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Abstract: Slope stability analysis allows engineers to pinpoint risky areas, study trigger mechanisms
for slope failures, and design slopes with optimal safety and reliability. Before the widespread usage
of computers, slope stability analysis was conducted through semi analytical methods, or stability
charts. Presently, engineers have developed many computational tools to perform slope stability
analysis more efficiently. The challenge associated with furthering slope stability methods is to
create a reliable design solution to perform reliable estimations involving a number of geometric
and mechanical variables. The objective of this study was to investigate the application of tree-
based models, including decision tree (DT), random forest (RF), and AdaBoost, in slope stability
classification under seismic loading conditions. The input variables used in the modelling were
slope height, slope inclination, cohesion, friction angle, and peak ground acceleration to classify safe
slopes and unsafe slopes. The training data for the developed computational intelligence models
resulted from a series of slope stability analyses performed using a standard geotechnical engineering
software commonly used in geotechnical engineering practice. Upon construction of the tree-based
models, the model assessment was performed through the use and calculation of accuracy, F1-score,
recall, and precision indices. All tree-based models could efficiently classify the slope stability status,
with the AdaBoost model providing the highest performance for the classification of slope stability
for both model development and model assessment parts. The proposed AdaBoost model can be
used as a screening tool during the stage of feasibility studies of related infrastructure projects, to
classify slopes according to their expected status of stability under seismic loading conditions.

Keywords: classification; slope stability; tree-based models; random forest; AdaBoost; decision tree

1. Introduction

Geotechnical engineers often employ analytical and empirical methods in order to
estimate the safety factor, based on design parameters and engineering properties, of soil or
rock material. It is a challenging task to develop an adequate model to efficiently simulate
site specific engineering geological conditions and follow the appropriate design approach
in order to eliminate the possibility of failure and propose the most cost-effective design.
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Slope stability analysis is a standard practice in geotechnical engineering employed for the
estimation of the stability of natural or man-made slopes such as embankments of highways,
railways, earth dams, tailings, etc. The analysis of slope stability mainly involves the
calculation of the factor of safety (FOS), which is defined as the ratio between shear strength
and the acting shear stress. The key parameters that define the geometry of the slope
(i.e., height and slope inclination) and the material properties (i.e., angle of internal friction,
cohesion, and pore water pressure) influence the evaluation of stability of slopes [1–3].
Many sources of uncertainties, such as soil properties and loading, contribute to the stability
of a slope [4–6]. The slopes can be classified as stable slopes (SS) or unstable slopes (US),
depending on whether their FOS is greater or less than one [7]. The assessment of slope
stability is usually performed using analytical techniques, such as the limit equilibrium
method (LEM) and finite element methods.

The challenge associated with further development of slope stability analysis methods
is to create a reliable generic design tool in order to perform precise evaluations of slope
performance. Before the advent of computers, slope stability analysis was conducted using
semi-graphical solutions, using manual calculations, or using stability charts [8]. Presently,
engineers have developed many computational tools to perform slope stability analysis
more efficiently. Geotechnical software based on analytical methods such as the limit
equilibrium method (LEM) are widely used by engineers although this method is known to
be inadequate when analysing complex slope conditions, requiring more efficient designs,
where more sophisticated tools like finite element methods are used [9].

Statistical methods for slope stability classification are based on mathematical formu-
las that are used in the statistical analysis of research. Multiple regression is a statistical
analysis method that can predict the nature of relationship among independent variables
and dependent variables. Multiple regression is able to predict the relationship of multi-
ple independent variables against an output variable. This technique is widely used in
analysing slope stability problems [10]. For instance, Erzin and Cetin [11] used multiple
regression to predict the FOS of homogeneous slopes. The cohesion of soil (c), angle of
internal friction (φ), unit weight of soil (γ), and seismic coefficient (k) were used as input
parameters, and the output parameter was FOS. It was concluded that the predictions
made by the multiple regression model were acceptable. In a similar study, Chakraborty
and Goswami [12] used the height of cut or slope height H, material properties, cohesion
(c), friction (φ), slope inclination (β), unit weight (γ), and dimensionless parameter (m)
as input parameters to predict the status of stability. They also reported a very similar
conclusion to the study by Erzin and Cetin [11]. However, the analyses performed by
statistical models are only statistical-based, and they are not able to provide a clear view to
researchers and designers [13].

Artificial intelligence (AI) and machine learning (ML) techniques have been success-
fully implemented in the area of engineering and sciences [14–32] for the last 25 years.
The same models were used to solve the slope stability problems [3,11,33–37]. Algorithms
like ANFIS, (Adaptive Neuro-Fuzzy Inference System), were applied by Mohamed and
Kasa [38] to predict the FOS of slopes and they compared their results from the LEM
method. The predictions made by the ANFIS model were acceptable for applications in
slope stability prediction. In another study, Kalatehjari et al. [39] utilized particle swarm
optimization (PSO) to estimate the FOS of 3D slopes in comparison with a 3D finite element
method (FEM) model using material properties (cohesion (c) and friction (φ) and unit
weight (γ) as input variables. They confirmed a successful application of PSO for 3D slope
stability conditions but lower performance for 2D slope stability analysis. Artificial neural
network (ANN) as a basic and benchmark AI model was used by Sakellariou and Ferenti-
nou [36], Ferentinou and Sakellariou [37], and Lu and Rosenbaum [40], and its performance
was studied to estimate slope stability compared to the LEM slope stability analysis. The
results produced by the ANN model were found to concur with the results obtained by the
LEM and allowed for the classification of sample observations according to the anticipated
failure mechanism. In another study, Samui [41] proposed a support vector machine (SVM)
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technique for the prediction of FOS and compared it with the ANN results. He found
that the SVM was able to receive a slightly higher accuracy in comparison with the ANN
technique. In addition, the same SVM model with different kernels, including polynomial,
radial basis and spline, was proposed by Samui [35] to classify the FOS of slopes. The
accuracy of the model was proven to be very high as it showed 100% similarity when
compared to the expected slope stability classification results. It was concluded that the
classifications made by the SVM model were acceptable for applications in slope stability
predictions; however, when the size of the dataset and/or the dimension of the input vector
were high, the performance of the developed models was poor. In a study carried out
by Tien Bui et al. [42], decision tree (DT) was used to predict the FOS of slopes and was
compared with the results obtained by some other ML/AI techniques such as SVM. The
accuracy of the DT model was proven to be acceptable, but it was lower than the SVM
model. It is clear that the AI/ML models have enough potential in classifying/predicting
slope failure or FOS. Table 1 presents some of the classifications/prediction studies in the
areas of slope stability using AI/ML models. In these studies, FOS was set as model output
where the model performance was assessed using the coefficient of determination (R2)
and accuracy.

Table 1. Some of the classifications/prediction studies in the areas of slope stability using
AI/ML models.

Reference Model Input Data Size R2 Accuracy
(%)

Amit and Geman [43] DT H, C, φ, β, rainfall and
water level data 118 - 80

Sakellariou and
Ferentinou [36] ANN, SOM H, c, ϕ, β, ru and γ, kmax 45 0.94

Ferentinou and
Sakellariou [37] ANN H, c, ϕ, β, ru and γ 46 0.95

Lu and Rosenbaum [40] ANN H, c, φ,ru and γ 30 datasets - 99

Samui [41] SVM H, c, φ, ru and γ 46 datasets 0.875 -

Hwang et al. [44] DT H, c, φ, β and γ 6828 datasets - 72

Das et al. [7] ANN H, c, φ and γ 46 datasets 0.982 -

Samui [35] SVM H, c, φ, ru and γ 32 datasets 1.0 -

Mohamed and Kasa [38] ANFIS H, c, φ and γ 300 datasets 0.980 -

Gelisli et al. [45] ANN H, c, φ and γ 100 datasets 0.99 -

Tao et al. [46] SVM H, c, φ, γ, rainfall data 20 datasets - 88

Fattahi [47] ANFIS H, c, φ, β and γ 67 datasets 0.952 -

Qi and Tang [48] ANN H, β, γ,c 168 datasets - 96

Hidayat et al. [49] ANFIS H, c, φ, γ, and γ 53 datasets 0.96 -

Ray et al. [10] ANN H, c, φ and γ - 0.958 -

Sari et al. [50] ANFIS H, c, φ and γ 30 datasets 0.954 -

H: Height of cut, c: Cohesion of soil, φ: Angle of internal friction, β: Slope inclination, ru: Pore water pressure
ratio, kmax: seismic coefficient.

In the light of the above discussion, it is clear that ANN and ANN-based models are
the main body for the previous investigations. On the other hand, some other techniques,
namely, tree-based, performed well in the areas of geotechnics and civil engineering [51–54].
In this study, different classification systems are proposed for slope stability using decision
trees (DT), random forest (RF), and AdaBoost tree-based techniques. As presented in
Table 1, many researchers used key parameters (i.e., height (H), cohesion (c), friction (φ),
and unit weight (γ)) for the classification of slope FOS under static conditions. According to
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our review, there is a limited number of studies aimed at FOS estimation or status of stability
classification under dynamic conditions. In the current study, the horizontal component
of peak ground acceleration (PGA) is included in the input parameters. Therefore, the
contribution of this study concerns, firstly, the use of tree-based models in slope stability
classification, and secondly, the inclusion of a component related to dynamic conditions in
slope stability. This allows for a more reliable slope stability classification under dynamic
loading conditions. The rest of this paper is outlined as follows:

Concepts of earthquake on soil slopes will be discussed in Section 2. Then, Section 3
describes the used models’ concepts and fundamental facts. In addition, the same section
will provide the needed information about data preparation used for modelling to the
readers. Tree-based model developments for slope stability classifications will be provided
in Section 4. The results of the study are evaluated and discussed in Section 5. In addition,
the best tree-based model to classify slope stability will be discussed in the same section.
Future work directions and the conclusion will offer some valuable input to the readers in
Section 6.

2. Effect of Earthquake on Soil Slopes

If a slope is situated in a region subject to earthquakes, the design must satisfy these
adverse conditions. The effect of the shaking depends on whether the shear strength of the
soil material remains adequate during cyclic loading or shaking results in a significant loss
of strength. Since deformation is the result of shearing or sliding movement, slope stability
analysis is necessary to ensure that the factor of safety is adequate to satisfy dynamic loading
and minimize the resulting deformation. In the case of loose, saturated, cohesionless
material, the total lack of strength due to cyclic loading might induce liquefaction, which is
when a cohesionless saturated or partially saturated soil loses structural strength as a result
of an applied stress (such as trembling during an earthquake or another abrupt change
in stress condition), and a material that is normally a solid acts as a liquid. Liquefaction
assessment requires a more complex analysis and additional data, such as pore water
pressure measurements, and is beyond the scope of this paper.

The susceptibility of a slope to failing due to a seismic event is also determined
through the critical acceleration coefficient ky. The coefficient of critical acceleration ky is an
appropriate measure of a soil or rock mass’ resistance to earthquake induced sliding. The
value of the coefficient depends on the slope inclination β. Essentially, ky is as important for
the sliding block model method [55], as the static safety factor is for the limit equilibrium
method; these two variables are linearly related [56]. According to Sarma and Bhave [57], ky
is a measure of safety factor, and is the yield acceleration of the slope. Sarma and Bhave [57]
proposed a method to relate these two coefficients which is independent of the assumed
failure mechanism and the material properties. The coefficient of critical acceleration ky is
unique for each slope and is calculated when the safety factor is equal to one.

3. Material and Methods
3.1. Data Preparation

During the training process of developing a mathematical model to predict a parameter
value as a function of a number of other variables, most researchers tend to focus on
computational aspects, while at the same time paying less attention to the database being
used for the training and development of the mathematical model.

However, we firmly believe that the main emphasis should be on the database to be
used, as it is the database itself that describes the behaviour of the problem being modelled.
The database, whether based on experimental or analytical data, is the available knowledge
which must be properly utilized during the training process of the development of the
mathematical model. In this regard, the database must be reliable with a sufficient amount
of data to adequately describe the problem under study.

It should be noted that the phrase “sufficient amount of data” does not necessarily
imply a high amount of data, but rather datasets that cover a wide range of combinations



Appl. Sci. 2022, 12, 1753 5 of 18

of input parameter values, thus assisting in the model’s capability to simulate the prob-
lem. The demand for a reliable database is particularly crucial in the case of experimental
databases, which are databases compiled using experimental results. In this case, significant
deviations between experimental values are frequently noticed, not only between experi-
ments conducted by different research teams and laboratories, but even between datasets
derived from experiments conducted on specimens of the same synthesis, produced by
the same technicians, cured under the same conditions, and tested implementing the same
standards and testing instruments.

In light of the above discussion, in this study, in order to develop a comprehensive
database for FOS classification under dynamic conditions, a series of models were con-
structed to calculate FOS using a standard geotechnical software. Figure 1 illustrates a
generic limit equilibrium model for the simulated slope. In fact, many slope stability
analysis tools use various versions of the methods of slices, such as Bishop simplified.
The simplified Bishop method uses the method of slices to discretize the soil mass and
determine the FOS. These methods were used in this research, the ordinary method of slices
(Swedish circle method/Petterson/Fellenius), Spencer, Sarma, etc. Sarma and Spencer are
called “rigorous methods” because they satisfy all three conditions of equilibrium: force
equilibrium in both horizontal and vertical directions and moment equilibrium condition.
Rigorous methods can provide more accurate results than non-rigorous methods. Bishop
simplified or Fellenius are non-rigorous methods, satisfying only some of the equilibrium
conditions and making some simplifying assumptions [58,59]. Some of these approaches
are discussed below. Finally, slope stability analysis using Bishop simplified is a static or
dynamic, analytical, or empirical method to evaluate the stability of earth and rock-fill
dams, embankments, excavated slopes, and natural slopes in soil and rock. Slope stability
refers to the ability of inclined soil or rock slopes to withstand or undergo movement.

Figure 1. Limit equilibrium model for the stability analysis, (W: weight, τ: shear strength, kh: seismic
coefficient, g: acceleration due to gravity, β: is slope inclination, H: slope height).

The contribution of seismic loading is considered in the current slope stability analysis
through the application of a horizontal force component of peak ground acceleration (PGA),
that characterizes the amplitude of shaking within the sliding mass. Namely, the slope is
assumed to be subjected to a force defined by

Fh = khW (1)

where W is the weight of the sliding mass and kh is a dimensionless coefficient defined by

kh = PGA/g (2)

The process was carried out in several phases to achieve a representative database.
Boundary conditions, model dimensions, material properties, and seismic motion were
the parameters considered in modelling. To do this, multiple homogeneous slopes with
different conditions were modelled. Slopes with heights of 15, 20, 25, and 30 metres and
inclinations of 20◦, 25◦, 30◦, and 35◦ were produced. In terms of rigid behaviour, all of the
models were placed on top of bedrock.
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The failure criterion used in this method was the Mohr–Coulomb failure criterion

τ = c + σtanϕ (3)

where c: cohesion, ϕ: friction angle, σ: normal stress for slopes with soils with cohesion and
internal friction, for a slope subjected to circular failure. The parametric values used were
cohesion of 20, 30, 40, and 50 kPa and internal friction angle of 20◦, 25◦, 30◦, 35◦, and 40◦.
The effect of earthquake motion on slope behaviour was considered in the current analysis.
For the purposes of this analysis, the soil unit weight was assumed to be 18 (kN/m3). The
amplitudes were defined as 0.1, 0.2, 0.3, and 0.4 g. On all of the slope models, thirty slices
were used as slip surfaces. To achieve FOS values in this analysis, a grid and radius slip
surface were used. The calculated FOS should be almost in the centre of the grid by using
the grid and radius method. The FOS from the dataset was then separated manually into
groups of safe slope or SS and unsafe slope or US in order to meet the objective of analysing
and classifying all the slope stability cases in the dataset. Table 2 shows the input and
output parameters used in the database development.

Table 2. Input and output variables for slope stability classification.

Property

Variable

Slope Height (m) Angle of
Inclination (◦) Cohesion (kPa) Friction Angle (◦) Peak Ground

Acceleration
Factor of

Safety

Symbol H β c φ PGA (m/s2) FOS

Category Input Input Input Input Input Output

Min 15 20 20 20 0 0.78

Max 30 35 50 40 3.92 2.46

Average 22.33 25.18 35.3 34.07 1.18 1.20

Std. Deviation 5.6 5 11.18 5.88 1.07 0.35

Variance 31.37 26 124.96 34.59 1.15 0.12

In this study, 700 homogeneous slopes were simulated using GeoStudio which utilizes
the LEM method shown in Figure 1, along with the most critical FOS parameters. In these
700 slopes, different values of the mentioned parameters in Table 2 were used and their FOS
values were recorded. Based on a literature review conducted, the parameters presented
in Figure 1 are considered to be the most important. The best relationships between these
input parameters and the output (i.e., FOS) were calculated. In this way, simple regression
analysis (one to one relationship) was employed. The highest R2 value was achieved by
the PGA parameter through a polynomial trend-line (as the best trend-line among applied
linear, exponential, logarithmic, and power) as follows:

FOS = 0.0612(PGA)2 − 0.3512(PGA) + 1.4545 (4)

A value of R2 equal to 0.305 was reported for the above equation. Besides PGA, the
parameter φ showed the best relationship with FOS values with R2 = 0.122 through an
exponential trend-line.

To determine the relative effect of each input parameter on the output parameter,
a sensitivity analysis was performed. The following equation was used to perform the
same analysis:

rij =
∑m

k=1 xikxjk

∑m
k=1 x2

ik ∑m
k=1 x2

jk
(5)

where, rij is the strength of relation between each input and output, xik is the ith sample
of input k, j is the number of each sample in the output set, and m is the total number of
data samples. Table 3 shows the strengths of the relations (rij values) between the inputs
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and output (FOS). The sensitivity analysis results showed that the input parameters have a
great influence on the FOS. Parameter φ had the highest impact on FOS values followed by
H, β, C, and PGA. The results obtained were in line with previous studies [60,61].

Table 3. Sensitivity analysis of input and output variables.

Input Parameter H β C φ PGA

rij 0.930 0.924 0.915 0.962 0.616

3.2. Overview of Research Methodology

A review of past related studies that utilize AI in slope stability methods was first
conducted in order to choose the parameters to be used in the dataset required for training
and testing the DT, RF, and AdaBoost models. The review revealed an absence of studies
considering the PGA as a parameter in the performance of slope stability analysis. Subse-
quently, the FOS values were estimated using intelligent techniques. For this purpose, DT,
RF, and AdaBoost were utilized based on the most influential parameters for slope stability
performance as mentioned before for the input parameters. The results of the DT, RF, and
AdaBoost model were compared to the results from the GeoStudio software to observe
the performance of the DT, RF, and AdaBoost methods. Results of both methods were
evaluated using performance indicators and the best model was selected and introduced
for the problem of this study. Figure 2 presents a flowchart of the research methodology
followed in this study.

Figure 2. Procedure flowchart for FOS classification.
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3.3. Decision Tree (DT)

DT is an AI technique that uses conditional judgement rules to divide predictor
variables into homogeneous categories. The aim of DT specification is to find a set of
decision rules for predicting an outcome from a set of input boundaries [62]. The DT is
referred to as a predictive data mining tree depending on whether the target variables are
objective or subjective [63]. Classifying the FOS of slopes from multiple input parameters is
possible because modelling complex relationships between multiple input variables with an
output variable is possible with a DT model as it will have both categorical and continuous
variables without making any conclusions about the distribution of the provided data [64].
Furthermore, DT models are simple to implement, and the prediction results are simple
to understand. The findings of the DT model revealed the relative significance of input
parameters to the output parameter [65].

A root node, internal nodes, and leaf nodes make up a DT structure. All of the input
variables are stored in the root node. A decision function is connected with an internal node,
which may have two or three branches. The output of a given input vector is represented by
a leaf node [42]. Figure 3 shows the flowchart of procedures conducted for the modelling
of a DT model. The procedure of modelling a DT model is governed by two steps: tree
building and pruning.

Figure 3. Methodology flowchart for DT modelling.

In the first step, the root node of the DT is defined by determining the input vector
with the maximum gain ratio. The dataset is then divided into sub-nodes depending on the
root values. For discrete input variables, each potential value is represented by a sub-node
of the tree [66]. The gain ratio is then calculated for each of the sub-nodes separately in
the second process, and the process is replicated until all of the instances in a node are
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classified the same way. Leaf nodes are such nodes, and their names are the class values.
Since the tree produced during the design process will have a large number of branches, it
will be vulnerable to over-fitting [67], it must be pruned in order to improve the prediction
performance for new data. Tree pruning can be divided into two categories: pre-pruning
and post-pruning. In the case of pre-pruning, the tree’s development will be halted before
another criterion is true; in the case of post-pruning, the whole tree will be grown first,
and then the finished subtrees will be replaced by leaves based on the tree’s flaw relation
before and after eliminating sub-trees. More explanations regarding DT models can be
found in [54].

3.4. Random Forest (RF)

RF, also known as random decision forest, is an ensemble modelling technique for
grouping, regression, and other tasks that works by training a vast group of DTs and then
outputting the category that is the average approximation (regression) of the individual
trees [68]. The values of an independent random variable are used to develop the individual
DTs. On the basis of voting, classification models estimate the value yielded by individual
trees [69]. The basic RF algorithm utilizes the random subspace method. RFs are often used
in industries as “black box” models because they provide accurate estimates over a broad
variety of data with no configuration [70].

The DTs in the RF model recognize rules and patterns from the input data. The
output parameter (FOS) can be easily measured using these rules and patterns for any
new collection of results. The gain ratio formula can be used to rank the most important
parameters of slope failures. To solve the issue of over-fitting, mathematical methods
such as conservative pruning are used subsequently [71]. Figure 4 shows the flowchart of
procedures for RF modelling.

Figure 4. Methodology flowchart for RF modelling.
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3.5. AdaBoost Algorithm

Adaptive Boosting, also known as AdaBoost, is a boosting algorithm that attempts
to use weighted derivatives of the same testing dataset rather than sub-samples [72]. The
benefit of this approach is that the algorithm does not need a large amount of data because
it uses the same training dataset twice [73]. The algorithm is well-known for producing
good results when constructing ensemble classifiers [74]. To get a classification model of
the ensemble prediction function H:X→ (−1, +1) shown in Equation (6), the AdaBoost
machine learns using a series of weak learners or classifiers.

H(x) = sign

(
M

∑
m=1

am Hm(x)

)
(6)

where H(x) is the output of the developed ensemble classifier, a1...., am, are a set of weights,
and Hm(x) is the performance of the weak learners m∈(1, ..., M) that are combined to
get H(x). In each round of the algorithm, the weights allocated to the training dataset
are determined by how previous classifiers behaved. The algorithm then works on the
specimens or data sets that have already been mistakenly classified in this case. Figure 5
shows the flowchart of procedures for AdaBoost modelling. More information on the
AdaBoost concept can be found in the other studies ([75,76]).

Figure 5. Methodology flowchart for AdaBoost modelling.

3.6. Performance Indicators

To measure the performance of the results obtained from the DT, RF, and AdaBoost
models against each other and the expected results obtained from the GeoStudio software,
a few performance indicators were used. These performance indicators were accuracy, pre-
cision, recall, F1-score, and ROC curve. All the models were subjected to the performance
indicators to observe their effectiveness. Accuracy is the ratio of the number of correctly
classified predictions divided by the total number of projections. It ranges from 0 to 1.
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Equation (7) shows the calculation of accuracy where True Positive and True Negative are
correct predictions made by the model.

Accuracy =
TruePositive + TrueNegative

Total number of samples
(7)

Precision is the measurement of positive class predictions that actually belong to the
positive class, which in turn calculates the accuracy of the minority class. This calculation
is expressed in Equation (8) where the False Positive represents the false positive prediction
made by the model.

Precision =
TruePositive

TruePositive + FalsePositive
(8)

Recall is a statistic index that measures how many accurate positive assumptions were
made out of all possible positive expectations. Unlike precision, which only considers true
positive predictions out of all predictions, considering the positive predictions that were
wrong. This calculation is expressed in Equation (9) where the False Negative represents
the false negative prediction made by the model.

Recall =
TruePositive

TruePositive + FalseNegative
(9)

F1-score is a method for combining precision and recall into a single measure that
encompasses both. Neither precision nor recall can provide the full picture on their own.
We may have excellent precision but poor recall, or vice versa, poor precision but good
recall. With the F1-score, all issues with a single score can be expressed (Equation (10)).

F1− score = 2× Precision× Recall
Precision + Recall

(10)

ROC curve or receiver operating characteristic curve is a graph of the false positive rate
(x-axis) vs. the precision (y-axis) with a variety of candidate thresholds ranging from 0.0 to
1.0. The false positive rate is determined by dividing the total number of false positives by
the total number of false positives and true negatives. With all the performance indicators
mentioned above, the area under the ROC curve could be obtained for each model. This
value will represent the effectiveness of each model.

4. Development of Tree-Based Techniques

In order to develop the models implemented in this study, the hyperparameters of
each model were optimized. A parametric analysis was performed on the parameters of
each model because the models needed to be adjusted for each problem and dataset. Here,
three types of DT, RF, and AdaBoost models were implemented, each of which had specific
parameters related to its structure. In each section, these parameters were defined, and
various values of their parameters were analysed in order to find the optimal structure.
The details of each model are presented in the following.

4.1. DT Model

To obtain the most effective DT model, several models were developed using different
numbers of parameters. Table 4 reports the parameters used for modelling in this study.
Upon experimenting with the values of the number of instances in leaves, minimum limit
of the split subset, and maximal tree depth, the most effective DT model with the optimal
value of these parameters was obtained. In addition, Figure 6 shows the tree flowchart of
the proposed DT model for classifying slope stability.
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Table 4. The optimal parameters obtained by the DT model.

DT Parameter Value

Minimum number of instances in leaves 7

Minimum limit of the split subset 5

Maximal tree depth 7

Figure 6. The optimal DT model for FOS classification.

In the training phase, 75% of the dataset was used (525 slope cases), which is similar
to a study conducted by Piryonesi and El-Diraby [70]. The data was selected randomly,
and the input parameters were inserted into the model. In the testing phase, 25% of the
dataset was used, which corresponds to 175 slope cases. Figure 7 shows the results of the
DT model in the classification of the FOS for training and testing sets. According to the
training set, the DT model classified 300 safe slopes and 162 unsafe slopes accurately, while
classifying 12 safe slopes and 21 unsafe slopes, wrongly. In addition, in the case of the
testing set, the DT model classified 109 safe slopes and 47 unsafe slopes accurately, while
classifying 3 safe slopes and 16 unsafe slopes, wrongly. Later, the results of the DT from
both phases were observed using the performance indicators accuracy, precision, recall,
F1-score, and ROC curve.

Figure 7. The DT model results for FOS classification: (A) Training and (B) Testing.

4.2. RF Model

A similar modelling process was completed for the RF technique aiming at classifica-
tion of slope stability considering FOS values of more than one as safe (SS) and less than one
as unsafe (US). After experimenting with different numbers of trees and the minimum limit
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of split subsets, the most effective RF model with optimal values was obtained (Table 5).
The same portions of DT model were used for the training and testing phases. Figure 8
displays the results obtained by the RF technique for the classification of slope stability for
the training and testing phases. Considering the training phase, the RF technique classified
344 safe slopes and 169 unsafe slopes accurately, while classifying 5 safe slopes and 7 unsafe
slopes, wrongly. In the case of the testing phase, the RF model was able to classify 116 safe
slopes and 44 unsafe slopes accurately, while wrong classification of 9 safe slopes and
6 unsafe slopes, was reported. As with the DT model, the results obtained by the RF model
are assessed and discussed later.

Table 5. The optimal parameters obtained by the RF model.

RF Parameter Value

Number of trees 7

Minimum limit of the split subset 5

Figure 8. The RF model results for FOS classification: (A) Training and (B) Testing.

4.3. AdaBoost Model

The same data with five input parameters under seismic condition was used to classify
slopes as safe and unsafe. As with the previous parts, it was important to obtain the optimal
parameters of the model, which was AdaBoost in this sub-section. Several parametric
studies were conducted to get the most accurate AdaBoost model. The optimal AdaBoost
parameters for the expressed aim are presented in Table 6. It should be mentioned that a
different base model could be selected for the modelling of AdaBoost where DT was the
best among them for solving the defined problem. As a result, the proposed AdaBoost
model was able to classify 351 safe slopes and 174 unsafe slopes accurately, with no wrong
classification results by AdaBoost in the training or model development phase (Figure 9).
However, during the testing or model evaluation part, there were several wrong cases. An
accurate value of 120 safe slopes and 43 unsafe slopes were reported for the testing part,
while 7 safe cases and 5 unsafe cases were obtained wrongly (Figure 9). It seems that the
classification results obtained by the AdaBoost model are slightly better than those obtained
by the RF and DT techniques. It is important to mention that the evaluation of the proposed
models was not the aim of this section and this will be reported in the following section.

Table 6. The optimal parameters obtained by the AdaBoost model.

AdaBoost Parameter Value

Base Parameter DT

Number of estimators 6



Appl. Sci. 2022, 12, 1753 14 of 18

Figure 9. The AdaBoost model results for FOS classification: (A) Training and (B) Testing.

5. Results and Discussion

This section presents the comparison of results obtained from the DT, RF, and AdaBoost
models. The results obtained from these models were subjected to several performance
indicators: namely, accuracy, precision, recall, F1-score, and the area under ROC curve or
AUC (area under curve) to determine which method was the most accurate and effective
for slope stability classification. Here, the testing phase of the datasets was considered for
the validation of each tree-based model. This is a common method of evaluation or model
assessment to understand the level of accuracy during training/model development. On
the other hand, the training stage results showed that the proposed AdaBoost model could
be considered as perfect, and therefore, there is no need to discuss further about this stage
and have any comparison between models. Table 7 shows the comparison of the testing
stage results obtained by the indicators: i.e., accuracy, precision, recall, F1-score, and AUC
of ROC. In addition, the ranking procedure proposed by Zorlu et al. [77] was applied in
this table. The ranking system is very easy to understand. In this system, the most accurate
performance index receives the highest rank. According to Table 7, the model that showed
the highest accuracy was AdaBoost as it obtained the highest rank value, which was 13.
The second most accurate model was the RF, which obtained a total rank value of 10. The
lowest accurate model was the DT model, with a total rank value of 7. Except for the AUC,
AdaBoost achieved better accuracy and performance compared to the RF and DT models.
It is important to note that the RF also received a high degree of accuracy, and it can be
used for slope stability classification by the other researchers or engineers. For a better
comparison, Figure 10 shows the classification results of the DT, RF, and AdaBoost models
from the testing phase compared to the FOS results obtained with the GeoStudio software.
As stated earlier, 175 data samples, which constituted 25% of the whole data, were used
for each model in the testing phase. It is clear from Figure 10 that the AdaBoost technique
was able to record an outstanding performance with the lowest number of unmatched
answers (i.e., 11). The number of matched and unmatched for RF and DT were 160 and 15,
and 156 and 19, respectively, confirming the RF model’s superiority over the DT in slope
stability classification. Overall, the error rate during the testing phase was very low, which
reflected the high-performance level of the model development during the training phase.
It was concluded that the best performing model for slope stability classification was the
AdaBoost, and that it could be used in this field for the same purpose to minimize the
associated risk.



Appl. Sci. 2022, 12, 1753 15 of 18

Table 7. Modelling results for the testing datasets of DT, RF, and AdaBoost for slope stability classification.

Model
Performance Indicators Rank

AUC Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall Total

DT 0.968 0.891 0.895 0.908 0.891 3 1 1 1 1 7

RF 0.961 0.914 0.915 0.916 0.914 2 2 2 2 2 10

AdaBoost 0.910 0.931 0.931 0.931 0.931 1 3 3 3 3 13

Figure 10. Chart of results obtained from the models compared to expected results.

6. Conclusions and Future Works

To achieve the aim of this study, tree-based models including DT, RF, and AdaBoost
were developed to classify the stability of 700 slopes (464 safe slopes and 236 unsafe slopes)
under seismic condition, which were modelled and analysed in GeoStudio software. The
variables of H, β, C, φ, and PGA were set as model inputs for the classification of slopes
where FOS ≥ 1 and FOS < 1 was considered for safe and unsafe slopes, respectively. To
measure the performance of the DT, RF, and AdaBoost models, accuracy, precision, recall,
F1-score, and AUC as performance indices were calculated for both stages of training and
testing. After conducting modelling procedures of classification, the best technique was
selected based on the performance indices’ results. From the training part, it was found that
the AdaBoost was a perfect technique capable of achieving the highest possible performance
compared to the other employed models. Additionally, a higher degree of classification
performance for the testing phase was reported for all calculated indices except AUC.
Values of 0.910, 0.931, 0.931, 0.931, and 0.931; 0.961, 0.914, 0.915, 0.916 and 0.914; and 0.968,
0.891, 0.895, 0.908 and 0.891 were obtained for AUC, Accuracy, F1, Precision, and Recall
of AdaBoost, RF, and DT models, respectively. These values confirmed the successful
use of tree-based models in classifying slope stability. However, the better performance
and higher capability for classification purpose goes to the proposed AdaBoost technique.
Therefore, it can be introduced as a new technique for slope stability classification with the
largest number of matched cases.

It is well established that to propose a new method for classifying slope stability cases
using AI techniques, extensive investigation is required. Therefore, in order to develop a
model for classifying slope stability, a comprehensive database comprising real cases must
be gathered and utilized. Yet, collecting such database is very difficult and time consuming.
By providing the mentioned data, slope stability classifications can be conducted using new
(hybrid) AI techniques, such as RF or AdaBoost, combined with metaheuristic algorithms.

Moreover, the use of real slope stability data based on different types of soils consider-
ing other properties, such as unit weight, permeability, and ground water table, would be
of interest and importance to geotechnical engineers. In this regard, model generalization
as an important issue in classification and prediction problems can be considered, with the
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developed models covering a wider range of input parameters, as well as a larger number
of effective problem variables.
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