

NIKE, FTNT 100.7% 43.6% 66.9% 70.9% 117.2% 1.72 0.57 1.02 1.42 1.69 0.52 0.58 0.55 0.59 0.51

SRE, MDT 25.6% 21.8% 40.4% 60.3% 76.4% 0.76 0.99 1.17 1.28 1.37 0.40 0.36 0.43 0.37 0.28

APA, HES −11.5% 54.8% 48.7% 73.5% 98.1% 0.37 0.77 0.84 0.99 1.13 0.71 0.63 0.65 0.52 0.49

OXY, HES −23.5% 57.3% 29.3% 44.3% 60.1% 0.16 0.95 0.65 0.81 1.06 0.68 0.51 0.47 0.55 0.46

CMA, ADI 25.7% 11.1% 16.8% 23.3% 51.4% 0.69 0.55 0.56 0.64 0.94 0.46 0.61 0.56 0.45 0.34

LHX, MTB 14.4% 33.1% 21.0% 40.0% 53.2% 0.53 0.63 0.54 0.65 0.84 0.40 0.33 0.30 0.32 0.21

PEP, ATO 20.3% 1.1% 15.4% 37.4% 51.8% 0.68 0.32 0.43 0.75 0.86 0.30 0.40 0.48 0.36 0.30

DXC, ALL −9.1% −5.5% 28.3% 2.0% 29.0% 0.09 0.15 0.49 0.17 0.61 0.54 0.60 0.53 0.52 0.47

VLO, NTRS −7.4% 31.7% 65.9% 59.5% 70.3% 0.19 0.58 0.78 0.83 1.06 0.55 0.54 0.49 0.53 0.48

MPC, CNC −12.8% 56.9% 66.1% 44.2% 91.2% 0.07 0.72 0.82 0.64 1.10 0.52 0.58 0.47 0.43 0.34

A, PLD 76.8% 92.9% 115.3% 109.2% 151.7% 1.57 1.88 1.82 2.06 2.25 0.45 0.38 0.40 0.27 0.24

ARE, DLR 46.5% 42.9% 75.6% 91.8% 129.0% 1.13 1.26 1.72 1.49 1.74 0.36 0.30 0.35 0.33 0.22

O, EVRG −0.4% 27.8% 51.8% 49.6% 79.8% 0.25 0.82 0.98 0.86 1.25 0.43 0.25 0.39 0.21 0.16

HIG, BK 0.8% 59.2% 65.8% 73.5% 104.0% 0.30 0.66 0.84 1.20 1.64 0.51 0.49 0.35 0.36 0.21

COG, MRO −42.8% 107.0% 104.5% 99.1% 132.3% −0.62 1.49 1.16 1.33 1.61 0.65 0.70 0.59 0.46 0.43

GPS, MRO −38.2% 37.8% 13.7% 37.5% 64.0% −0.12 0.54 0.48 0.63 0.93 0.81 0.51 0.53 0.52 0.48

Minimum −42.8% −5.5% 13.4% 2.0% 29.0% −0.62 0.15 0.17 0.17 0.61 0.30 0.25 0.30 0.21 0.16

Maximum 109.3% 107.0% 115.3% 109.2% 151.7% 1.81 1.88 1.82 2.06 2.25 0.81 0.70 0.65 0.69 0.51

Average 15.6% 42.3% 50.7% 56.7% 82.4% 0.55 0.79 0.90 0.98 1.24 0.51 0.49 0.48 0.44 0.36

https://finance.yahoo.com/
https://finance.yahoo.com/

Appl. Sci. 2022, 12, 944 21 of 23

Appendix B

Table A2. List of abbreviations.

Abbreviation Description

B&H Buy and Hold

CE Cross Entropy

DPG Deterministic Policy Gradient

DDPG Deep Deterministic Policy Gradient

DQN Deep Q-Network

DDQN Double Deep Q-Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MDP Markov Decision Process

MSE Mean Squared Error

SRL State Representation Learning

HDRL Hybrid Deep Reinforcement Learning

TD3 Twin-Delayed Deep Deterministic policy gradient

TW Trading Window

References
1. Kim, T.; Kim, H.Y. Optimizing the pairs-trading strategy using deep reinforcement learning with trading and stop-loss boundaries.

Complexity 2019, 2019, 1–20. [CrossRef]
2. Lu, J.Y.; Lai, H.C.; Shih, W.Y.; Chen, Y.F.; Huang, S.H.; Chang, H.H.; Wang, J.Z.; Huang, J.L.; Dai, T.S. Structural break-aware pairs

trading strategy using deep reinforcement learning. J. Supercomput. 2021, 1–40. [CrossRef]
3. Brim, A. Deep reinforcement learning pairs trading with a double deep Q-network. In Proceedings of the 2020 10th Annual

Computing and Communication Workshop and Conference, CCWC, Las Vegas, NV, USA, 6–8 January 2020; pp. 222–227.
4. Wang, C.; Sandås, P.; Beling, P. Improving pairs trading strategies via reinforcement learning. In Proceedings of the 2021

International Conference on Applied Artificial Intelligence, ICAPAI, Halden, Norway, 19–21 May 2021; pp. 1–7.
5. Kim, S.H.; Park, D.Y.; Lee, K.H. A practical pairs-trading method using deep reinforcement learning. Database Res. 2021, 37, 65–80.
6. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the 35th

International Conference on Machine Learning, ICML, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 1582–1591.
7. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning. In Proceedings of the 30th AAAI

Conference on Artificial Intelligence, AAAI, Phoenix, AZ, USA, 12–17 February 2016; Volume 30, pp. 2094–2100.
8. Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74,

427–431.
9. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
10. Kendall, E.A.; Malkoun, M.T.; Jiang, C.H. A methodology for developing agent based systems for enterprise integration. In

Modelling and Methodologies for Enterprise Integration; Bernus, P., Nemes, L., Eds.; Springer: Boston, MA, USA, 1996; pp. 333–344.
11. Slušný, S.; Neruda, R.; Vidnerová, P. Comparison of RBF network learning and reinforcement learning on the maze exploration

problem. In Proceedings of the 18th International Conference on Artificial Neural Networks, ICANN, Prague, Czech Republic,
3–6 September 2008; pp. 720–729.

12. Wang, B.N.; Gao, Y.; Chen, J.Y.; Chen, S.F. A two-layered multi-agent reinforcement learning model and algorithm. J. Netw.
Comput. Appl. 2017, 30, 1366–1376. [CrossRef]

13. Gershman, S.J.; Pesaran, B.; Daw, N.D. Human reinforcement learning subdivides structured action spaces by learning effector-
specific values. J. Neurosci. 2009, 29, 13524–13531. [CrossRef] [PubMed]

14. Kendall, E.A.; Malkoun, M.T.; Jiang, C.H. The application of object-oriented analysis to agent based systems. J. Occup. Organ.
Psychol. 1997, 9, 56–62.

15. Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998,
101, 99–134. [CrossRef]

16. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.A.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

17. Bellman, R. On the theory of dynamic programming. Proc. Natl. Acad. Sci. USA 1952, 38, 716–719. [CrossRef]

http://doi.org/10.1155/2019/3582516
http://doi.org/10.1007/s11227-021-04013-x
http://doi.org/10.1016/j.jnca.2006.09.004
http://doi.org/10.1523/JNEUROSCI.2469-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19864565
http://doi.org/10.1016/S0004-3702(98)00023-X
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1073/pnas.38.8.716

Appl. Sci. 2022, 12, 944 22 of 23

18. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. In Proceedings of the 4th International Conference on
Learning Representations, ICLR, San Juan, Puerto Rico, 2–4 May 2016.

19. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, LA, USA, 2–7 February 2018; pp. 3215–3222.

20. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement
learning. In Proceedings of the 33rd International Conference on Machine Learning, ICML, New York, NY, USA, 19–24 June 2016;
Volume 48, pp. 1995–2003.

21. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1998; Volume 135.
22. Bellemare, M.G.; Dabney, W.; Munos, R. A distributional perspective on reinforcement learning. In Proceedings of the 34th

International Conference on Machine Learning, ICML, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 449–458.
23. Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Hessel, M.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; et al. Noisy

networks for exploration. In Proceedings of the 6th International Conference on Learning Representations, ICLR, Vancouver, BC,
Canada, 30 April–3 May 2018.

24. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function
approximation. In Proceedings of the Advanced in Neural Information Processing Systems, NIPS, Denver, CO, USA, 29
November–4 December 1999; pp. 1057–1063.

25. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning, ICML, Beijing, China, 21–26 June 2014; Volume 32, pp. 387–395.

26. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations, ICLR, San Juan, Puerto
Rico, 2–4 May 2016.

27. Ding, X.; Zhang, Y.; Liu, T.; Duan, J. Deep learning for event-driven stock prediction. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, IJCAI, Buenos Aires, Argentina, 25–31 July 2015; pp. 2327–2333.

28. Tsantekidis, A.; Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. Forecasting stock prices from the limit order
book using convolutional neural networks. In Proceedings of the 2017 IEEE 19th Conference on Business Informatics (CBI),
Thessaloniki, Greece, 24–27 July 2017; Volume 1, pp. 7–12.

29. Chong, E.; Han, C.; Park, F.C. Deep learning networks for stock market analysis and prediction: Methodology, data representations,
and case studies. Expert Syst. Appl. 2017, 83, 187–205. [CrossRef]

30. Zhang, L.; Aggarwal, C.; Qi, G.J. Stock price prediction via discovering multi-frequency trading patterns. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, New York, NY, USA, 13–17
August 2017; pp. 2141–2149.

31. Tran, D.T.; Iosifidis, A.; Kanniainen, J.; Gabbouj, M. Temporal attention-augmented bilinear network for financial time-series data
analysis. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 1407–1418. [CrossRef] [PubMed]

32. Feng, F.; He, X.; Wang, X.; Luo, C.; Liu, Y.; Chua, T.S. Temporal relational ranking for stock prediction. ACM Trans. Inf. Syst. 2019,
37, 1–30. [CrossRef]

33. Fengqian, D.; Chao, L. An adaptive financial trading system using deep reinforcement learning with candlestick decomposing
features. IEEE Access 2020, 8, 63666–63678. [CrossRef]

34. Lei, K.; Zhang, B.; Li, Y.; Yang, M.; Shen, Y. Time-driven feature-aware jointly deep reinforcement learning for financial signal
representation and algorithmic trading. Expert Syst. Appl. 2020, 140, 112872. [CrossRef]

35. Liu, Y.; Liu, Q.; Zhao, H.; Pan, Z.; Liu, C. Adaptive quantitative trading: An imitative deep reinforcement learning approach. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 2128–2135.

36. Park, D.Y.; Lee, K.H. Practical algorithmic trading using state representation learning and imitative reinforcement learning. IEEE
Access 2021, 9, 152310–152321. [CrossRef]

37. Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

38. Li, T.; Zhao, Z.; Sun, C.; Cheng, L.; Chen, X.; Yan, R.; Gao, R.X. Waveletkernelnet: An interpretable deep neural network for
industrial intelligent diagnosis. In IEEE Transactions on Systems, Man, and Cybernetics: Systems; IEEE: Piscataway, NJ, USA, 2021;
pp. 1–11.

39. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
40. Engle, R.F.; Granger, C.W.J. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55,

251–276. [CrossRef]
41. Liang, S.; Lu, S.; Lin, J.; Wang, Z. Low-latency hardware accelerator for improved Engle-Granger cointegration in pairs trading.

IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2911–2924. [CrossRef]
42. Krauss, C. Statistical arbitrage pairs trading strategies: Review and outlook. J. Econ. Surv. 2016, 31, 513–545. [CrossRef]
43. Brunetti, M.; Luca, R.D. Pre-Selection in Cointegration-Based Pairs Trading; Vergata Press: Italy, Rome, 2021.

http://doi.org/10.1016/j.eswa.2017.04.030
http://doi.org/10.1109/TNNLS.2018.2869225
http://www.ncbi.nlm.nih.gov/pubmed/30281493
http://doi.org/10.1145/3309547
http://doi.org/10.1109/ACCESS.2020.2982662
http://doi.org/10.1016/j.eswa.2019.112872
http://doi.org/10.1109/ACCESS.2021.3127209
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.2307/1913236
http://doi.org/10.1109/TCSI.2021.3073492
http://doi.org/10.1111/joes.12153

Appl. Sci. 2022, 12, 944 23 of 23

44. Miao, G.J. High frequency and dynamic pairs trading based on statistical arbitrage using a two-stage correlation and cointegration
approach. Int. J. Econ. Financ. Issues 2014, 6, 96–110. [CrossRef]

45. Chen, H.; Chen, S.; Chen, Z.; Li, F. Empirical investigation of an equity pairs trading strategy. Manag. Sci. 2017, 65, 370–389.
[CrossRef]

46. Erdem, O.; Ceyhan, E.; Varli, Y. A new correlation coefficient for bivariate time-series data. Phys. A Stat. Mech. Appl. 2014, 414,
274–284. [CrossRef]

47. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
48. TA-Lib: Technical Analysis Library. Available online: http://ta-lib.org/ (accessed on 22 November 2021).
49. Li, W.; Liao, J. A comparative study on trend forecasting approach for stock price time series. In Proceedings of the 2017 11th

IEEE International Conference on Anti-counterfeiting, Security, and Identification, ASID, Xiamen, China, 27–29 October 2017;
pp. 74–78.

50. Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E.; Shahab, S. Deep learning for stock market prediction. Entropy 2020,
22, 840. [CrossRef] [PubMed]

51. Banik, S.; Sharma, N.; Mangla, M.; Mohanty, S.N.; Shitharth, S. LSTM based decision support system for swing trading in stock
market. Knowl.-Based Syst. 2021, 239, 107994. [CrossRef]

52. Yahoo Finance. Available online: https://finance.yahoo.com/ (accessed on 22 November 2021).
53. Sharpe, W.F. The Sharpe ratio. J. Portf. Manag. 1994, 21, 49–58. [CrossRef]
54. Iantivics, L.B.; Iakovidis, D.K.; Nechita, E. II-Learn-A novel metric for measuring the intelligence increase and evolution of

artificial learning systems. Int. J. Comput. Intell. Syst. 2019, 12, 1323–1338. [CrossRef]

http://doi.org/10.5539/ijef.v6n3p96
http://doi.org/10.1287/mnsc.2017.2825
http://doi.org/10.1016/j.physa.2014.07.054
http://doi.org/10.1016/0098-3004(84)90020-7
http://ta-lib.org/
http://doi.org/10.3390/e22080840
http://www.ncbi.nlm.nih.gov/pubmed/33286613
http://doi.org/10.1016/j.knosys.2021.107994
https://finance.yahoo.com/
http://doi.org/10.3905/jpm.1994.409501
http://doi.org/10.2991/ijcis.d.191101.001

	Introduction
	Background
	Pairs Trading
	Reinforcement Learning
	Deep Q-Network
	Deep Deterministic Policy Gradient
	Twin Delayed DDPG

	Related Work
	Algorithmic Trading
	Pairs Trading

	Hybrid Deep Reinforcement Learning for Pairs Trading
	Architecture of HDRL-Trader
	Data Preprocessing
	State Representation Learning
	Hybrid Reinforcement Learning
	Action Spaces for Pairs Trading
	Reward Functions for Pairs Trading
	Behavior Cloning
	Hybrid Reinforcement Learning Algorithm

	Discussion

	Experiments and Results
	Experimental Setup
	Datasets for Training and Testing
	Evaluation Metrics
	Baseline Methods
	Implementation Details of HDRL-Trader

	Experimental Results
	Comparison with Other Methods
	Ablation Studies
	Comparison with Other Hyperparameter Values
	Robustness Study

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

