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Abstract: Support vector machines (SVMs) utilize hyper-parameters for classification. Model selection
(MS) is an essential step in the construction of the SVM classifier as it involves the identification
of the appropriate parameters. Several selection criteria have been proposed for MS, but their
usefulness is limited for physiological data exhibiting inter-subject variance (ISV) that makes different
characteristics between training and test data. To identify an effective solution for the constraint,
this study considered a leave-one-subject-out cross validation-based selection criterion (LSSC) with
six well-known selection criteria and compared their effectiveness. Nine classification problems
were examined for the comparison, and the MS results of each selection criterion were obtained
and analyzed. The results showed that the SVM model selected by the LSSC yielded the highest
average classification accuracy among all selection criteria in the nine problems. The average accuracy
was 2.96% higher than that obtained with the conventional K-fold cross validation-based selection
criterion. In addition, the advantage of the LSSC was more evident for data with larger ISV. Thus, the
results of this study can help optimize SVM classifiers for physiological data and are expected to be
useful for the analysis of physiological data to develop various medical decision systems.

Keywords: support vector machine; model selection; physiological data; inter-subject variance

1. Introduction

Deep-learning techniques, including convolutional and recurrent neural networks, are
being actively researched. Several related studies have reported successful results in many
fields [1–5]. Nevertheless, the support vector machine (SVM)—one of the well-known ma-
chine learning techniques—still constitutes an option for the construction of classification
systems [6–8]. The SVM has superior generalization ability compared with other classifiers
and can be used in instances wherein the training data are not extensive [9,10]. Additionally,
the complexity of the SVM is also relatively lower than those of deep-learning techniques [11].
Correspondingly, SVM is an effective solution given the limited computational resources.

However, the techniques using SVM rely on hyper-parameters to construct the kernel
function and to penalize slack variables [12,13]. The process used to select the appropriate
hyper-parameters is essential to the design of the SVM classifier with a preferred per-
formance. This hyper-parameter setting is called model selection (MS). Gradient-based
methods comprise one of the categories of the MS. Gradient-based methods calculate the
gradient of a specific generalization error function and use the gradient descent approach
to determine the appropriate model [14,15]. Various differentiable generalization error
functions have been used in gradient-based methods, but the local minima problem and
sensitivity to initialization are the major drawbacks of these methods [16]. Grid-search
methods are alternative approaches that can be used for MS. These methods construct a
grid on the hyper-parameters and evaluate each model that corresponds to each grid point
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to select the optimal SVM model [17,18]. The grid-search-based methods are simple and
are not prone to the local minima problem, but only the models that are based on fixed
grid points can be tested for MS. To resolve this weakness and facilitate more flexibility for
model searching, uniform design and evolutionary-algorithm-based methods have been
introduced [19,20]. A more detailed review on the recent MS methods can be found in [21].
There are some differences in the manner in which candidate SVM models are chosen for
testing. The basic ideas of the grid search, uniform design, and evolutionary-algorithm-
based methods are similar as these methods assess the various candidate SVM models and
select the model with the optimum performance.

In this respect, it is important to evaluate the performance of each SVM model precisely
for MS, and selection criteria are used for the purpose. Generalization error obtained by
leave-one-out cross validation (LOOCV) is a popular selection criterion used to evaluate the
SVM models [22]. Herein, when the training set contains N data, LOOCV trains the SVM
using N − 1 data and tests it with the remaining one datum to evaluate the classification
error. The generalization error is calculated from the mean of the classification errors
for the N sets of data. These generalization errors are then compared for each model,
and the model with the lowest generalization error is selected in the MS step. The LOOCV
is commonly known as an unbiased estimator of the generalization error but incurs a
heavy computational load because the SVM is trained N times for each model. However,
the K-fold cross validation (KCV) is associated with a smaller computational load, and
generalization error calculated by the KCV has greater practical use to be considered as
a suitable alternative selection criterion. In this method, the training data are divided
into K segments, and the segments are individually cross validated. The generalization
error is obtained as the average error from the K tests. The mean value of sensitivity and
specificity can also be used as a selection criterion in the KCV [18]. The radius margin bound
(RMB), maximal discrepancy (MD), xi-alpha bound (XAB), generalized approximate cross
validation (GACV), distance between two classes (DBTC), and expected square distance
ratio (ESDR) are some of the other selection criteria for MS [23–25]. The effectiveness
of these selection criteria was compared in previous studies. Duan used five datasets to
analyze the benefits of seven different selection criteria, including the KCV-based selection
criterion (KSC), XAB, and GACV; in their study, the test errors were calculated for the SVM
models that used each of these selection criteria [26]. The KSC approach yielded the lowest
error when used for MS, followed by the XAB and GACV approaches. Duarte simulated
the MS for SVM using the KSC, XAB, GACV, DBTC, MD, XAB, and RMB approaches
for 110 public datasets [27]. Similar to the results of Duan, KSC outperformed the other
approaches in terms of classification accuracy, followed by the DBTC approach.

The effectiveness of the selection criteria was verified for many datasets in previous
studies, but the results may differ for physiological data which exhibit inter-subject variance
(ISV). The physiological data are obtained from physiological signals such as electrocardio-
gram (ECG), electrodermal activity (EDA), and electromyogram (EMG). The signals are
generated by the physical and mental activity of the human, and they can be used to know
the information on our body. Responses to external stimuli and body conditions are not
the same for every person, and the characteristics of physiological signals are different for
each person [28]. The characteristic differences are reflected to physiological data as ISV,
and it is one of factors that makes the analysis of the physiological data difficult. Owing to
the ISV, the performance of a classifier can be degraded for the data of an unseen subject
that are not included in the training set because there is a difference between the test and
training data with respect to characteristics. Considering the difficulty, it is recommended
to verify the performance of a classifier through leave-one-subject-out cross validation
(LOSOCV) when physiological data are analyzed. The LOSOCV is similar to KCV but
divides the entire data into datasets for each of the subjects for cross validation to know
generalized performance for the data of an unseen subject. Indeed, Gholamiangonabadi
recently showed that the LOSOCV is useful for evaluating the generalized ability of deep
learning models for the data of unseen subjects, and it is necessary to tune the model based
on LOSOCV [29]. These ISV and validation processes using LOSOCV must be considered
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in the MS process of SVM as well. Thus, results verified through a classification prob-
lem that contained training and test data with relatively similar characteristics should be
re-examined for the MS on physiological data. Rojas-Domínguez compared several MS
methods for medical datasets [30]. However, to our knowledge, to-this-date, no study has
analyzed the effectiveness of selection criteria in MS cases associated with physiological
data. Therefore, this study uses a LOSOCV-based selection criterion (LSSC) together with
other well-known selection criteria, including KSC, DBTC, ESDR, XAB, and GACV for the
MS of SVM on physiological data and compares their effectiveness. The LSSC reflects the
principle of the validation process via LOSOCV to MS, and it evaluates the performance of
an SVM model using the LOSOCV results of the data available for MS. Nine classification
problems are defined using physiological data to simulate the MS of the SVM according to
each of the selection criterion. Results show that the LSSC outperforms others in terms of
classification accuracy. A detailed comparison of selection criteria for physiological data
with ISV and a discussion on the case enhancing the advantages of LSSC are also primary
contributions of this research.

2. Materials and Methods
2.1. MS of SVM

The SVM chooses the classification boundary between two classes by solving the
optimization problem,

minimize
1
2
‖W‖2 + C

N

∑
i=1

ξi (1)

s.t. di{ϕ(Xi) ·W + w0} ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., N,

where Xi ∈ RL is an L-dimensional datum, and di ∈ {−1, 1} is a label in the training
set [28,31]. The influence of misclassified data is represented by the slack variable, ξi,
and C determines the degree of penalty for ξi. The function ϕ(Xi) is the high-dimensional
mapping of Xi. The SVM uses a kernel trick to simplify the optimization problem and
converts the inner product, ϕ(Xi) · ϕ(Xj) to a kernel function, K(Xi, Xj). There are several
available kernel functions for the SVM as follows:

Linear: Xi · Xj, (2)

Polynomial: (γXi · Xj + a)b, (3)

Radial basis function (RBF): exp(−γ‖Xi − Xj‖2), (4)

Sigmoid: tanh(γXi · Xj + a). (5)

Among these, the RBF is used for the kernel function of the SVM in this study because
of its performance and popularity [32]. The two hyper-parameters, namely C and the
kernel parameter γ, are designated via MS.

2.2. LSSC

This study mainly focuses on LSSC, and its detailed description is presented in this
section. The explanation on the other selection criteria can be found in [26,27]. The
conventional selection criteria for the MS of SVM assume that all the data in the training
set have similar characteristics. However, there are certain degrees of differences in the
characteristics among data from different subjects because of ISV. This study utilizes the
LSSC to consider the ISVs of the physiological data and to measure the performance of
the SVM model during MS. Algorithm 1 shows the detailed procedure used to calculate
the LSSC, which is obtained for each tested SVM model, that is, the pair of C and γ values
designated by the MS method. In the procedure, available data for MS are normalized
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and separated into datasets for each of the subjects. If the data were measured from N
subjects, then a total of N datasets are considered. Subsequently, the divided datasets
are cross validated using the LOSOCV approach; this means that the dataset of a single
subject is selected as the test data (TE), and the datasets of the remaining subjects are used
as the training data (TR). The SVM is trained using the TR with the designated C and γ
values, and the classification accuracy of the SVM is evaluated with the TE. This evaluation
process is repeated N times, and the LSSC is obtained as the averaged result from the N
evaluation processes. This selection criterion is mainly used to represent the difference
in data characteristics among the data of each subject to MS. Therefore, each SVM model
is evaluated for the data of an unseen subject, and the results are averaged to derive the
performance of the tested SVM model for data that had specific characteristic differences
with the training data. A sample MATLAB code (version R2017b, MathWorks, Natick, MA,
USA) that obtains the LSSC can be observed online (https://github.com/minho17/paper-
Comparison-of-performance-measures (accessed on 3 December 2021)).

Algorithm 1: Pseudocode used for LSSC in MS
Input:

- C and γ values to be tested
- Data of N subjects that can be used for MS

Output: evaluated performance (P) for the tested model
P = 0
Normalization for the data of N subjects
For i = [1, N]

TE = Dataset of subject i
TR = {Dataset of subject j | j = 1, ..., N, j 6= i }
Train SVM using C, γ, and TR
ACC = classification accuracy of the SVM for TE
P = P + ACC

End For
P = P

N
Return P

2.3. Classification Problems on Physiological Data

Physiological data were extracted from several datasets containing physiological signals,
and nine classification problems were constructed using the physiological data to simulate
LSSC and compare its effectiveness with other conventional selection criteria. Table 1 shows
the sample size of each class and the number of subjects and features for the nine problems.
The methods used to extract features were the same as previous studies [9,33–42], and details
of the extracted features can be found in Appendix A. The first problem here is to detect
medium or high stress from low-stress data [33,34]. These data contain features that were
extracted from several physiological signals, such as the ECG, EDA, EMG, and respiration.
The SWELL database provides the ECG and EDA data for the normal and stress states
of subjects engaged in office work [35]. The stress data are detected in problem 2 using
the heart rate variability (HRV) features of the ECG [36]. Problems 3–5 are based on our
previous work, which utilized photoplethysmogram (PPG) and EDA data to detect the stress,
drowsiness, and fatigue of drivers [9,28]. The brain–computer interface competition IV-2b
database provides electroencephalography (EEG) signals recorded when subjects imagined
the movement of one of their hands (left or right) [37]. Problem 6 uses the database to
design a classification problem to distinguish between EEG data for movements of the left
and right hands. The EEG data are feature vectors that were extracted from EEG signals
(with lengths = 9 s) with the use of a common spatial pattern algorithm in the problem [41].
Lopez obtained the heart rate (HR) data from subjects in three thermal conditions: very hot
(VH) (32 °C), VH with adjustable neck-coolers (18–28 °C), and hot environment (29 °C) [38].
Nkurikiyeyezu proposed HRV-based features to distinguish the data for each of these three
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conditions [42], and these feature data are utilized for problems 7 and 8. Ventricular ectopic
beats (VEBs) in the ECG are detected in problem 9; the RR interval, higher order statistics,
wavelet transform, and morphological descriptor-based features were obtained from the
modified-lead II ECG data of the MIT-BIH arrhythmia database, and the data of a subject that
had at least 100 VEB data were used for the problem [39,40]. In addition, the data size was
limited to 100 for each class and subject in problems 2 and 7–9 to simplify the classification
and to allow considerations of imbalanced data sizes.

Table 1. Nine classification problems for MS simulations. #S and #F, respectively, denote the numbers
of subjects and features.

Problem #S #F Data (Sample Size)

1. Stress detection 1 10 22 low (166) / medium + high stress (217)
2. Stress detection 2 18 20 normal (1800)/stress (1800)
3. Stress detection 3 28 5 normal (1692)/stress (1548)
4. Fatigue detection 28 7 normal (1692)/fatigue (3073)
5. Drowsiness detection 28 8 normal (1692)/drowsiness (3110)
6. Motor imaginary 9 18 left (1706)/right hand (1717)
7. Thermal comfort 1 11 29 VH with cooler (1100)/VH (1100)
8. Thermal comfort 2 11 29 VH with cooler (1100)/hot (1100)
9. VEB detection 16 45 normal (1600)/VEB (1600)

3. Results

Simulations were conducted to analyze the effectiveness of LSSC and compare it with
other well-known selection criteria, namely KSC, KSC2, DBTC, ESDR, XAB, and GACV.
These selection criteria were selected in this study because they have been extensively used
for MS, and their effectiveness has been validated in several studies [25–27]. Among these,
the KSC2 is a type of KSC and uses the mean value of the sensitivity and specificity rather
than classification accuracy to evaluate a model. The KSC and KSC2 methods divided
the entire data into five segments for cross validation. A simple grid-search method with
C and γ ∈ {2−6, 2−4, ..., 210, 212} was used as the MS method for all selection criteria.
The performance of all models at the grid points was evaluated by the seven selection
criteria, and the best model was selected for each selection criterion. SVM was then trained
using the selected model for each selection criterion, and the classification accuracies of
the SVMs were compared. The LOSOCV was used to obtain the selection criterion for
the MS in this study, but the LOSOCV is commonly used to test classifiers for the data of
unseen subjects who were excluded from the training set, similar to real-world scenarios.
Therefore, the aforementioned nine problems were validated and classification accuracies
were obtained by using the LOSOCV in the simulations.

Tables 2 and 3 show the simulation results for the classification accuracies and their
rankings for the nine problems, respectively. The Optimal values are the results for the
best cases with the highest grid-point accuracies in each test, and they are the upper limits
of the classification accuracies that can be achieved by MS. The accuracy for the LSSC was
81.09% on average for the nine problems in the simulations. This value was lower than
the Optimal value but outperformed other selection criteria. It was 2.38% higher than that
of the DBTC, which yielded the second highest accuracy, and 2.96% higher than the KSC,
which is the most commonly used selection criterion. The ranking of the LSSC was 1.44
on average, and it was superior to the rankings of the other selection criteria. The DBTC
and GACV were the second-best selection criteria, but the variation in their rankings was
severe. The standard deviation (SD) values of DBTC and GACV were 1.80 and 2.35 in
the ranking, and they were larger than that of the LSSC, which had an SD value of 0.73.
The ranking of the LSSC was not more than three and was equal to one in most cases.
Therefore, the LSSC was more effective and less sensitive to the classification problem
compared with the other selection criteria. Among the other selection criteria, the DBTC
was the second most useful. The GACV had the same ranking on average with the DBTC,
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but it was less effective than some of the other selection criteria for some of the problems,
such as problems 2 and 6. The DBTC was generally more stable and yielded smaller SD
values compared with GACV in terms of classification accuracy and ranking, and the DBTC
had a higher mean accuracy. In the case of KSC, the mean of ranking score was worse than
that of GACV; however, its mean accuracy was better than that of the GACV and ranked
after that of the DBTC because the KSC yielded a minor variation in accuracy according to
the classification problem compared with the GACV.

Table 2. Classification accuracy (%) for each selection criterion.

Problem KSC KSC2 DBTC ESDR XAB GACV LSSC Optimal

1 81.53 82.24 87.29 79.47 76.30 83.83 83.96 96.23
2 74.00 73.97 72.97 73.42 71.19 64.19 79.33 89.22
3 82.06 81.94 81.95 82.17 82.85 83.36 83.49 91.17
4 88.90 88.85 89.10 89.02 90.42 90.67 90.51 96.57
5 90.84 90.42 90.99 90.73 92.85 92.44 91.82 97.37
6 72.80 72.80 72.95 72.74 70.22 50.65 73.41 76.21
7 63.32 63.36 63.64 60.77 59.05 59.68 69.23 77.00
8 64.05 64.00 64.55 61.77 59.91 65.00 70.73 79.50
9 85.72 85.22 84.97 86.44 84.16 86.06 87.38 94.34

Mean 78.13 78.09 78.71 77.39 76.33 75.10 81.09 88.62
SD 10.16 10.07 10.47 11.07 12.28 15.26 8.42 8.73

Table 3. Ranking of accuracy for each classification problem.

Problem KSC KSC2 DBTC ESDR XAB GACV LSSC

1 5 4 1 6 7 3 2
2 2 3 5 4 6 7 1
3 5 7 6 4 3 2 1
4 6 7 4 5 3 1 2
5 5 7 4 6 1 2 3
6 3 3 2 5 6 7 1
7 4 3 2 5 7 6 1
8 4 5 3 6 7 2 1
9 4 5 6 2 7 3 1

Mean 4.22 4.89 3.67 4.78 5.22 3.67 1.44
SD 1.20 1.76 1.80 1.30 2.28 2.35 0.73

Computational time was measured to compare the computational complexity of
each selection criterion (Table 4). This study utilized ten C and ten γ values equal to
2−6, 2−4, ..., 210, and 212 in the MS. The time needed for evaluating the performance of
SVM models on the grid points was obtained for each selection criterion with the use
of MATLAB and a computer equipped with an Intel Core i7-6700 CPU and 24 GB RAM.
The result will be changed according to the used MS method, the range of tested C and
γ values, and the number of subjects and features, but the result will provide an insight
on the computational complexity of selection criteria. In the simulation results, the time
required for DBTC or ESDR was short. Other selection criteria test SVM models at all grid
points, but the two selection criteria determined a γ value first by analyzing data, and a
C value was selected. Therefore, the computational time was shorter than those of other
selection criteria. In contrast, the time for the LSSC was the longest because it conducted
cross validation N times for each grid point when the data of N subjects were used for MS.
The time increased in the case of the classification problem, which contained many subjects,
and the computational time of the LSSC was larger than others, particularly in problems
3–5, which contained 28 subjects. The computational time of the LSSC was also affected
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by the number of features. The number of subjects was the same in problems 3–5, but the
computational time increased in the case of the problem that used more features.

Table 4. Computational time (s) for each selection criterion.

Problem KSC KSC2 DBTC ESDR XAB GACV LSSC

1 2.21 2.22 0.20 0.21 2.12 1.31 4.91
2 181.85 181.47 12.22 15.80 141.15 89.84 738.46
3 205.72 207.95 38.16 9.90 104.05 82.10 1309.69
4 203.88 205.48 14.84 19.58 142.74 95.23 1467.00
5 209.10 210.07 13.35 20.86 150.53 98.61 1529.19
6 313.58 316.27 42.36 16.06 169.13 129.10 577.19
7 102.80 103.30 10.85 16.87 75.34 49.74 224.57
8 90.65 90.68 8.18 9.35 69.58 44.45 199.50
9 191.61 191.53 11.51 15.64 483.72 203.65 654.59

Mean 166.82 167.66 16.85 13.81 148.71 88.23 745.01

The comparison results on classification accuracy and computational time will provide
valuable information when selecting a selection criterion for a classification problem on
physiological data. For example, the LSSC had the highest classification accuracy but
needed a long computational time. Therefore, it could be considered in a preferential
manner in the common situation wherein MS is conducted offline. DBTC ranked second
in terms of classification accuracy, but the computational time was short. It could be
an alternative to the LSSC in situations where MS and the training process of SVM are
implemented online.

4. Discussion
4.1. Statistical Analysis on Classification Accuracy

Statistical analysis was conducted to verify the effectiveness of LSSC compared with
other selection criteria. The t-test was used as a statistical analysis tool to identify whether
the difference between classification accuracies by the LSSC and others was significant [43].
The dataset of classification accuracies was constructed for each selection criterion and used
in the analysis. Each problem was validated via LOSOCV in the Results section; the data of
one of the subjects were used for test data, and the results of all subjects were averaged
for each problem. The classification accuracies of all selection criteria were divided by
the optimal value for the same tested subject in each problem to normalize the range of
the accuracies from zero to one. The normalized classification accuracies from all nine
problems were included in the dataset of each selection criterion. The dataset of the LSSC
was compared with others using the t-test, and p-values were calculated (Table 5). When
the calculated p-value is lower than 0.01, it can be considered that the null hypothesis of
two groups is rejected at the confidence level of 99%. The p-value was lower than 0.01 in
all cases in Table 5, and statistically significant differences could be verified between the
classification accuracies by the LSSC and others. This means that the LSSC was clearly
more effective than others in the nine problems on physiological data.

Table 5. T-test results for classification accuracies obtained by the LSSC and others.

KSC KSC2 DBTC ESDR XAB GACV

p value 1.2 × 10−5 9.6×10−6 6.5×10−4 1.9×10−4 9.0×10−5 2.7×10−5

4.2. Relationship between ISV and LSSC

An additional analysis was performed to understand the relationship between the
effectiveness of LSSC and the degree of ISV in the data. Hence, two indices, namely Index1
and Index2, were defined for each classification problem. Index1 was used to reflect the
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degree of ISV in each problem; the ISV of the data are disclosed when the data are evaluated
by LOSOCV because it is a subject-independent test which separates the data of a tested
subject from those of the others. Therefore, all data from each classification problem were
evaluated using the LOSOCV and five-fold cross validation as the subject-independent and
subject-dependent tests, respectively. The classification accuracy for the best SVM model
was found for each test. Let us define the accuracy for the subject-independent test as
ACCSIT and that for the subject-dependent test as ACCSDT ; Index1 can then be obtained as

Index1 =
ACCSDT − ACCSIT

ACCSDT
(6)

to represent the relative deterioration of the classification accuracy by ISV in the data.
Index2 shows the relative effectiveness of the LSSC compared with the conventional selec-
tion criterion, namely KSC. When the classification accuracies by KSC and LSSC (in Table 2)
are defined as ACCKSC and ACCLSSC, Index2 can be calculated as

Index2 =
ACCLSSC − ACCKSC

ACCKSC
. (7)

Table 6 lists Index1 and Index2 values for each of the problems. Index1 was observed
to be low in problems 3, 5, and 6 because of the small ISV in the data. Index2 was also low
in the cases of problems 3, 5, and 6. However, Index1 was relatively high for problems
2, 7, and 8, and Index2 was also high for the same problems. The relationships between
the indices can be observed more obviously in the scatter plot of Figure 1. A problem
that had a high Index1 had a higher Index2 than others overall, and the correlation co-
efficient between Index1 and Index2 was 0.9862. This indicates that the effectiveness of
the LSSC was generally greater for classification problems having higher ISV in the data.
Therefore, the LSSC could be considered and used preferentially compared with the others
for classification problems having high Index1 values that quantified the degree of ISV in
the data.

Table 6. Index1 and Index2 values for each classification problem.

Problem 1 2 3 4 5 6 7 8 9

Index1 0.103 0.187 0.037 0.063 0.040 0.043 0.248 0.236 0.075
Index2 0.030 0.072 0.017 0.018 0.011 0.008 0.093 0.104 0.019

Figure 1. Scatter plot of Index1 vs. Index2 for the nine studied problems.



Appl. Sci. 2022, 12, 1749 9 of 14

4.3. Comparison with the Results of Previous Studies

Some previous studies compared the effectiveness of selection criteria for various
datasets as mentioned in the Introduction [26,27]. The compared selection criteria were not
the same with this study, and the MS situation on physiological data was not considered in
the previous studies. However, the results of previous studies were analyzed together with
the results of this research to identify the difference in the effectiveness of each selection
criterion for physiological data and data without ISV. The relative ranking of selection
criteria for classification accuracy was investigated in this analysis; the results of ranking for
all problems were averaged, and the relative ranking was obtained based on comparisons
with the averaged values (Table 7). KSC was the most effective in previous studies, but it
is less advantageous than DBTC and GACV for physiological data. DBTC was relatively
superior in the previous studies, and it was still ranked high in this study. The effectiveness
of DBTC was more robust for ISV, and yielded consistent performance compared with
KSC. XAB and GACV were not as good as KSC and DBTC as reported in previous studies,
but the ranking of GACV was higher than KSC, and it was the same with DBTC for
physiological data. Nevertheless, the variation of its effectiveness was severe according
to a classification problem, and the averaged classification accuracy was lower than KSC
as indicated in the results in Table 2. Therefore, it is difficult to conclude that GACV is
superior to KSC for physiological data, and a more rigorous comparison using big-sized
datasets will be needed.

Table 7. Relative ranking of selection criteria in each study.

Study KSC KSC2 DBTC ESDR XAB GACV LSSC

[26] 1 - - - 2 3 -
[27] 1 - 2 - 4 3 -

This paper 4 6 2 5 7 2 1

4.4. Contributions of This Study

This study compared and analyzed seven well-known selection criteria for the MS of
SVM on physiological data. Readers can utilize the results of this study by considering its
contributions outlined below:

• Comparison outcomes of selection criteria on classification accuracy and computa-
tional time were presented and analyzed. The results can be used when a selection
criterion is selected for a classification problem on physiological data. The LSSC
yielded the highest classification accuracy, but its computational time was the longest.
DBTC was lower than the LSSC in classification accuracy, but it was associated with a
relatively short computational time.

• The effectiveness of LSSC in classification accuracy was verified experimentally. It
outperformed the classification accuracies of others, and the difference was statistically
significant. In addition, the advantages were more pronounced for data that had
larger ISV.

• The change in relative superiority was investigated when selection criteria were used
for the data that contained ISV. The relative effectiveness of DBTC was increased more
than KSC when the selection criterion was utilized for physiological data compared
with data without ISV.

5. Conclusions

The ISV is an important constraint that induces difficulties when analyzing physiolog-
ical data. This study focused on the influence of the ISV in the MS for SVM and compared
several well-known selection criteria to identify a selection criterion suitable for physiologi-
cal data with ISV. Seven selection criteria were simulated for nine classification problems.
The results showed that LSSC was the most effective for the classification problems and
that the effect was greater according to the degree of ISV in the data. Therefore, the LSSC
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could be tested preferentially for MS related to physiological data with large ISV. MS is one
of the factors that determines the performance of an SVM classifier, and the aforementioned
comparison results are expected to be helpful for the construction of a better SVM classifier
for classification problems based on physiological data. The advantage of the proposed
approach can be utilized in various physiological-data-based applications, including health-
care, human–computer interactions, and medical decision systems [44,45]. In the future,
we plan to conduct more rigorous verification of these results using large-sized datasets.
In addition, the design of a new selection criterion for physiological data is one of our
future research objectives.
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Appendix A. Description on Datasets and Extracted Features

Appendix A.1. Problem 1

Healey measured ECG, EDA, EMG, and respiration of drivers and extracted 22 fea-
tures to detect stress (Table A1) [33,34]. ECG is the signal caused by heart activity, and RR
intervals can be obtained from the ECG. The RR intervals contain information on our
autonomic nervous system, and the features extracted from RR intervals were used. EDA
represents the activity of sweat glands in the skin measured on the hand and foot, and elec-
trical activity from skeletal muscles was recorded as EMG in the research. Problem 1 uses
the feature data.

Table A1. Extracted features for problem 1.

Signal Features

ECG Normalized mean and variance of RR intervals, ratio of the
low (0–0.08 Hz) to the high-frequency (0.15–0.5 Hz) spectral
power for RR intervals

EDA (hand) Normalized mean and variance, the number of orienting re-
sponses, sum of the startle magnitudes, sum of the response
duration, sum of the areas under responses

EDA (foot) Same as EDA (hand)

EMG Normalized mean

Respiration Normalized mean and variance, spectral power (0–0.1, 0.1–
0.2, 0.2–0.3, and 0.3–0.4 Hz)

https://physionet.org/content/drivedb/1.0.0/
https://physionet.org/content/drivedb/1.0.0/
https://www.kaggle.com/qiriro/swell-heart-rate-variability-hrv
https://www.kaggle.com/qiriro/swell-heart-rate-variability-hrv
http://bbci.de/competition/iv/
https://www.kaggle.com/qiriro/comfort
https://www.kaggle.com/mondejar/mitbih-database
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Appendix A.2. Problem 2

Nkurikiyeyezu analyzed 5-minute ECG in the SWELL database and extracted HRV-
related features [36]. Table A2 shows the features, and the extracted feature data are used
for problem 2.

Table A2. HRV-related features for problem 2.

Classification Features

Time domain Mean and median of RR intervals, root mean square of
the successive RR interval differences (RMSSD), standard
deviation of RR interval differences (SDSD), previous four
features for relative RR intervals, standard deviation, skew-
ness, and kurtosis of RR intervals, ratio of SDRR over
RMSSD, percentage of RR interval differences more than
25 and 50 ms

Spectral feature Spectral power of RR intervals for very low (≤0.04 Hz),
low (0.04–0.15 Hz), and high (0.15–0.4 Hz) frequency bands,
ratio of the low to the high-frequency spectral power for
RR intervals

Nonlinear measure Two Poincaré plot descriptors

Appendix A.3. Problems 3–5

PPG and EDA were obtained using a wearable device in our previous research [9].
PPG is to measure changes in the volume of blood vessels using light sources, and it
contains cardiovascular information of our body. Obtained signals were processed every
10 s, and features were extracted to detect stress, fatigue, and drowsiness. Problems 3–5 are
based on the feature data (Table A3).

Table A3. Extracted features for problems 3–5.

Problem Signal Features

3 PPG Standard deviation of pulse amplitudes, DC amplitude,
standard deviation of amplitude differences between
pulses, signal energy, bandwidth

4 PPG Mean of pulse intervals, normalized power in low-
frequency range (0.04–0.15 Hz) of HRV, DC amplitude,
mean rise time (time from valley to peak), mean ratio of
rise to fall time (time from peak to valley), bandwidth

EDA Mean

5 PPG Mean of pulse intervals, normalized power in low-
frequency range of HRV, mean amplitude of pulse ampli-
tudes, DC amplitude, mean rise time, signal energy, band-
width

EDA Mean

Appendix A.4. Problem 6

EEG is a physiological signal that is related to brain activity, and it is possible to find
out the intention of a person to move one’s body by analyzing the EEG. Brain–computer in-
terface competition IV-2b database contains EEG with label information indicating whether
a subject imagined movement of the right or left hand when the signal was measured.
Problem 6 is based on the database, and a common spatial pattern algorithm was used to
extract features from EEG [41]. The algorithm divides EEG into several frequency bands
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including 4–8, 8–12,..., and 36–40 Hz and uses spatial filters to increase the discriminability
of each class.

Appendix A.5. Problems 7 and 8

A dataset containing HRV-based features extracted from ECG is utilized for problem
7 [42]. The features are listed in Table A4, and the features are also used in problem 8.

Table A4. Extracted features for problems 7 and 8.

Classification Features

Time domain Mean, median, standard deviation, skewness, and kurtosis
of RR intervals, root mean square of the successive RR
interval differences (RMSSD), standard deviation of RR
interval differences (SDSD), ratio of SDRR over RMSSD,
previous eight features for relative RR intervals, percentage
of RR interval differences more than 25 and 50 ms, HR,
sample entropy of RR intervals

Spectral features Spectral power of RR intervals for very low (≤0.04 Hz),
low (0.04–0.15 Hz), high (0.15–0.4 Hz), and whole frequency
bands, ratio of the low to the high-frequency spectral power
for RR intervals, ratio of the high to the low-frequency
spectral power for RR intervals

Nonlinear measure Higuchi fractal dimension, two Poincaré plot descriptors

Appendix A.6. Problem 9

ECG can be used to identify an abnormality of heart. VEB is one of the abnormal cases
and contains premature ventricular contraction and ventricular escape beats. Each heartbeat
of ECG is tested, and VEBs are detected in problem 9 using 45 features (Table A5) [40].

Table A5. Extracted features for problem 9.

Classification Features

RR interval Distance between current and previous beats, distance be-
tween current and next beats, average of previous ten-RR in-
tervals, average of previous RR intervals in the last 20 min,
normalized version of previous four features

Higher order statistics Kurtosis and skewness for five segments of each beat

Wavelet transform 23-dimensional descriptors using Daubechies wavelet func-
tion with three levels of decomposition

Morphological descriptor Maximum values for the first and last segments and mini-
mum values for the second and third segments when each
beat is divided into four segments
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