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Abstract: This paper examines a new vibrating dynamical motion of a novel auto-parametric system
with three degrees of freedom. It consists of a damped Duffing oscillator as a primary system attached
to a damped spring pendulum as a secondary system. Lagrange’s equations are utilized to acquire
the equations of motion according to the number of the system’s generalized coordinates. The
perturbation technique of multiple scales is applied to provide the solutions to these equations up
to a higher order of approximations, with the aim of obtaining more accurate novel results. The
categorizations of resonance cases are presented, in which the case of primary external resonance is
examined to demonstrate the conditions of solvability of the steady-state solutions and the equations
of modulation. The time histories of the achieved solutions, the resonance curves in terms of the
modified amplitudes and phases, and the regions of stability are outlined for various parameters
of the considered system. The non-linear stability, in view of both the attained stable fixed points
and the criterion of Routh–Hurwitz, is investigated. The results of this paper will be of interest for
specialized research that deals with the vibration of swaying buildings and the reduction in the
vibration of rotor dynamics, as well as studies in the fields of mechanics and space engineering.

Keywords: non-linear dynamics; auto-parametric systems; perturbation techniques; fixed points;
stability non-linear analysis

1. Introduction

The dynamical motion of a pendulum in generality or the motion of any system
containing a pendulum is considered as one of the oldest scientific subjects in non-linear
dynamics. The planar motion of a simple pendulum has been investigated in several
research works that reveal its complicated behavior, e.g., [1–5]. The periodic motion of
a simple pendulum with a pivot point that moved on a vertical ellipse was investigated
in [1], in which some special cases were examined to show the different motions of this
point. On the other hand, the chaotic motion of a parametrically excited pendulum as a
mathematical model has been investigated numerically, experimentally, and analytically
in [2–4], respectively. The harmonic motion of the non-linear vibrations of an excited
auto-parametric system was studied in [5]. The harmonic balance method (HBM) [6] was
used to evaluate the response of this system in which its performance was studied.

The periodic solutions of the equations of motion (EOM) of a greatly damped pendu-
lum were investigated in [7] under some certain constraints, in which the behavior of the
pendulum led to chaos through a symmetrical pitchfork bifurcation. A global analytical
inspection of the pendulum is presented in [8–10], where the pendulum was subjected
to various applied external forces and moments. The dynamics of two planar flexible
pendulums attached to an excited horizontal platform were studied in [11]. The authors
asserted that the pendulum exhibited rotational and oscillatory motion simultaneously,
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in which the stability of the motion existed for the fixed in-phase and anti-phase states
simultaneously.

The HBM was used in [12] to obtain the analytic results of an auto-parametric system
connected to a non-linear elastic pendulum close to one of the arising parametric resonances.
The authors verified the attained results by the comparison with the numerical results. On
the other hand, the perturbation technique of multiple scales (PTMS) [6] has been used
in several scientific works, such as [13–21], to obtain the approximate solutions of the
controlling EOM of the corresponding dynamical systems. In refs. [13–15], the authors
investigated the motion of an elastic pendulum under the influence of excitation force
and moment, when its supported point moved in circular, Lissajous, and elliptic paths,
respectively. The possible fixed points and the corresponding steady-state solutions of the
stable points are gained. Some practical examples are presented in [15] to reveal the possible
movements of the pendulum’s pivot point. The rigid body (RB) motion as a pendulum
was investigated in [16] with a fixed pivot point, while its generalizations were examined
in [17,18] for the motion of a damped spring RB with linear and non-linear stiffness,
respectively, and when the movement of the supported pendulum’s point was constrained
to elliptic trajectories. The obtained solutions were sketched with the possible resonances
curves for different parameters of the investigated system. Another generalization is found
in [19], where the path of the suspension point had the form of a Lissajous curve. The
analytical results were compared with the numerical results, revealing a high consistency
between them and showing the accuracy of the analytical technique.

Recently, the motion of a three degrees of freedom (DOF) double pendulum was
examined in [20] under the existence of a harmonic excitation force and two moments.
The first pendulum was considered to be rigid, in which its first point was constrained to
move only in an elliptical path, while its second end was connected with a damped spring
pendulum. The attained solutions were plotted and verified with the numerical solutions.
On the other hand, the resonance curves corresponding to the stability and instability areas
of a two DOF system were investigated in [21]. It was considered that the motion was
constrained to a plane under the influence of two harmonic forces at the free end of a
damped elastic pendulum and one harmonic moment that acted at the suspension point.

The motion of a spring-damper pendulum in the presence of a resistance force besides
torque at an immovable suspension point and the force at the free end of the pendulum
with harmonic magnitude were investigated in [22]. The effectiveness of the fluid flow
properties, the buoyancy and drag forces, and an excitation force on the 2DOF spring-
damper were examined in [23]. All resonance cases were characterized, in which the
solutions at the steady state were verified in view of the conditions of solvability. The
dynamical motion of a tuned absorber was studied in [24], in which the PTMS was applied
to obtain the approximate solutions up to the third order for the case of a movable pivot
point on an ellipse with a stationary angular velocity. The modulation equations were
derived and reduced to two algebraic equations in order to investigate the stability of the
fixed points according to selected data of the considered system.

Several studies [25–31] have investigated the Duffing pendulum systems about the
primary and secondary resonances using analytical approaches or numerical analysis.
The responses of an auto-parametric system containing a spring, mass, and damper was
studied in [25] using the HBM. The approximate results of another auto-parametric system
consisting of a damped pendulum connected to a non-linear vibrating oscillator near the
region of principal resonance were investigated in [26]. In ref. [27], the author examined the
oscillations of a parametrically self-excited 2DOF dynamical system consisting of coupled
oscillators identified by self-excitation, with the non-linearity of a Duffing type. The
vibrational analysis of a mechanical system similar to an auto-parametric system subjected
to an external harmonic excitation was investigated in [28]. The authors reported that a
semi-active magnetic damper and a non-linear spring acted on the system to improve its
dynamics and control movements. The analytic solutions of this system were obtained
in [29] using the HBM, and they were verified according to comparison with the numerical
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results. The discussion of the vibration mitigation and energy harvesting of the same system
is found in [30], in which the concept of energy harvesting is closer to the vibration absorber
concept. In ref. [31], the dynamics of a pendulum suspended on a forced Duffing oscillator
were investigated using numerical analysis. The bifurcation analysis of the pendulum was
also performed.

This paper focuses on the motion of a novel three DOF auto-parametric dynamical
system consisting of a damped spring pendulum as the secondary system suspended with
a forced non-linear Duffing damping oscillator as the primary system. The governing EOM
are derived using the second kind of Lagrange’s equations according to the generalized
coordinates of the considered system. The PTMS is used to solve the EOM analytically
up to the third order of approximation and to obtain more accurate results. All cases of
resonance are categorized, in which the case of primary external resonance is examined to
obtain the conditions of solvability besides the modulation equations. The time histories
of the modified amplitudes, the modified phases, the achieved results, resonance curves,
and the path’s projections on selected space planes are graphed to describe the impact
of the system’s parameters on the motion. The stability and instability regions in view
of the investigated resonance case are presented using the Routh–Hurwitz criterion [32].
The results of this work are generalized as the previous results in [5,31] for the case of the
motion of a rigid pendulum without any effectiveness of force and moment. These results
have a significant impact in special dampers mounted in buildings, applied in the opposite
directions of river vortices or earthquakes, and in the applications of pendulums that are
mounted on bridge towers.

2. Formulation of the Dynamical System

Let us consider the dynamical vibrations of an auto-parametric system consisting of
an excited Duffing oscillator with normal length `0, static elongation Ys, stiffness k1, and
mass M that is periodically forced to move vertically as a primary system. The secondary
system is a damped spring pendulum with normal length `1, static elongation Xs, stiffness
k2, and mass m. This spring is connected to the Duffing oscillator at a point O. Let Y(t)
denote the elongation of the Duffing oscillator and φ represent the rotation angle of the
spring that lies between the downward vertical Y1-axis and the direction of the spring’s
elongation X(t) (see Figure 1).

Moreover, we consider that the motion is influenced by external linear excitation forces,
F1(t) = F1 cos(Ω1t) and F3(t) = F3 cos(Ω3t), and an excitation moment Mφ(t) = F2 cos(Ω2t)
that are acting on the masses M, m and at the point O, respectively. Here, Ω1, Ω2, and Ω3
are the frequencies of F1(t), Mφ(t), and F3(t), respectively. The investigated auto-parametric

system is damped by viscous forces and moments C1
.

Y, C2
.
φ, and C3

.
X, in which C1, C2,

and C3 are the respective coefficients of the viscous damping.
Based on the above description, we can write the potential energy V and kinetic energy

T as follows:

V = 1
2 k1Y2 + 1

2 k2X2 −Mg(l0 + Y)−mg(l0 + Y)−mg(l1 + X) cos φ,

T = 1
2 (M + m)

.
Y

2
+ 1

2 m(l1 + X)2
.
φ

2
+ 1

2 m
.

X
2

−m(l1 + X)
.

Y
.
φ sin φ + m

.
X

.
Y cos φ,

(1)

where g is the acceleration of Earth’s gravitational force and the dots are time derivatives.
The governing EOM can be derived using the following Lagrange’s Equations:

d
dt (

∂L
∂

.
Y
)− ( ∂L

∂Y ) = QY,
d
dt (

∂L
∂

.
φ
)− ( ∂L

∂φ ) = Qφ,
d
dt (

∂L
∂

.
X
)− ( ∂L

∂X ) = QX .

(2)
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Here, L = T−V is the Lagrange’s function, (Y, φ, X) and (
.

Y,
.
φ,

.
X) are the system’s

generalized coordinates and their corresponding velocities, respectively, and (QY, Qφ, QX)
are the generalized forces which are formed as follows:

QY = F1 cos(Ω1t)− C1
.

Y,
Qφ = F2 cos(Ω2t)− C2

.
φ,

QX = F3 cos(Ω3t)− C3
.

X.

(3)

Consider the following definitions of the dimensionless parameters:

ω1
2 = k1

m+M , ω2
2 = g

l1
, ω3

2 = k2
m , ω1

2 = ω1
2

ω2
2 ,

ω2
2 = ω3

2

ω2
2 , c1 = C1

(m+M)ω2
, c2 = C2

ml1
2ω2

, c3 = C3
mω2

,

f1 = F1
(m+M)l1ω2

2 , f2 = F2
ml1

2ω2
2 , f3 = F3

ml1ω2
2 ,

p1 = Ω1
ω2

, p2 = Ω2
ω2

, p3 = Ω3
ω2

, β = m
m+M ,

τ = ω2t, x = X−Xs
l1

, y = Y−Ys
l1

, Ys =
(m+M)g

k1
, Xs =

mg
k2

, l0 = `0 + Ys ,
l1 = `1 + Xs.

(4)

The substitution of Equations (1), (3) and (4) into the system of Equation (2) produces
the following dimensionless form of the EOM:

..
y(τ) + ω2

1y− 2β
.
x(τ)

.
φ(τ) sin φ− β(1 + x)

.
φ

2
(τ) cos φ

+β
..
x(τ) cos φ− β(1 + x)

..
φ(τ) sin φ + c1

.
y(τ)− 2 = f1 cos(Ω1τ),

(5)
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(1 + x)2
..
φ(τ)− (1 + x)

..
y(τ) sin φ + 2

.
x(τ)

.
φ(τ)

+2x
.
x(τ)

.
φ(τ) + (1 + x) sin φ + c2

.
φ(τ) = f2 cos(Ω2τ),

(6)

..
x(τ) + ω2

2x + (1 + x)
.
φ

2
(τ) +

..
y(τ) cos φ− cos φ

+c3
.
x(τ) + 1 = f3 cos(Ω3τ).

(7)

The inspection of the system of Equations (5)–(7) shows that the governing EOM
consists of three non-linear ordinary differential equations (ODE) in terms of y, φ, and x.

3. The Perturbation Technique

The main objective of the present section is to obtain the approximate analytic solutions
of the EOM (5)–(7) using the PTMS to address the cases of resonance, obtain the conditions
of solvability, and achieve the equations of the modulations. Therefore, we can approximate
the functions sin φ and cos φ in Equations (5)–(7) using a Taylor series according to their first
terms, for which these approximations are valid in a small neighborhood of the position of
static equilibrium [33]. Then, Equations (5)–(7) become:

..
y(τ) + ω2

1y− 2β
.
x(τ)

.
φ(τ)(φ− φ3

6 )− β(1 + x)
.
φ

2
(τ)(1− φ2

2 )

+β
..
x(τ)(1− φ2

2 )− β(1 + x)
..
φ(τ)(φ− φ3

6 ) + c1
.
y(τ)− 2 = f1 cos(Ω1τ),

(8)

(1 + x)2
..
φ(τ)− (1 + x)

..
y(τ)(φ− φ3

6 ) + 2
.
x(τ)

.
φ(τ) + 2x

.
x(τ)

.
φ(τ)

+(1 + x)(φ− φ3

6 ) + c2
.
φ(τ) = f2 cos(Ω2τ),

(9)

..
x(τ) + ω2

2x + (1 + x)
.
φ

2
(τ) + (1− φ2

2
)

..
y(τ) +

φ2

2
+ c3

.
x(τ) = f3 cos(Ω3τ). (10)

Based on the motion in a small neighborhood of the static equilibrium position, we
consider a small parameter 0 < ε << 1, in which the parameters y, φ, and x can be rewritten
in terms of new variables, ξ, ϕ, and χ, respectively, according to the following forms:

y(τ) = ε ξ(τ; ε), φ(τ) = ε ϕ(τ; ε), x(τ) = ε χ(τ; ε). (11)

According to PTMS, we can seek the approximate solutions of the variables ξ, ϕ, and
χ in the following forms [34]:

ξ =
2
∑

k=0
εkξk+1(τ0, τ1, τ2)+O(ε3),

ϕ =
2
∑

k=0
εk ϕk+1(τ0, τ1, τ2) + O(ε3),

χ =
2
∑

k=0
εkχk+1(τ0, τ1, τ2) + O(ε3),

(12)

where τn = εnτ (n = 0, 1, 2) are various time scales, in which τ0 and τ1, τ2 are defined as
fast and slow time scales, respectively. Therefore, the time derivatives regarding τ can be
transformed according to the time scales τn as the following chain rule:

d
dτ = ∂

∂τ0
+ ε ∂

∂τ1
+ ε2 ∂

∂τ2
+ O(ε3),

d2

dτ2 = ∂2

∂τ2
0
+ 2ε ∂2

∂τ0∂τ1
+ ε2( ∂2

∂τ2
1
+ 2 ∂2

∂τ0∂τ2
) + O(ε3),

(13)

where terms of O(ε3) and higher are neglected due to their minuteness.
As before, we consider the minuteness of the amplitudes of external forces and mo-

ments f j (j = 1, 2, 3), as well as the coefficients of damping ci. Therefore, we can write:

f j = ε3 f̃ j, cj = ε2 c̃j (j = 1, 2, 3). (14)
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Furthermore, we consider the following:

β = εβ̃, (15)

where the amounts f̃ j, c̃j, ã, b̃, and β̃ are of order unity.
Substituting the new variables into Equations of system (11), the assumed solutions

(12), the transformations (13), and the use of the parameters of Equations (14) and (15) into
the EOM (8)–(10) and equating the coefficients of like powers of ε in each side obtains the
following groups of partial differential equations (PDEs):

Equations of order ε:
∂2ξ1

∂τ2
0

+ ω2
1ξ1 = 0, (16)

∂2 ϕ1

∂τ2
0

+ ϕ1 = 0, (17)

∂2χ1

∂τ2
0

+ ω2
2χ1 +

∂2ξ1

∂τ2
0

= 0. (18)

Equations of order ε2:

∂2ξ2

∂τ2
0

+ ω2
1ξ2 = −2

∂2ξ1

∂τ0τ1
− β̃

∂2χ1

∂τ2
0

, (19)

∂2φ2

∂τ2
0

+ φ2 = −2
∂2φ1

∂τ0∂τ1
− 2χ1

∂2φ1

∂τ2
0

+ φ1
∂2ξ1

∂τ2
0
− 2

∂φ1

∂τ0

∂χ1

∂τ0
− φ1χ1, (20)

∂2χ2

∂τ2
0

+ ω2
2χ2 +

∂2ξ2

∂τ2
0

= −2
∂2χ1

∂τ0∂τ1
− 3

2
φ1

2 − 2
∂2ξ1

∂τ0∂τ1
. (21)

Equations of order ε3:

∂2ξ3
∂τ2

0
+ ω2

1ξ3 = − ∂2ξ1
∂τ2

0
− 2 ∂2ξ1

∂τ0∂τ2
− 2 ∂2ξ2

∂τ0∂τ1
+ β̃( ∂φ1

∂τ0
)2 − 2β̃ ∂2χ1

∂τ0∂τ1

−β̃ ∂2χ2
∂τ2

0
+ β̃φ1

∂2φ1
∂τ2

0
− c̃1

∂ξ1
∂τ0

+ f̃1 cos(p1τ0),
(22)

∂2φ3
∂τ2

0
+ φ3 = − ∂2φ1

∂τ2
1
− 2 ∂2φ1

∂τ0∂τ2
− 2 ∂2φ2

∂τ0∂τ1
− 4χ1

∂2φ1
∂τ0∂τ1

− 2χ1
∂2φ2
∂τ2

0
− 2χ2

∂2φ1
∂τ2

0

−χ1
2 ∂2φ1

∂τ2
0
+ 2φ1

∂2ξ1
∂τ0∂τ1

+ φ2
∂2ξ1
∂τ2

0
+ φ1

∂2ξ2
∂τ2

0
− 2 ∂φ1

∂τ1

∂χ1
∂τ0
− 2 ∂φ1

∂τ0

∂χ1
∂τ1

−2 ∂φ2
∂τ1

∂χ1
∂τ0
− 2 ∂φ1

∂τ0

∂χ2
∂τ0
− 2χ1

∂φ1
∂τ0

∂χ1
∂τ0
− χ1φ2 − χ2φ2 +

φ1
3

6 − c̃2
∂φ1
∂τ0

+ f̃2 cos(p2τ0),

(23)

∂2χ3
∂τ2

0
+ω2

2χ3 +
∂2ξ3
∂τ2

0
= − ∂2χ1

∂τ2
1
− 2 ∂2χ1

∂τ0∂τ2
− 2 ∂2χ2

∂τ0∂τ1
− 2 ∂φ1

∂τ0

∂φ2
∂τ0
− χ1(

∂φ1
∂τ0

)2

− ∂2ξ1
∂τ2

1
− 2 ∂2ξ1

∂τ0∂τ2
− 2 ∂2ξ2

∂τ0∂τ1
+ 3

2 φ1
2 ∂2ξ1

∂τ2
0
− φ1φ2 − c̃3

∂χ1
∂τ0

+ f̃3 cos(p3τ0).
(24)

The above nine PDE (16)–(24) can be solved sequentially one by one. Consequently,
the general solutions of Equations (16) and (17) are:

ξ1 = A1eiω1τ0 + A1e−iω1τ0 , (25)

φ1 = A2ei τ0 + A2e−i τ0 . (26)
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The substitution of Equation (25) into Equation (18) yields a nonhomogeneous equa-
tion, and its solution can be written in the form:

χ1 = A3eiω2τ0 + A3e−iω2τ0 +
ω2

1
ω2

1 −ω2
2
(A1eiω1τ0 + A1e−iω1τ0), (27)

where Aj (j = 1, 2, 3) represent unknown complex functions of the slow time scales τ1, τ2,
while Aj are the complex conjugates of these functions.

The substitution of the first-order solutions of Equations (25)–(27) into Equations (19)–(21)
yields secular terms. The elimination of these terms demands that:

2iω1
∂A1

∂τ1
−

β̃ω4
1

(ω2
1 −ω2

2)
A1 = 0, (28)

∂A2

∂τ1
= 0. (29)

According to these conditions, the second-order solutions have the following forms:

ξ2 =
β̃ω2

2
(ω2

1 −ω2
2)

A3eiω2τ0 + CC., (30)

φ2 = − ω1A2
(ω2

1−ω2
2)
{ [(1+2ω1)−(ω2

1−ω2
2)]

(ω1+2) A1ei(1+ω1)τ0 +
[(1−2ω1)−(ω2

1−ω2
2)]

(ω1−2)

×A1ei(1−ω1)τ0} − A2
ω2

[ (1+2ω2)
(ω2+2) A3ei(1+ω2)τ0 + (1−2ω2)

(ω2−2) A3ei(1−ω2)τ0 ] + CC.
(31)

Here, CC. represents the complex conjugates of the preceding terms.
After grasping the above procedure, we can obtain another condition for eliminating

the secular terms by substituting the solutions from Equations (25)–(27), (30) and (31) into
Equation (21), in the following form:

2iω2
∂A3

∂τ1
−

β̃ ω4
2

ω2
1 −ω2

2
A3 = 0. (32)

Therefore, the solution χ2 has the form:

χ2 = −3A2A2

ω2
2
− 3 A2

2
2(ω4

2 − 4)
e2i τ0 +

β̃ ω4
1ω2

2

(ω2
1 −ω2

2)
3 A1eiω1τ0 + CC. (33)

Making use of the previous solutions to Equations (25)–(27), (30), (31) and (33) and the
third-order approximate Equations (22)–(24), secular terms are produced. The eliminating
conditions of these terms required that:

2iω1
∂A1

∂τ2
+ iω1 c̃1A1−

β̃2ω6
1A1

4(ω2
1 −ω2

2)
3 [−ω2

1(4ω2
1 + 11) +ω2

2(7− 4ω2
2) + 8ω2

1ω2
2 ] = 0, (34)

2i ∂A2
∂τ2

+ i c̃2A2 −
6ω4

1(ω
2
2−2ω2

1+1)

(ω2
1−4)(ω2

1−ω2
2)

2 A1A2A1 −
A2

2A2
2ω2

2(ω
2
2−4)

(ω4
2 − 25ω2

2 + 24)

− A2A3A3
(ω2

2−4)(ω2
2−ω2

1)
{6ω2

1(ω
2
2 − 1) + ω2

2 [6(1−ω2
2) + β̃ω2(2ω2

2 + 3ω2 − 2)]} = 0,
(35)

2iω2
∂A3

∂τ2
+ i c̃3ω2A3 +

β̃2ω6
2A3

2(ω2
1 −ω2

2)
2 (1− 2 ω2

1)−
3 + 2ω2(ω2 + 2)

ω2(ω2 + 2)
A2A3A2 = 0. (36)

Based on the previous conditions of Equations (34)–(36), the approximate third-order
solutions turn into:
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ξ3 = f̃1eip1τ0

2(ω2
1−p1

2)
− [2β̃ A2

2 (ω
2
2−4)+6β̃ A2

2]

(ω2
1−4)(ω2

2−4)
e2i τ0

−[ 1
(ω2

1−ω2
2)

2 +
ω2

2

(ω2
1−ω2

2)
3 ]β̃

2 ω4
2 A3ei ω2 τ0 + CC ,

(37)

φ3 = f̃2eip2τ0

2(1−p2
2)
+ A3A2[

d1
d2

A1ei(1−ω1−ω2)τ0 + d3
d4

A1ei(1+ω1−ω2)τ0 ] + A2{ d5
d6

A2
1ei(1+2ω1)τ0

+A3[
d7
d8

A1ei(1−ω1+ω2)τ0 + d9
d10

A1ei(1+ω1+ω2)τ0 ]}+ CC ,
(38)

χ3 = f̃1 p1
2eip1τ0

2(ω2
1−p1

2)(ω2
2−p1

2)
+ f̃3eip3τ0

2(ω2
2−p3

2)
+ d11

d12
A1A2A2ei ω1 τ0

+A2
2[

d13
d14

A1ei(2−ω1)τ0 + d15
d16

A1ei(2+ω1)τ0 + d17
d18

A3ei(2−ω2)τ0

+ d19
d20

A3ei(2+ω2)τ0 − 8β̃ (ω2
2−1)

(ω2
1−4)(ω2

2−4)
e2 i τ0 ] + CC.,

(39)

where ds (s = 1, 2, 3, . . . , 20) are functions of ω1 and ω2 (see Appendix A).
According to the removal conditions of secular terms, Equations (34)–(36), and the

following initial conditions, we can estimate the functions Aj (j = 1, 2, 3):

y(0) = B01,
.
y(0) = B02, φ(0) = B03,

.
φ(0) = B04, x(0) = B05,

.
x(0) = B06,

(40)

where B0k(k = 1, 2, . . . , 6) are known values.
Now, we will investigate the arising cases of resonance according to the previous ap-

proximate solutions. These cases can be categorized into primary (main) external resonance,
which takes place at p1 = ω1, p2 = 1, p3 = ω2, and internal resonance, which occurs at
ω1 = ω2, ω1 = −ω2, ω1 = 2, ω1 = −2, ω2 = 2, ω2 = −2.

In this situation, we investigate the three primary external resonances, p1 ≈ ω1,
p2 ≈ 1, and p3 ≈ ω2, simultaneously. These resonances depict the closeness of p1, p2 and
p3 to ω1, 1 and ω2, respectively. Therefore, detuning parameters σj (j = 1, 2, 3) can be
introduced according to:

p1 = ω1 + σ1, p2 = 1 + σ2, p3 = ω2 + σ3. (41)

Since the detuning parameters are known as the distances from the oscillations to
the strict resonance [35,36], we can use the small parameter ε to express these parameters
as follows:

σj = εσ̃j (j = 1, 2, 3). (42)

Substituting parameters (41) and (42) into Equations (8)–(10) and removing the pro-
duced secular terms obtains the following conditions of solvability:

2iω1
∂A1
∂τ2

+ iω1 c̃1A1 −
β̃2ω6

1A1

4(ω2
1−ω2

2)
3 [−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)

+8ω2
1ω2

2 ]−
f̃1
2 eiσ̃1τ1 = 0,

2i ∂A2
∂τ2

+ ic̃2A2 −
6ω4

1(ω2
2−2ω2

1+1)

(ω2
1−4)(ω2

1−ω2
2)

2 A1A2A1 − A2A3A3
(ω2

2−4)(ω2
2−ω2

1)

×{6ω2
1
(
ω2

2 − 1
)
+ ω2

2 [6
(
1−ω2

2
)
+ β̃ω2

(
2ω2

2 + 3ω2 − 2
)
]} −

2
2A2

2ω2
2(ω2

2−4)

×
(
ω4

2 − 25ω2
2 + 24

)
− f̃2

2 eiσ̃2τ1 = 0,

2iω2
∂3
∂τ2

+ i c̃3ω2A3 −
(2ω2

1−1)
2(ω2

1−ω2
2)

2 A3 β̃2ω6
2 −

[3+2ω2(ω2+2)]
ω2(ω2+2)

×A2A3A2 − f̃3
2 eiσ̃3τ1 = 0.

(43)
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It is obvious that these conditions constitute a system of three non-linear PDEs in
terms of the functions Aj (j = 1, 2, 3), in which Aj = Aj(τ1, τ2). Therefore, we can write
them in polar forms as follows:

Aj =
h̃j(τ1, τ2)

2
ei ψj(τ1,τ2), hj = εh̃j (j = 1, 2, 3). (44)

Here, h̃j and ψj are real functions of the amplitudes and phases, respectively, for
the functions ξ, ϕ and χ, while hj are the amplitudes of y, φ, and x, as presented in the
assumptions of Equations (11) and (12).

Making use of the following modified phases:

θj(τ1, τ2) = τjσ̃j − ψj(τ1, τ2) (45)

and the time derivative operators (13), we can transform the PDE system (43) into another
ODE system. The separation of the real and imaginary parts of the resulting system yields
the following six ODEs from the first order that describe the modulation equations in terms
of modified phases θj and amplitudes hj in the following forms:

h1
dθ1
dτ = h1σ1 +

β2ω5
1 h1

4(ω2
1−ω2

2)
3

[
−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)
+ 8ω2

1ω2
2
]
+ f1

2ω1
cos θ1,

dh1
dτ = − 1

2 h1c1 +
f1

2ω1
sin θ1,

h2
dθ2
dτ = h2σ2 −

6ω2
1h2

1h2

8(ω2
1−4)(ω2

1−ω2
2)

2

(
ω2

2 − 2ω2
1 + 1

)
+

h3
2

16ω2
2(ω2

2−4)

×
(
ω4

2 − 25ω2
2 + 24

)
− 3h2

3h2

4(ω2
2−4)

(
ω2

2 − 1
)
+ f2

2 cos θ2,
dh2
dτ = − 1

2 h2c2 +
f2
2 sin θ2,

h3
dθ3
dτ = h3σ3 +

β2 ω5
2h3

4(ω2
1−ω2

2)
3

(
ω2

2 − 3ω2
1
)
+

h2
2h3

8ω2
2(ω2+2)

[3 + 2ω2(ω2 + 2)] + f3
2ω2

cos θ3,

dh3
dτ = − 1

2 h3c3 +
f3

2ω2
sin θ3.

(46)

According to the conditions (40), we can solve the above modulation in Equation (46).
The time histories of the amplitudes hj (j = 1, 2, 3) and the modified phases θj are portrayed
in Figures 2–4, according to the uses of the following data:

σ1 = 0.01, σ2 = 0.02, σ3 = 0.03, f1 = 0.00002, f2 = 0.002,
f3 = 0.00005, β = 0.167, c1 = 0.00188, c2 = 0.0135,
c3 = 0.0034, p1 = ω1 + σ1, p2 = 1 + σ2, p3 = ω2 + σ3.

These figures were calculated for different values of ω1 = (3.02, 3.43, 4.08),
ω2 = (4.43, 5.72, 6.68), and ω3 = (7.07, 7.75, 8.37) as in the parts [(a), (b)], [(c), (d)], and
[(e), (f )], respectively. The oscillations of the waves describing h1 and h3 decrease with
increasing time, behaving in a decay manner as seen in Figures 2 and 4, while the variation
of the amplitude h2 behaves in the form of steady-state motion as shown in Figure 3. On
the other hand, the variation of the modified phases θj increases with time to a specified
value, then it tends to exhibit a stationary behavior, as portrayed in Figures 2–4. The
conclusion that can be made here is that the modified amplitudes and phases behave in a
stable manner.
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Figure 2. The amplitude’s modulation 1h  and modified phase 1θ : (a,b) at 

1 (3.02,3.43, 4.08),ω =  (c,d) at 2 (4.43,5.72,6.68),ω =  (e,f) at 3 (7.07,7.75,8.37)ω = . 

Figure 2. The amplitude’s modulation h1 and modified phase θ1: (a,b) at ω1 = (3.02, 3.43, 4.08),
(c,d) at ω2 = (4.43, 5.72, 6.68), (e,f) at ω3 = (7.07, 7.75, 8.37).

Figures 5–7 illustrate the time histories of the attained approximate analytic solutions
of Y, X, and φ till the third order of approximation. These figures were drawn when the
previously used data with various values of ω j(j = 1, 2, 3) were used. According to the
plotted curves in these figures, we can conclude that these curves have periodic or quasi-
periodic forms of wave packets, in which their amplitudes increase (see Figures 5 and 7)
and decrease, as shown in Figure 6, with the passage of time until the waves behave in the
form of stationary waves at the end of the examined period of time.
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Figure 3. The variation of 2h  and 2θ  with τ : (a,b) at 1 (3.02,3.43, 4.08),ω =  (c,d) at 

2 (4.43,5.72,6.68),ω =  (e,f) at 3 (7.07,7.75,8.37)ω = . 

Figure 3. The variation of h2 and θ2 with τ: (a,b) at ω1 = (3.02, 3.43, 4.08), (c,d) at ω2 = (4.43, 5.72, 6.68),
(e,f) at ω3 = (7.07, 7.75, 8.37).

To follow up on the vibrations of the examined system to investigate whether it is
stable and to understand the specific transference of motion, the system of Equation (46)
permits us to focus on this knowledge. The plotted trajectories of the modified amplitudes
and phases are regarded as the best way to depict the system’s behavior.

The track projections on specific space planes are plotted in Figures 8–10, when
ω1 = 4.08, ω2 = 5.72 , and ω3 = 8.37, respectively. The curves of these figures have spiral
forms toward one point, in which the green, black, and red solid points in these figures
refer to a stable state. After the transient state, we find that all pathways tend to have
steady-state behavior.
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Figure 4. The time histories of the amplitude 3h  and the phase 3θ : (a,b) at 

1 (3.02,3.43, 4.08),ω =  (c,d) at 2 (4.43,5.72,6.68),ω =  (e,f) at 3 (7.07,7.75,8.37)ω = . 

Figure 4. The time histories of the amplitude h3 and the phase θ3: (a,b) at ω1 = (3.02, 3.43, 4.08),
(c,d) at ω2 = (4.43, 5.72, 6.68), (e,f) at ω3 = (7.07, 7.75, 8.37).
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Figure 5. The change of the attained Y,X, and φ with time τ: (a–c) when ω1 = (3.02, 3.43, 4.08).



Appl. Sci. 2022, 12, 1737 14 of 35Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 40 
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Figure 6. The time histories of the approximate solutions Y, X, and φ: (a–c) when ω2 = (4.43, 5.72, 6.68).
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To follow up on the vibrations of the examined system to investigate whether it is 
stable and to understand the specific transference of motion, the system of Equation (46) 
permits us to focus on this knowledge. The plotted trajectories of the modified 
amplitudes and phases are regarded as the best way to depict the system’s behavior. 
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Figure 7. The variation of Y, X, and φ versus τ: (a–c) when ω3 = (7.07, 7.75, 8.37).
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Therefore, we can easily obtain the following system of six algebraic equations:  

Figure 10. The amplitude modulation of h1, h2, h3 as a function of θ1, θ2, θ3: (a–c) at ω3 = 8.37.

4. Solutions in the Steady State

The main objective of this section is to examine the oscillations of the considered
system in the steady state. It is known that this case is generated when the transient
processes disappear due to the presence of damping [37,38]. Then, we consider the zero

value of the left hand side of Equation (46), i.e.,
dθj
dt = 0,

dhj
dt = 0 (j = 1, 2, 3). Therefore,

we can easily obtain the following system of six algebraic equations:
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h1σ1 +
β2ω5

1 h1

4(ω2
1−ω2

2)
3

[
−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)
+ 8ω2

1ω2
2
]
+ f1

2ω1
cos θ1 = 0,

− 1
2 h1c1 +

f1
2ω1

sin θ1 = 0,

h2σ2 −
6ω2

1h2
1h2

8(ω2
1−4)(ω2

1−ω2
2)

2

(
ω2

2 − 2ω2
1 + 1

)
+

h3
2

16ω2
2(ω2

2−4)

(
ω4

2 − 25ω2
2 + 24

)
− 6h2

3h2

8(ω2
2−4)

(
ω2

2 − 1
)
+ f2

2 cos θ2 = 0,

− 1
2 h2c2 +

f2
2 sin θ2 = 0,

h3σ3 +
β2 ω5

2h3

4(ω2
1−ω2

2)
3

(
ω2

2 − 3ω2
1
)
+

h2
2h3

8ω2
2(ω2+2)

[3 + 2ω2(ω2 + 2)] + f3
2ω2

cos θ3 = 0,

− 1
2 h3c3 +

f3
2ω2

sin θ3 = 0.

(47)

A closer look into this system shows that if we remove the phases θj (j = 1, 2, 3), the
following non-linear algebraic equations of amplitudes and frequencies are obtained:

f 2
1 = 4ω2

1{[h1σ1 +
β2ω5

1h1

4(ω2
1−ω2

2)
3

(
−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)
+ 8ω2

1ω2
2
)
]
2
+ 1

4 h2
1c2

1},

f 2
2 = 4{[h2σ2 −

6ω2
1h2

1h2

8(ω2
1−4)(ω2

1−ω2
2)

2

(
ω2

2 − 2ω2
1 + 1

)
+

h3
2

16ω2
2(ω2

2−4)

(
ω4

2 − 25ω2
2 + 24

)
− 6h2

3h2

8(ω2
2−4)

(
ω2

2 − 1
)
]2 + 1

4 h2
2c2

2},

f 2
3 = 4ω2

2{[h3σ3 +
β2 ω5

2h3

4(ω2
1−ω2

2)
3

(
ω2

2 − 3ω2
1
)
+

h2
2h3

8ω2
2(ω2+2)

×(3 + 2ω2(ω2 + 2))]2 + 1
4 h2

3c2
3

}
.

(48)

For further investigation of the stability, we will examine the behavior of the dynamical
system in a region close to the fixed points. To complete this task, we will consider the
following forms of amplitudes and phases:

h1 = h10 + h11, h2 = h20 + h21, h3 = h30 + h31,
θ1 = θ10 + θ11, θ2 = θ20 + θ21, θ3 = θ30 + θ31,

(49)

where h10, h20, h30, θ10, θ20, and θ30 are the solutions in the steady state, while h11, h21, h31,
θ11, θ21, and θ31 are the corresponding perturbations, which are assumed to be very small.

The substitution of Equation (49) into Equation (46) yields the following equations:

h10
dθ11
dτ = h11σ1 − f1

2ω1
θ11 sin θ10 + G1,

dh11
dτ = − 1

2 h11c1 +
f1

2ω1
θ11 cos θ10,

h20
dθ21
dτ = h21σ2 − f2

2 θ21 sin θ20 + G2,
dh21
dτ = − 1

2 h21c2 +
f2
2 θ21 cos θ20,

h30
dθ31
dτ = h31σ3 − f3

2ω2
θ31 sin θ30 + G3,

dh31
dτ = − 1

2 h31c3 +
f3

2ω2
θ31 cos θ30,

(50)

where:

G1 =
β2ω5

1h11

4(ω2
1−ω2

2)
3

[
−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)
+ 8ω2

1ω2
2
]
,

G2 = − 6(ω2
2−1)

8(ω2
2−4)

(
2h20h30h31 + h2

30h21
) 3h2

20h21

16ω2
2(ω2

2−4)

(
ω4

2 − 25ω2
2 + 24

)
− 6ω2

1(ω2
2−2ω2

1+1)
8(ω2

1−4)(ω2
1−ω2

2)
2

(
2h20h10h11 + h2

10h21
)
,

G3 = [3+2ω2(ω2+2)]
8ω2

2(ω2+2)

(
2h30h20h21 + h2

20h31
)
+

β2 ω5
2h31

4(ω2
1−ω2

2)
3

(
ω2

2 − 3ω2
1
)
.
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Based on the minuteness of the perturbation functions h11, h21, h31, θ11, θ21, and θ31,
we can express each solution in the form of a linear combination of Sk eλτ (k = 1, 2, . . . , 6),
where Sk and λ are constants and the eigenvalue of the unknown perturbation, respectively.

If the solutions in the steady state (fixed points) h10, h20, h30, θ10, θ20, and θ31 are
stable asymptotically, then the real parts of the roots of the following characteristic equation
must be negative:

λ6 + Γ1λ5 + Γ2λ4 + Γ3λ3 + Γ4λ2 + Γ5λ + Γ6 = 0 , (51)

where Γk are functions depending on the parameters h10, h20, h30, θ10, θ20, θ30, f1, f2, and
f3 (see Appendix B).

Referring to the above, the substantial conditions for the stability of the solutions in
the steady state can be written according to the criterion of Routh–Hurwitz [32] in the
following forms:

Γ1 > 0, Γ1Γ2 − Γ3 > 0,
Γ3(Γ1Γ2 − Γ3) + Γ1(Γ5 − Γ1Γ4) > 0,
Γ1
(
Γ2Γ3Γ4 − Γ2

2Γ5 + 2Γ4Γ5 − Γ3Γ6
)
+ Γ3(Γ2Γ5 − Γ3Γ4) + Γ1

2(Γ2Γ6 − Γ4
2)− Γ5

2 > 0,
−Γ5

(
Γ4
(
−Γ1Γ2Γ3 + Γ3

2 + Γ1
2Γ4
)
+ Γ1

(
Γ2

2 − 2Γ4
)
Γ5 − Γ2Γ3Γ5 + Γ5

2)
+
(
Γ3

3 − Γ1Γ3(Γ2Γ3 + 3Γ5) + Γ1
2(Γ3Γ4 + 2Γ2Γ5)

)
Γ6 − Γ1

3Γ6
2 > 0,

Γ6
(
−Γ5

(
Γ4
(
−Γ1Γ2Γ3 + Γ3

2 + Γ1
2Γ4
)
+ Γ1

(
Γ2

2 − 2Γ4
)
Γ5 − Γ2Γ3Γ5 + Γ5

2)
+
(
Γ3

3 − Γ1Γ3(Γ2Γ3 + 3Γ5) + Γ1
2(Γ3Γ4 + 2Γ2Γ5)

)
Γ6 − Γ1

3Γ6
2) > 0.

(52)

5. Non-Linear Analysis of Stability

The main aim of this section is to investigate the stability analysis of the considered
system using the non-linear stability approach of Routh–Hurwitz. The examined system is
exposed to various forces and moments, such as the excited harmonic forces F1, F3 and the
moment Mφ. It is found that the natural frequencies ωj (j = 1, 2, 3), damping coefficients cj,
and the parameters of detuning perform a crucial destabilizing role in the criteria’s stability.
To plot the stability diagrams of the system of Equation (46), the previous values of the
different parameters are used. The modified amplitudes hj (j = 1, 2, 3) are shown with the
detuning parameter σ1 in Figures 11–14 for different values of ωj when σ2 = σ3 = 0. The
outlined curves of these figures contain the possible fixed points. Resonance curves are
plotted in Figures 11–14 according to the previous data of parameters.

Each of the resonance curves has different stable and unstable regions with the var-
ious values of the natural frequencies ω1 and ω2 (see Figures 11–14). More precisely,
the inspection of parts of Figure 11 shows that the instability and stability ranges are
−0.1 < σ1 < 0.009 and 0.009 ≤ σ1 < 0.1, respectively, as indicated in Figure 11 in blue.
On the other hand, when ω1 = 3.43, the red curves represent the instability and stability
ranges of −0.1 < σ1 < 0.012 and 0.012 ≤ σ1 < 0.1, respectively, while the black curves
represent the areas of instability and stability when ω1 = 3.02, which are−0.1 < σ1 < 0.014
and 0.014 ≤ σ1 < 0.1, respectively. The included curves of each part have different fixed
points associated with the different values of ω1, as indicated in Figure 11. Moreover, the
instability regions decrease with an increase in the value of ω1, due to the impact of the
natural frequency ω1.

Figure 12 illustrates the different ranges of stability criterion, where the instability and
stability areas, indicated in blue, are determined according to the ranges −0.1 < σ1 < 0.009
and 0.009 ≤ σ1 < 0.1, respectively. At ω2 = 5.72, the red curves show the instability
and stability areas with ranges −0.1 < σ1 < 0.021 and 0.021 ≤ σ1 < 0.1, respectively,
while the black curves show the instability and stability areas at ω2 = 6.68, which are
−0.1 < σ1 < 0.033 and 0.033 ≤ σ1 < 0.1, respectively.
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Figure 11. The change of the frequency responses of h1, h2, h3 with σ1 at σ2 = 0, σ3 = 0: (a–c) when
ω1 = (3.02, 3.43, 4.08).

According to the calculations of the graphed curves in Figures 13 and 14, we can
state that three different peak fixed points are produced when ω2 has different values
for the resonance curves of h2 and h3, which are varied with σ1. The instability and the
stability areas become −0.1 < σ1 < 0.009 and 0.009 ≤ σ1 < 0.1, respectively, denoted in
blue (see Figures 13 and 14), while at ω2 = 5.72, the red curves indicate the instability and
stability areas −0.1 < σ1 < 0.021 and 0.021 ≤ σ1 < 0.1, respectively. On the other hand,
the black curves represent the areas of instability and stability when ω2 = 6.68, which are
−0.1 < σ1 < 0.033 and 0.033 ≤ σ1 < 0.1, respectively.
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Figure 14. The variation of the frequency responses h3 with σ1 at σ2 = 0, σ3 = 0 when ω2 = (4.43,
5.72,6.68).

To clarify the properties of the non-linear amplitudes of the system of Equations (46)
and to examine their stabilities, we consider the following transformations [39]:

Aj = [Uj(τ1, τ2) + iVj(τ1, τ2)] eiσ̃jτ1 ; (j = 1, 2, 3) (53)

where:
Uj = ε uj, Vj = ε vj.



Appl. Sci. 2022, 12, 1737 24 of 35

Substituting the operators (13) and the previous transformation (53) into the system of
the ODE (46), we can equate the real parts and the imaginary parts with zero to obtain of
the following system:

du1
dτ = v1

{
σ1 + G4

[
−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)
+ 8ω2

1ω2
2
]}
− c1

2 u1,
dv1
dτ = u1

{
σ1 + G4

[
−ω2

1
(
4ω2

1 + 11
)
+ ω2

2
(
7− 4ω2

2
)
+ 8ω2

1ω2
2
]}

+ c1
2 v1 − f1

4ω1
,

du2
dτ = v2

[
σ2 − G5

(
u2

1 + v2
1
)
+ G6

(
u2

2 + v2
2
)
+ G7

(
u2

3 + v2
3
)]
− c2

2 u2,
dv2
dτ = u2

[
σ2 + G5

(
u2

1 + v2
1
)
− G6

(
u2

2 + v2
2
)
− G7

(
u2

3 + v2
3
)]
− c2

2 v2 − f2
4 ,

du3
dτ = v3

[
σ3 + G8 + G9

(
u2

2 + v2
2
)]
− c3

2 u3,
dv3
dτ = u3

[
σ3 − G8 − G9

(
u2

2 + v2
2
)]
− c3

2 v3 − f3
4ω2

,

(54)

where:

G4 =
β2ω5

1

4(ω2
1−ω2

2)
3 , G5 =

3ω4
1(ω

2
2−2ω2

1+1)2

(ω2
1−4)(ω2

1−ω2
2)

2 , G6 =
(ω4

2−25ω2
2+24)

4ω2
2(ω

2
2−4)

,

G7 =
3(ω2

2−1)
8(ω2

2−4)
, G8 =

β2 ω5
2

4(ω2
1−ω2

2)
3 , G9 = [3+2ω2(ω2+2)]

8ω2
2(ω2+2)

.

The modified amplitudes can be subsequently rationalized through the time in various
parametric regions; the properties of the amplitudes are presented in phase plane curves
shown in Figures 15–20, taking into account the data from previously used parameters.

Parts of Figures 15–20 explore the changing of the new justified phases uj and vj
(j = 1, 2, 3), as stated in the system of Equation (54), via τ as shown in parts (a) and (b). The
projections of the modulation equation trajectories on the phase planes ujvj are graphed
in part (c) of these figures. The indicated curves of Figures 15–20 are calculated when
ω1 = (3.02, 3.43, 4.08) and ω2 = (4.43, 5.72, 6.68), respectively, besides the values of the
detuning parameters σ1 = 0.01, σ2 = 0.02, and σ3 = 0.03.

The inspection of parts of Figures 15 and 18 shows the time histories of u1, v1 and the
projections of the modulation equation trajectory on the phase plane u1v1. It is clear that u1, v1
and u1v1 increase gradually when time increases, and they behave in the form of a straight
line due to the system of Equation (54). Conversely, the decay behavior of the waves de-
scribing the variation of u2, v2, u3, and v3 is shown in Figures 16a,b, 17a,b, 19a,b, and 20a,b,
for different values of ω1 and ω2. Spiral curves are plotted in the planes u2v2 and u3v3 in
Figure 16c. Figure 16c in line with the equations of the system of Equation (54).



Appl. Sci. 2022, 12, 1737 25 of 35Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 40 
 

 
Figure 15. The modified amplitudes via τ  and the projections of the modulation equation tracks 

on the phase plane 1 1u v : (a–c) when 1 (3.02,3.43, 4.08)ω = . 

Figure 15. The modified amplitudes via τ and the projections of the modulation equation tracks on
the phase plane u1v1: (a–c) when ω1 = (3.02, 3.43, 4.08).



Appl. Sci. 2022, 12, 1737 26 of 35Appl. Sci. 2022, 12, x FOR PEER REVIEW 29 of 40 
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Figure 16. The modified amplitudes via τ and the projections of the modulation equation tracks on
the phase plane u2v2: (a–c) when ω1 = (3.02, 3.43, 4.08).
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Figure 17. The modified amplitudes via τ and the projections of the modulation equation tracks on
the phase plane u3v3: (a–c) when ω1 = (3.02, 3.43, 4.08).
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Figure 18. The modified amplitudes via τ  and the projections of the modulation equation tracks 
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Figure 18. The modified amplitudes via τ and the projections of the modulation equation tracks on
the phase plane u1v1: (a–c) when ω2 = (4.43, 5.72, 6.68).
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Figure 19. The modified amplitudes via τ  and the projections of the modulation equation tracks 
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Figure 19. The modified amplitudes via τ and the projections of the modulation equation tracks on
the phase plane u2v2: (a–c) when ω2 = (4.43, 5.72, 6.68).
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Figure 20. The modified amplitudes via τ and the projections of the modulation equation tracks on
the phase plane u3v3: (a–c) when ω2 = (4.43, 5.72, 6.68).
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6. Conclusions

This work focused on the dynamical motion of a novel three DOF auto-parametric
system consisting of the main motion of a non-linear Duffing oscillator and the secondary
motion of a spring pendulum. The governing EOM of the system were obtained using
Lagrange’s equations and solved using PTMS up to the third approximation. The solvability
conditions and the equations of the modulations were obtained in view of the examined
primary external resonance case. The curves of time histories and resonance were drawn,
taking into consideration the selected values of some data. The non-linear analysis of the
solutions in the steady state was presented and interpreted. The stability and instability
areas were plotted to clarify their corresponding regions. The properties of the non-linear
amplitudes of the modulation system and their stabilities were clarified and examined. The
achieved results of this work can be applied to deal with the vibration of swaying buildings
and to reduce the vibration of rotor dynamics, as well as in the fields of mechanics and
space engineering. These outcomes generalized those of previous works in [5,31] for the
absence of an applied force and moment in the unstarched arm of a pendulum.
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Appendix A

d1 = ω1{2ω4
1(ω2 − 2)ω2 + 2ω3

1(ω2 − 1)2(ω2 + 1) + ω2(ω2 − 2)(2ω2 − 1)
×
(
ω2

2 + 1
)
+ ω2

1 [−5 + ω2(24 + ω2(−21− 2(ω2 − 4)ω2))]− 2ω1(ω2 − 1)
×[1 + ω2(−7 + ω2(6 + (ω2 − 3)ω2))]},

d2 = (ω1 − 2)2[1− (1−ω1 −ω2)
2]ω2(ω

2
1 −ω2

2),
d3 = ω1{2ω4

1(ω2 − 2)ω2 − 2ω3
1(ω2 − 1)2(ω2 + 1) + ω2(ω2 − 2)(2ω2 − 1)

×
(
ω2

2 + 1
)
+ 2ω1(ω2 − 1)[1 + ω2(−7 + ω2(6 + (ω2 − 3)ω2))]

}
,

d4 = (ω1 + 2)(ω2 − 2)ω2
(
ω2

1 −ω2
2
)
[1− (1 + ω1 −ω2)

2]
2
,

d5 = ω3
1
[
−1− 6ω1 − 10ω2

1 + 4ω4
1 −

(
1 + 6ω1 − 4ω2

1
)
ω2

2
]
,

d6 = (ω1 + 2)(1 + 2ω1)
2(ω2

1 −ω2
2
)2
[1− (1 + 2ω1)

2],
d7 = ω1{−2ω5

1(ω2 − 1)(ω2 + 1)2 + 2ω6
1ω2(ω1 + 2) + ω3

2
(
ω2

2 + 1
)
[1 + ω2(2 + β̃ω2)]

−ω4
1{5 + ω2[24 + ω2(21 + 4ω2(ω2 + 3))]}+ 2ω3

1(ω2 + 1){1 + ω2[7 + ω2(5 + ω2

×(3 + 2ω2))]}+ ω2
1ω2{−2 + ω2

2 [20 + ω2[16 + ω2(−β̃(ω2 + 2) + 2(3 + ω2))]]}
−2ω2

2ω1[1 + ω2[8 + ω2(13 + ω2(9 + β̃(ω2 + 2) + ω2(ω2 + 4)))]]},
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d8 = (ω1 − 2)(ω2 + 2 )ω2
(
ω2

1 −ω2
2
)2
[1− (1−ω1 + ω2)

2)],
d9 = ω1{2ω5

1(ω2 − 1)(ω2 + 1)2 + 2ω6
1ω2(ω1 + 2) + ω3

2
(
ω2

2 + 1
)
(1 + ω2(2 + β̃ω2))

−ω4
1 [5 + ω2(24 + ω2(21 + 4ω2(ω2 + 3)))]− 2ω3

1(ω2 + 1)[1 + ω2(7 + ω2

×(5 + ω2(3 + 2ω2)))] + ω2
1ω2[−2 + ω2

2 [20 + ω2(16 + ω2(−β̃(ω2 + 2) + 2(3 + ω2)))]]

+2ω2
2ω1[1 + ω2(8 + ω2(13 + ω2(9 + β̃(ω2 + 2) + ω2(ω2 + 4))))]},

d10 = (ω2 + 2)ω2
(
ω2

2 −ω2
1
)2
[1− (1 + ω1 + ω2)

2],
d11 = ω1

[
−3− 4ω1 + ω2

1 + 4ω3
1 + ω4

1 − (1 + ω1)(3 + ω1)ω
2
2
]
,

d12 = (ω1 + 2)
(
ω2

2 −ω2
1
)2,

d13 = ω1

{
−1 + 1

2 ω1[4−ω1(4 + (2 + ω1)ω1)] +
1
2 [−2 + (2 + ω1)ω1]ω

2
2

}
,

d14 = (ω1 − 2)
(
ω2

1 −ω2
2
)
[ω2

2 − (2−ω1)
2],

d15 = ω1

{
−1 + ω1

2 [−4 + ω1(−4 + (2−ω1)ω1)] +
1
2 [−2 + (ω1 − 2)ω1]ω

2
2

}
,

d16 = (ω1 + 2)
(
ω2

1 −ω2
2
)
[ω2

2 − (2 + ω1)
2],

d17 = [−1 + (2− 3ω2)ω2],
d18 = ω2(ω2 − 2)[ω2

2 − (2−ω2)
2],

d19 = 1 + (2 + 3ω2)ω2,
d20 = ω2(ω2 + 2)[ω2

2 − (2 + ω2)
2].

Appendix B

Γ1 = 1
2 [c1 + c2 + c3 +

f1 sin θ10
h10ω1

+ f2 sin θ20
h20

+ f3 sin θ30
h30ω2

],
Γ2 = 1

h10h20h30ω1ω2
{ f1[

1
4 sin θ10 sin θ30h20 f3 + h30(

1
4 sin θ10 sin θ20 f2 + h20(

1
4 sin θ10c1

+ 1
4 sin θ10c2 +

1
4 sin θ10c3 − 1

2 cos θ10ν1 − 1
2 cos θ10σ1

)
)ω2] + h10ω1

[
f2

(
1
4 sin θ20 sin θ30 f3

+h30

(
1
4 sin θ20c1 +

1
4 sin θ20c2 +

1
4 sin θ20c3 +

1
2 cos θ20ν2h2

30 −
1
2 cos θ20ν3h2

20

− 1
2 cos θ20ν4h2

10 −
1
2 cos θ20σ2

)
ω2) + h20

(
f3

(
1
4 sin θ30c3 − 1

2 cos θ30
(
ν5h2

20 + v6 + σ3
))

+c1

(
1
4 sin θ30 f3 +

1
4 (c2 + c3)h30ω2 +

1
4 c2(sin θ30 f3 + c3h30ω2)

)]
},

Γ3 = 1
8h10h20h30ω1ω2

{ f1( f2(sin θ10 sin θ20 sin θ30 f3 + h30(sin θ10 sin θ20c1 + h30(sin θ10 sin θ20c2

+h30
(
sin θ10 sin θ20c3 − 2 cos θ10 sin θ20ν1 + 2 cos θ10 sin θ20h2

30ν2 − 2 cos θ20 sin θ10h2
20ν3

−2 cos θ20 sin θ10h2
10ν4 − 2 cos θ10 sin θ20σ1 − 2 cos θ20 sin θ10σ2

)
ω2) + h20(sin θ10 sin θ30c3 f3

−2 cos θ10 sin θ30 f3ν1 − 2 cos θ30 sin θ10 f3h2
20ν5 − 2 cos θ30 sin θ10 f3ν6 − 2 cos θ10 sin θ30 f3σ1

−2 cos θ30 sin θ10 f3σ3 − 2 cos θ10c3h30σ1ω2 − 2 cos θ10c3h30ν1ω2 + c3 sin θ10(sin θ30 f3
+(c2 + c3)h30ω2)+c2(sin θ10 sin θ30 f3 + h30(c3 sin θ10 − 2 cos θ10(ν1 + σ1))ω2)))
+h10ω1

(
c2
(

f3h20
(
sin θ30c3 − 2 cos θ30

(
h2

20ν5 + ν6 + σ3
))

+ sin θ20 f2(sin θ30 f3 + c3h30ω2)
)

+ f2
(

f3
(
2 cos θ20 sin θ30h2

30ν2 − 2 cos θ20 sin θ30h2
10ν4 + h2

20(−2 cos θ20 sin θ30ν3 − 2 cos θ30
× sin θ20ν5)−2 cos θ30 sin θ20ν6 − 2 cos θ20 sin θ30σ2 − 2 cos θ30 sin θ20σ3) + c3[sin θ20
× sin θ30 f3 + 2 cos θ20h30

(
h2

30ν2 − h2
20ν3 − h2

10ν4 − σ2
)
ω2
]
) + c1( f2(sin θ20 sin θ30 f3 + h30

×
(
sin θ20c2 + sin θ20c3 + 2 cos θ20

(
h2

30ν2 − h2
20ν3 − h2

10ν4 − σ2
)
ω2
))

+ h20( f3(sin θ30c3
+2 cos θ30

(
h2

20ν5 − ν6 − σ3
))

+2c2(sin θ30 f3 + c3h30ω2)))},

Γ4 = 1
h10h20h30ω1ω2

{ 1
16 sin θ10 sin θ20 sin θ30c3 f1 f2 f3 − 1

8 [ν1 f1 f3 cos θ10 sin θ30

×( f2 sin θ20 − c3h20) + f1 f2 f3 cos θ20 sin θ10 sin θ30
(
h2

30ν2 − h2
20ν3
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− f1 f2 f3 sin θ10

×
(
cos θ20 sin θ30h2

10ν4 + cos θ30 sin θ20h2
20ν5

)
+ f1 f3 cos θ30

(
cos θ10h3

20ν1ν5 − sin θ10
× sin θ20 f2ν6) + f1 f3 cos θ10

(
h20 cos θ30

(
ν1ν6 + ν5h2

20σ1 + ν6σ1
)
− σ1 sin θ30( f2 sin θ20

+c3h20)) − f1 f2 f3 sin θ10(cos θ20 sin θ30σ2 + cos θ30 sin θ20σ3)] +
1
4 f1 f3h20ν1σ3

× cos θ10 cos θ30(1 + σ1)] +
1
8 f2 f3h10ω1c3 cos θ20 sin θ30

[
2h2

30ν2 − h2
20
(
ν3 + h2

10ν4
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+ 3
4 cos θ20 cos θ30 f2 f3h10h2
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(
h10ν4 − h2

30ν2
)]

+ 1
8 f1 f2h3
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(
1

16 sin θ10 sin θ30 f3 + h30

[
1

16 (sin θ10c2 + sin θ10c3)
]
− 1

8 cos θ20
(
h2

20ν3

+h2
10ν4 + σ2 − h2

30ν2
)
)ω2)− 1

8 h20

(
f3

(
1

16 sin θ30c3 cos θ30
(
h2

20ν5 + ν6 + σ3
))

+ 1
16 c2

×(sin θ30 f3 + c3h30ω2))) + h10ω1(c2( f3h30

(
1

16 sin θ30 c3 − 1
8 cos θ30

(
h2

20ν5 + ν6 + σ3
))

+ 1
16 sin θ10 f2(sin θ30 f3 + h30ω2c3))+ f2

(
f3

(
1
8
(
cos θ20 sin θ30h2

30ν2 − cos θ20 sin θ30h2
10ν4

−h2
20(cos θ20 sin θ30ν3 + cos θ30 sin θ10ν5)− cos θ30 sin θ10ν6 − cos θ20 sin θ30σ2 − cos θ30

× sin θ10σ3))+c3

(
1

16 sin θ10 sin θ30 f3 + cos θ20h30

(
1
8
(
h2

30ν2 − h2
20ν3 − h2

10ν4 − σ2
)
ω2

)))
))},

Γ5 = 1
h10h20h30ω1ω1

{ f1( f2( f3(
1
8 [cos θ20

(
cos θ10 sin θ30h2

10v1v4 + cos θ30 sin θ10h4
20v3v5

)
+ cos θ10

(
cos θ30 sin θ20v1v6 + h2

10σ1v4 cos θ20 sin θ30
)
+ v6 cos θ30

(
h2

10v4 cos θ20 sin θ10
+σ1 cos θ10 sin θ20) + cos θ10 cos θ20 sin θ30v1σ2 + cos θ20 cos θ30 sin θ10σ2v6
+ cos θ10(σ1σ2 cos θ20 sin θ30 + v1σ3 cos θ30 sin θ20) + σ3 cos θ30

(
h2

10v4 cos θ20 sin θ10

+σ1 cos θ30 sin θ20)+σ2σ3 cos θ20 cos θ30 sin θ10] + cos θ20h2
30v2

(
− 1

8 v1 cos θ10

× sin θ30 +
15
40 cos θ30 sin θ10h2

20v5 − 1
8 [cos θ30(sin θ10v6 − σ3 sin θ10)− σ1 cos θ10 sin θ30

+h2
20
(
cos θ20 cos θ30 sin θ10h2

10v4v5 + cos θ10v1(cos θ20 sin θ30v3 + cos θ30 sin θ20v5)
+v3 cos θ20(v6 cos θ30 sin θ10 + σ1 cos θ10 sin θ30) + cos θ10 cos θ30 sin θ20v5σ1

+ cos θ20 cos θ30(v5σ2 sin θ10 + v3σ3 sin θ10)))] + c3

(
sin θ30 f3

[
1
16 (− cos θ10 sin θ20v1

+ cos θ20 sin θ10
(
h2

30v2 − h2
20v3 − h2

10v4 − σ2
)
− cos θ10 sin θ20σ1 + cos θ10 cos θ20h30

×
(

1
8
[
h10v1v4 − h2

30v2(v1 + σ1) + h2
20v3(v1 + σ1) + h2

10v4σ1 + v1σ2 + σ1σ2
)
ω2

))
+c2

(
f3
(
cos θ10 cos θ30h20

(
h2

20v5(v1 + σ1) + (v1 + σ1)(v6 + σ3)
)]

+ f2 sin θ20

×
[

1
16
(
− cos θ10(v1 sin θ30 + σ1 sin θ30)− sin θ10h2

20v5(cos θ30 + v6 cos θ30)

− cos θ30 sin θ10σ3))− c3(cos θ10 sin θ30 f3θ20(v1 + σ1)] + sin θ20 f2

×
(

1
32 sin θ10 sin θ30 f3 − 1

16 cos θ10h30(v1 + σ1)ω2

))
)) + c1(c2(sin θ20 f2 f3h10

× 1
32
(
sin θ30c3 − 2 cos θ30

(
h2

20v5 + v5 + σ3
))

ω1 + sin θ10 f1

(
1

32 f3h20(sin θ30c3

−2 cos θ30
(
h2

20v + v6 + σ3
))

+ 1
32 sin θ20 f2(sin θ30 f3 + c3h30ω2)

)
)

+ f2( f3(sin θ10 f1[
1

16
(
cos θ20 sin θ30

(
h2

30v2 − h2
10v4

)
− h2

20(v3 cos θ20 sin θ30
+v5 cos θ30 sin θ20)− cos θ30 sin θ20v6 − cos θ20 sin θ30σ2]− 1

16 σ3h10 cos θ30

× sin θ20 cos θ20

[
1
8 (h2

10v4v6 + v6σ2 − h2
30v2(v1 + σ1)− h2

10v4σ3 + σ2σ3
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+h2
20
(
h2

30v2v5 + h2
10v4v5 + v3v6 + σ2v5 + v3σ3

)
])ω1)+

1
16 c3( f3h10ω1 cos θ20 sin θ30

×
(
h2

30v2 − h2
20v3 − h2

10v4 − σ2
)
+
(

1
32 sin θ10 f1

(
1

32 sin θ20 sin θ30 f3 + cos θ20h30

×
[

1
16
(
h2

30v2 − h2
20v3 − h2

10v4 − σ2
)]

ω2

)
)))},

Γ6 = 1
h10h20h30ω1ω2

f1 f2 f3{c2 sin θ10 sin θ20(0.01652c3 sin θ30 − 0.03152 cos θ30(ν5h2
20 + ν6

+σ3)) + cos θ20
(
sin θ30c3

[
0.03125

(
ν2h2

30 − ν3h2
20 − ν4h2

10 − σ2
)]

+ 0.0625 cos θ30
×
(
0.0625ν3ν5h2

20σ2 − ν2h2
30(ν6 + σ3) + ν4h2

10σ3 + σ2σ3 + 0.0625h2
20ν2ν5h2

30 + ν4ν5h2
10

+ν3ν6 + ν5σ2 + ν3σ3)))) + cos θ30(sin θ20c2(sin θ30c3[−0.03125(ν1 + σ1)]
+ cos θ30

(
ν5h2

20[0.0625(ν1 + σ1)] + 0.0625(ν1 + σ1)(ν6 + σ3)
))

+ cos θ20(sin θ30c3
×
(
0.0625ν1ν4h2

10 − 0.0625
(
ν2h2

30(ν1 + σ1) + ν4h2
10σ1 + ν1σ2 + σ1σ2

))
)
)
}.
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