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Abstract: Numerical methods such as finite element analysis (FEA) can accurately predict remaining
strength, with strong correlation with actual burst tests. However, parametric studies with FEA are
time and computationally intensive. Alternatively, an artificial neural network-based equation can
be used. In this work, an equation for predicting the remaining strength of mid-to-high strength
pipelines (API 5L X52, X65, and X80) with a single corrosion defect subjected to combined loadings of
internal pressure and longitudinal compressive stress was derived from an ANN model trained based
on FEA results. For FEA, the pipe was assumed to be isotropic and homogenous, and the effects
of temperature on the pipe failure pressure were not considered. The error of remaining strength
predictions, based on the equation, ranged from —6.33% to 2.39% when compared to an unseen FEA
dataset, with a correlation value (R?) of 0.9975. A parametric study was subsequently performed
using the equation to determine the effects of material property, defect depth, defect length, and
longitudinal compressive stress on the remaining strength of pipelines with a single corrosion defect.
Defect depth reduced the failure pressure by more than 65% on average, longitudinal compressive
stress by more than 20% on average, and defect length by more than 21% on average.

Keywords: artificial neural network; remaining strength equation; corroded pipeline; single defect;
combined loadings; finite element analysis

1. Introduction

Pipelines play a critical role in the continuous supply of hydrocarbons from one point
to another. They are often subject to harsh and corrosive environments, with corrosion
potentially causing pipeline failure and resulting in environmental damage and economic
losses. Corrosion reduces pipe thickness, thus weakening pipeline strength, and corrosion
defects in pipelines affect cylindrical symmetry, which affects structural efficacy of resist-
ing stress [1]. Stresses from internal pressure and external load often concentrate at the
corrosion region, further reducing the remaining strength of a corroded pipeline [2].

Maintaining the integrity of pipelines requires routine inspection and remaining strength
assessments. Assessment standards such as ASME B31G, Modified B31G, RSTRENG Effective
Area, PCORRC, and DNV RP-F101 are widely used to determine the remaining strength of
corroded pipelines. However, they are mostly applicable for corroded pipelines with single
defects only subjected to internal pressure. Of all the established corrosion assessment
standards, DNV RP-F101 is the most comprehensive, as it can assess the remaining strength
of a corroded pipeline with single defect corrosion subjected to internal pressure and
longitudinal compressive stress. However, the remaining strength assessment using DNV
RP-F101 is conservative due to the assumptions and simplifications made for their safety
factors [3]. Pipelines are usually pressurised to transport hydrocarbons, and they experience
hoop stress due to internal pressure uniformly acting outward in a circumferential direction.
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External loadings such as longitudinal stresses are often caused by geological movement
and thermal stress [4]. Longitudinal compressive stress often causes buckling and wrinkling
failure, thus reducing the remaining strength of corroded pipelines when they are subjected
to combined loadings [5-7]. A corroded pipeline will fail below the remaining strength
predicted by DNV when the combined stresses due to internal pressure and external loads
exceed ultimate tensile strength of the pipeline.

Numerous experimental and numerical studies have been carried out to understand
the failure of pipelines subjected to the combined loadings of internal pressure and longitu-
dinal stress. Bjerney et al. carried out full-scale burst tests on twelve API 5L X52 grade steel
pipelines with artificially created corrosion defects as part of the development of DNV RP-
F101 assessment standards for corroded pipelines [8]. Their work revealed significant effects
of bending moment and axial compressive stress on the remaining strength of a pressurised
corroded pipeline, especially for a pipeline with a deep corrosion defect. Bjorney et al.’s
work was supported by findings from Chauhan et al.’s work on high strength pipelines
and Halima and Sreekanta’s studies on corroded X46 steel pipelines [9,10].

However, burst tests are expensive and time consuming. Numerical methods such as
the finite element method (FEM) are widely used to verify and validate the failure behaviour
and remaining strength of corroded pipelines [11-15]. These methods are especially useful
for parametric studies with varying corrosion geometries that would otherwise will be too
costly to be experimentally carried out. They have proven to be better than the established
standards to assess remaining strength of corroded pipeline [12].

However, parametric studies with numerical methods are time and computationally
intensive. Alternatively, an artificial neural network (ANN) may be used to predict the
remaining strength of corroded pipes with single corrosion defects and interacting corrosion
defects based on a data-driven machine learning framework, with the datasets derived
from FEA results and full-scale burst tests. Some of these ANN models are described
in Table 1.

Table 1. ANN based on FEA dataset to predict the failure pressure of corroded pipelines.

Scheme Corrosion Type Loads Material ANN Algorithm
Silva et al. (2007) [16] Interact'mg defects glongltgdlnally and Internal pressure X52 Feedforward neural
circumferentially aligned) network

Xu et al. (2017) [17]

Single and interacting defects
(longitudinally and Internal pressure X80
circumferentially aligned)

Feedforward neural
network

Lu and Liang (2021) [18]

Internal pressure and axial

Single defects compressive load

X65, X70, X80 Not specified

However, these studies have not provided closed-form equations, such as the ANN-
based closed-form equation to predict the load-carrying capacity of locally corroded steel
plate girder ends by Tohidi and Sharifi (2016) [19]. The authors of this paper propose
an ANN-based equation to predict the failure pressure of a mid-to-high strength pipeline
with a single corrosion defect subject to combined loadings of internal pressure and longi-
tudinal compressive stress.

2. Materials and Methods

FEM was used to determine the remaining strength of middle-to-high strength pipelines,
namely API 5L X52, API 5L X65, and API 5L X80 grade pipelines, subjected to combined
loadings of internal pressure and longitudinal compressive stress; the results of these
evaluations were then used to train an ANN model. The datasets for X52 and X80 were
obtained from previous studies [20,21], while the dataset for X65 was generated in this
study. The FEM results of the X65 grade pipeline’s remaining strength was validated with
results from burst tests. The FEA datasets of the X52, X65, and X80 grade pipelines were
then used to train an ANN model. The weights and biases of the ANN model were used to
as the basis for the artificial neural network-based equation.
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3. Methodology

This section is divided by subheadings. It provides a concise and precise description
of the experimental results, their interpretation, and the experimental conclusions.

3.1. Finite Element Method for X65 Pipeline

ANSYS (16.1) Mechanical APDL was used for the FEM. The considered material was
an API 5L X65 grade steel pipeline, and the pipe model had an external diameter (D) of
300 mm, a wall thickness (t) of 10 mm, and a pipe length (L) of 2000 mm. A quarter of the
symmetrical pipe was modelled with a corrosion defect to reduce the needed computational
resources. Figure 1 shows the dimension of the quarter pipe model.

/—'dlt

L/2

Figure 1. Dimension of the model.

The corrosion defect was rectangular with varying defect depth, length, and width.
The pipe was subjected to external longitudinal compressive stress. The range of parameters
selected for this study is shown in Table 2.

Table 2. Geometric parameters for corrosion defect and load applied to the corroded X65 pipeline.

Parameters Range
Defect Depth, d/t 0.2,0.4,0.5,0.6,0.8
Defect Length, /D 0.2,04,08,1.2,1.8
Defect Width, w/t 2,6,10,14, 18
Longitudinal Compressive Stress, o¢ / oy 0.2,04,05,0.6,0.8,1.0

A pipe end cap was modelled for the application of longitudinal compressive stress to
ensure more accurate FEA results [13]. Figure 2 shows the internal pressure applied on the
internal surfaces, while longitudinal compressive stress was applied on the surface of the
end cap. The loads were incrementally applied using timesteps through ramped loading in
ANSYS. Longitudinal compressive stress was incrementally applied in the first timestep.
Internal pressure was then incrementally applied in the second timestep while maintaining
the load in the first timestep.

The pipe body was brick-meshed with a SOLID185 element, and the pipe end cap
was free-meshed with a SOLID186 element. The corrosion defect depth was modelled
with three layers of element, and the thickness of the pipe was modelled with six layers
of element for more accurate FEA [22]. To prevent unwanted motion when longitudinal
compressive stress was applied, the model was constrained in three nodes near the end
cap, as denoted by the triangle symbol in Figure 3 [20,23,24]. Preliminary analysis showed
negligible differences between the number of constrained nodes and their position (in the
region at the end of the pipe model), with solution convergence. The density of element for
the pipe model was distributed based on the region of interest in this study. The density at
corrosion defect was the highest, and the element density gradually decreased away from
the corrosion defect, as shown in Figure 3.
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Figure 2. Internal pressure and longitudinal compressive stress applied in the model.

Figure 3. Pipe model meshed with elements.

The true stress—strain curve of an API 5L X65 pipeline, as shown in Figure 4, was used
to define its material property in ANSYS. Static, non-linear, structural analysis (Newton—
Raphson) was used in the FEM to account for the non-linearity of the material.
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Figure 4. True stress—strain curve of API 5L X65 pipeline [25].

The pipe end cap was considered to be rigid body to prevent deformation when
longitudinal compressive stress was applied. A high stiffness material property was used
for the pipe end cap. Table 3 lists the mechanical properties of the pipe body and end cap.

Table 3. Mechanical properties of the pipe model.

Pipe Body—API 5L X65 (SOLID185) Pipe End Cap—Rigid Body (SOLID186)
Modulus of Elasticity, E 210 GPa 210 TPa
Poisson’s ratio, v 0.3 0.3
Yield Strength, oy 464 MPa -
Ultimate tensile strength, oy, 563 MPa -
True ultimate tensile strength, oy, * 629 MPa -

The failure criterion adopted in this study was based on true ultimate tensile strength
(UTS) of API 5L X65, as the criterion provides more accurate results [17,20]. Pipe failure
occurs when the von Mises stress reaches the reference stress (UTS) across the entire wall
thickness, resulting in plastic collapse of the pipe.

3.2. Validation of Finite Element Method

The FEM results were validated with results from full-scale burst tests by Kim et al.
and Bjerney et al. [8,26]. Kim et al. performed burst tests on an API 5L X65 pipeline with
a single corrosion defect subjected to internal pressure. Their pipe specimens had an outer
diameter of 762 mm, a wall thickness of 17.5 mm, and a pipe length of 2.3 m. Kim et al.’s
burst test results were used to validate the material property of the API 5L X65 pipeline used
in this study. Bjerney et al. carried out full-scale burst tests on an API 5L X52 pipeline with
a single corrosion defect subjected to internal pressure and longitudinal compressive stress.
Their pipe specimens had an outer diameter of 324 mm, a wall thickness of 10.3 mm, and
a pipe length of 1.0 m. Bjerney et al.’s burst test results were used to validate the boundary
conditions for the internal pressure and longitudinal compressive stress considered in this
study. Table 4 shows the validation results. The difference between the failure pressure



Appl. Sci. 2022,12,1722

60of 17

predicted by the FEM and burst test was relatively small, with a maximum difference of
3.67%. Therefore, the FEM employed in this study was accurate.

Table 4. Validation of FEM results against burst test for pipes only subjected to internal pressure and
combined loadings of internal pressure and longitudinal compressive stress.

Specimen Failure Pressure from Burst Tests (MPa) Failure Pressure Predicted in FEM (MPa)  Absolute Percentage Difference (%)
LD 19.8 20.1 1.50
LF 15.0 15.5 3.67
Test 5 28.6 29.2 2.10
Test 6 28.7 29.6 3.14

3.3. Artificial Neural Network

An artificial neural network (ANN) is a machine learning technique suitable for
supervised learning. It can be used to solve regression problems because of its ability
to map complex relationship in a nonlinear dataset. In this study, a feedforward neural
network (FFNN) was used. The network comprised an input layer, hidden layer(s), and
an output layer. The network was trained with the FEA results of the X52, X65 and X80
pipelines with a single corrosion defect subjected to internal pressure and longitudinal
compressive stress. In the ANN, the true UTS of the pipes, corrosion defect parameters,
and longitudinal compressive stress were used as inputs, and their corresponding failure
pressure was the target output. The inputs and outputs were normalised to prevent inputs
with large values from dominating other inputs. The X52, X65, and X80 FEA results were
randomly divided into a training set (70%), a validation set (15%), and a test set (15%).
The validation and test sets were used to prevent overfitting. The Levenberg—Marquardt
(LM) backpropagation algorithm was used as the learning algorithm to train the ANN
model. The LM backpropagation algorithm is more efficient than other learning algorithms
due to its second-order convergence rate. It converges faster in fewer epochs [27]. The
architecture of the neural network was reconfigured through trial and error in order to
prevent overtraining and improve prediction accuracy. Hyperparameters such as the
number of hidden neurons and the number of hidden layers were tuned so that the mean
squared error, MSE <1 x 107>, The ANN development framework is shown in Figure 5.

The training process of the FFNN is further described in Figure 6. The weight and
biases of the link between neurons were randomly initialised instead of the default zero
value. The normalised inputs were moved through weighted links between the input
neurons and hidden neurons. They were then calculated based on the activation function
of the neurons, as well as their weights and biases. The performance of the neural network
was measured using a cost function. The error between the predicted output and expected
output was calculated based on the cost function. The weights and biases of the neurons
were subsequently updated to minimise errors.

The performance of the ANN was evaluated through the coefficient of determination
(R?) in Equation (1), mean squared error (MSE) in Equation (2), and mean absolute error
(MAE) in Equation (3).

2
N N — T
R it (v yz,)(yz hi) : 1)
\/Zf\il (i = 7,)° L (9 — 7;)
1 ¥ N 2
MSE = Y (i —vi) &)
i=1
1 N
MAE = =) " |yi — il ®)
=1

where 7J; and y; are the actual and predicted output values for the ith output, respectively;
7; and v, are the average of actual and predicted output, respectively; and N is the number
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of samples. R? or the squared correlation coefficient is the evaluation of goodness-of-fit
for the predicted value against actual value, where an R? value of 1.00 corresponds to
a perfect fit. The MSE is the sum of squared difference between the predictions and actual
values. The MAE is the mean absolute error between predictions and actual values, which

measures the accuracy of the predictions.

FEA results of
X52, X65, and X80
as input and output

Data pre-processing:
1. Label input and output.
2. Normalise input and output.

!

Feedforward neural network (FFNN):
.| 1. Configure architecture of FFNN.

"| 2. Set LM backpropagation as learning
algorithm.
- Training
Tuning FFNN: Process
1. Adjust no. of hidden layer.
2. Adjust no. of hidden neurons. ‘
i Testing

Acceptable
error (MSE
<1x10%)

Figure 5. ANN framework for this study.

v
Initialise weights and
biases randomly.

A 4

Forward propagation to

predict output.
A 4 Backpropagation
Cost function to determine 1. Determine error at
error of predicted output each neurons.
against actual output. 2. Update their
weights and biases.

Acceptable error
against
validation set

Yes

v

Figure 6. FFNN training process.
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4. Results
4.1. Finite Element Analysis of API 5L X65 Pipeline with Single Corrosion Defect

To determine the effect of defect geometry and the load applied on the remaining
strength of a corroded API 5L X65 pipeline with single corrosion defect, the defect pa-
rameters and external load were varied one factor at a time. The parameters were the
defect depth d/t, defect length /D, defect width w/t, and longitudinal compressive stress
0./ ay. The FEA results were normalised and expressed as the ratio of the estimated failure
pressure to the theoretical failure pressure of an intact pipe, P¢/P;. Using Equation (4), the
failure pressure of an intact pipe was calculated as 44.93 MPa. Equation (4) is the hoop
stress equation based on true ultimate tensile strength (UTS) as the failure criterion:

Pyr;
t

4)

ouTss =

where 07575, is the true UTS of API 5L X65, t is the thickness of the pipe, and ; is the radius
of inner pipe. Table 5 details the results of the finite element analysis.

Table 5. FEA of corroded X65 pipeline with single corrosion defect subjected to internal pressure and
longitudinal compressive stress.

Defect Parameters External Load Normalised Defect Parameters External Load Normalised
dlt 1D wlt ocloy Failure Pressure dlt 1D wlt ooy, Failure Pressure
0.2 0.8 10 - 0.82 0.5 0.8 6 0.5 0.57
04 0.8 10 - 0.68 0.5 0.8 14 0.5 0.54
0.5 0.8 10 - 0.59 0.5 0.8 18 0.5 0.53
0.6 0.8 10 - 0.49 0.5 0.8 10 0.2 0.58
0.8 0.8 10 - 0.28 0.5 0.8 10 0.4 0.57
0.5 0.2 10 - 0.77 0.5 0.8 10 0.6 0.53
0.5 04 10 - 0.68 0.5 0.8 10 0.7 0.46
0.5 1.2 10 - 0.55 0.5 0.8 10 0.8 0.37
0.5 1.8 10 - 0.53 0.5 0.8 10 0.9 0.2
0.5 0.8 2 - 0.57 0.5 0.8 10 1.0 0.17
0.5 0.8 6 - 0.60 0.2 0.8 10 0.7 0.54
0.5 0.8 14 - 0.58 04 0.8 10 0.7 0.52
0.5 0.8 18 - 0.57 0.6 0.8 10 0.7 0.40
0.2 0.8 10 0.5 0.75 0.8 0.8 10 0.7 0.22
04 0.8 10 0.5 0.64 0.5 0.2 10 0.7 0.56
0.5 0.8 10 0.5 0.56 0.5 04 10 0.7 0.50
0.6 0.8 10 0.5 0.46 0.5 1.2 10 0.7 0.46
0.8 0.8 10 0.5 0.26 0.5 1.8 10 0.7 0.45
0.5 0.2 10 0.5 0.69 0.5 0.8 2 0.7 0.47
0.5 04 10 0.5 0.62 0.5 0.8 6 0.7 0.47
0.5 1.2 10 0.5 0.53 0.5 0.8 14 0.7 0.45
0.5 1.8 10 0.5 0.52 0.5 0.8 18 0.7 0.45
0.5 0.8 2 0.5 0.56

4.2. Development of an Artificial Neural Network-Based Equation

The FEA results of the corroded X65 pipe provided insights for suitable parameters
and their range in the development of the ANN model. The parameter that had the
most impact on failure pressure was found to be defect depth, followed by longitudinal
compressive stress, defect length, and defect width. The average reduction rates in failure
pressure due to defect depth, longitudinal compressive stress, and defect length were —0.54,
—0.41, and —0.06, respectively. The effect of defect width was negligible, as its average
rate of decrement in failure pressure was —0.002. Therefore, the defect width was fixed
at 10 w/t in the FEA of X65 for the ANN training dataset. The FEA results for the ANN
training dataset are tabulated in Table 6.
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Table 6. FEA results of corroded X65 pipeline for ANN training dataset.
ocloy
dlt I/D
0.2 0.4 0.5 0.6 0.7
0.2 0.88 0.85 0.79 0.74 0.61
0.4 0.85 0.82 0.77 0.70 0.59
0.2 0.6 0.84 0.79 0.75 0.68 0.56
0.8 0.83 0.78 0.74 0.66 0.54
12 0.81 0.77 0.73 0.65 0.53
0.2 0.80 0.76 0.71 0.67 0.59
0.4 0.75 0.71 0.68 0.62 0.54
0.4 0.6 0.70 0.68 0.65 0.61 0.53
0.8 0.68 0.66 0.64 0.60 0.52
1.2 0.65 0.63 0.62 0.59 0.52
0.2 0.77 0.73 0.69 0.64 0.56
0.4 0.67 0.65 0.62 0.58 0.50
0.5 0.6 0.61 0.60 0.58 0.54 0.47
0.8 0.58 0.57 0.56 0.53 0.46
1.2 0.55 0.54 0.53 0.52 0.46
0.2 0.72 0.69 0.66 0.61 0.53
0.4 0.59 0.57 0.55 0.52 0.45
0.6 0.6 0.53 0.51 0.49 0.47 0.41
0.8 0.49 0.47 0.46 0.45 0.40
12 0.45 0.45 0.44 0.43 0.39
0.2 0.58 0.56 0.55 0.52 0.44
0.4 0.39 0.37 0.36 0.34 0.28
0.8 0.6 0.32 0.30 0.29 0.28 0.24
0.8 0.28 0.27 0.26 0.25 0.22
1.2 0.25 0.24 0.24 0.23 0.21

For the formulation of the empirical equation, 176 sets of X52 FEA results from
the work of Arumugam et al. [19] and 81 sets of X80 FEA results from the work of
Kumar et al. [20] were used to train the ANN [20,21], in addition to the FEA results of
corroded X65 pipelines. The ANN model was developed using MathWorks MATLAB. The
architecture of the ANN is illustrated in Figure 7.

Hidden 1 Hidden 2 Output
Input Output
5 ®H | el
6 6 1

Figure 7. The architecture of ANN in MATLAB.

The ANN was based on a feedforward neural network (FFNN), with Levenberg—
Marquardt backpropagation as its training algorithm. The inputs were the true UTS of the
pipeline, normalised corrosion defect depth (d/t), normalised corrosion defect length (I /D),
normalised corrosion defect width (w/t), and normalised axial compressive stress, 0¢/0y,.
The output was normalised failure pressure, Pr/P;. The ANN had two hidden layers, with
six hidden neurons in each layer. The number of hidden neurons was determined with
trial and error to find the best performing configuration. The activation functions for the
hidden layers were a hyperbolic tangent sigmoid transfer function and a linear transfer
function for the output layer.

The input and output neurons were normalised, and the values of true UTS, d/t,1/D,
w/t, o/ ay, and Pf / P; were set to be between the range from —1 to 1. Equation (5) was used
to normalise the values to prevent inputs with large values from dominating other inputs.
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_ (]/mux — ymin)(x — xmin) )
W), = (Xmaax — Xain) + Ymin ®)

where, y is the normalisation value ranging from —1 to 1 and x is denormalization value
ranging according to its dataset.

After training the ANN, the weights and biases were adjusted for output predictions
with the lowest errors. The connections between the input, output, hidden neurons, and
their weights and biases were mathematically expressed, as shown in Equations (6)—(8).

hig ] 0.0290 —0.3112 0.2976 —0.0501 0.0044 (UTS) 0.4439
hy 2 —1.0552 0.4619 1.5820 2.0369 0.4190 (d/t) n 2.8125
h1,3 _ —0.2548 04752 —0.0036 0.0093 —2.7614 (Z/D)n n 2.1760 ©)
h1,4 2.1350 0.2060 0.1957 —0.3347 1.3200 (w/t)" 0.6014
hy 5 —0.1720 0.2548 0.7511 —0.1147 —-0.0504 n 0.0232
I | 00064 13703 07865 05071 08183 | - %/ %), 1.8972
hy [ 0.8994 —0.5208 —0.1017 1.6657 0.5182 0.8874 a(hl,l) —1.9775
h2,2 —1.1137 —-0.4861 —1.3240 0.2724 0.7561 1.0007 a(hLQ) 1.9334
hy 3 _ —1.4525 0.7080 —0.4520 0.6728 1.4434 —0.7388 a(h1,3) " 0.4981 %
h2,4 —0.9694 —1.0553 15402 —1.8413 1.0336 —1.9841 a(h1,4) 0.3314
hy 5 0.2574 —0.2465 —-0.6022 —0.4447 0.6712 0.8255 a(h1,5) —0.2197
hy 6 | —2.5687 —0.0788 0.2776 —0.4032 —2.4040 0.4544 a(h1,6) —2.2699
a(ha,1)
a(hay)
Oa] = f{ [ 07767 —14787 —0.8224 —05620 12112 13954 ] ZEZii; + [2.2849] ®)
a(has)
a(h2,6)

where, a(x) is hyperbolic tangent sigmoid transfer function,

a(x) = or tanh(x)

(14e2) -1

and f(x) is linear transfer function,
flx) =x
To ensure the reliability of the assessment equations, an unseen dataset was used to
validate the method and determine its performance. Table 7 presents the parameters and
the FEA results of the 30 sets of unseen data. The table shows that the equations were
accurate in their estimations of normalised failure pressure, with the percentage difference

between FEA and the new equations ranging from —6.33% to 2.39% and a standard deviation
of 2.12.

Table 7. Normalised failure pressure prediction using FEA and prediction based on the assessment
equations of an unseen dataset.

Parameters Normalised Failure Pressure Difference

UTS dlt /D ocloy FEA New Equations %
612.0 0.10 0.7 0.30 0.82 0.8194 —0.07
612.0 0.70 0.7 0.35 0.38 0.3766 —0.88
612.0 0.80 0.7 0.50 0.27 0.2680 —0.76
612.0 0.80 0.2 0.50 0.51 0.5078 —0.44
612.0 0.55 0.5 0.35 0.55 0.5352 —2.69
612.0 0.20 0.5 0.32 0.78 0.7814 0.18

612.0 0.70 0.5 0.25 0.43 0.4211 —2.07
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Table 7. Cont.
Parameters Normalised Failure Pressure Difference

UTS dlt 1/D ocloy FEA New Equations %
612.0 0.35 0.7 0.60 0.57 0.5836 2.39
612.0 0.80 0.3 0.35 0.43 0.4355 1.29
612.0 0.10 0.3 0.60 0.75 0.7391 —1.46
629.0 0.70 0.5 0.25 0.46 0.4598 —0.05
629.0 0.10 0.3 0.30 0.90 0.8597 —4.48
629.0 0.45 1.1 0.45 0.59 0.5952 0.88
629.0 0.80 0.7 0.50 0.28 0.2767 —-1.18
629.0 0.70 0.7 0.35 0.40 0.4015 0.39
629.0 0.80 0.3 0.60 0.42 0.4208 0.19
629.0 0.80 0.7 0.25 0.30 0.3037 1.24
629.0 0.80 1.1 0.50 0.25 0.2342 —6.33
629.0 0.30 0.3 0.30 0.80 0.8024 0.29
629.0 0.80 1.1 0.25 0.26 0.2595 —0.21
718.2 0.10 0.7 0.30 0.93 0.9320 0.22
718.2 0.30 0.3 0.30 0.86 0.8603 0.04
718.2 0.55 0.3 0.60 0.62 0.6188 -0.19
718.2 0.35 1.1 0.35 0.70 0.6970 —0.43
718.2 0.80 0.3 0.35 0.45 0.4264 —5.25
718.2 0.55 0.5 0.35 0.58 0.5831 0.53
718.2 0.80 0.7 0.60 0.25 0.2545 1.79
718.2 0.10 0.9 0.30 0.93 0.9246 —0.58
718.2 0.45 1.1 0.45 0.59 0.5965 1.10
718.2 0.70 0.5 0.25 0.45 0.4271 —5.09

The R? value of the assessment equations when tested against an unseen dataset was
0.9975, which indicates good correlation, as shown in Figure 8. The assessment equation
had an MSE of 0.000126 and an MAE of 0.00699.

= = =
+~ [=)} (o]

New Assessment Equation (Y)

=
o

0.2

04 0.6

FEA(T)

0.8

Figure 8. Regression plot of predicted normalised failure pressure by the assessment equations and

FEA results for an unseen dataset.
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4.3. Parametric Study Using the Artificial Neural Network-Based Equation

A parametric study was conducted to investigate the effects of material property,
defect depth, defect length, and longitudinal compressive stress on the remaining strength
of corroded pipelines with single corrosion defects. The middle-to-high strength pipelines
considered in this study were X52, X65, and X80. Figure 9 shows the effect of defect depth
on failure pressure for corroded pipelines with 0.0 and 0.7 ¢/ 0y, longitudinal compressive
stress when the defect length was fixed at 0.8 /D and defect width was fixed at 10 w/t.
Figure 9 shows that the X80 trendline presented the highest failure pressure on average,
followed by X65 and X52. The trendlines demonstrate the same behaviour, whereby the
failure pressure of the corroded pipeline linearly decreases with an increase in defect
depth, and the introduction of longitudinal compressive stress significantly reduced the
failure pressure. For trendlines with no longitudinal compressive stress, the average failure
pressure reduction rates per 0.1 d/t of the X52, X65, and X80 pipelines were —8.51%,
—8.87%, and —9.70%, respectively. For trendlines with 0.7 0./0y, the average failure
pressure reduction rates per 0.1 d/t of the X52, X65, and X80 pipelines were —5.51%,
—4.85%, and —6.92%, respectively. It can be observed that the average reduction rate
for failure pressure was reduced when 0. /0y increased from 0.0 to 0.7. However, the
failure pressure of the corroded pipe subjected 0.7 o; / 0, was still significantly lower than
0.0 0¢/ 0y (—23.99% on average). The trendlines of the same material type exhibited similar
behaviour, whereby the failure pressure of 0.2 d/t defects between 0.0 and 0.7 ¢/ 0}, was
reduced by almost half when the defect depth was 0.8 d/t. Similar trends were observed
for defect lengths of 0.2,0.4,1.0,and 1.21/D.

60.0 1
----- X52 (LCS=0) X52 (LCS =0.7)
————— X65 (LCS =0) X65 (LCS =0.7)
————— X80 (LCS =0) X80 (LCS =0.7)
50.0
<
% 40.0
2
"% 30.0 1
-
2
= 200
=
10.0 1
0.0 I/D=0.8
w/t=10
040 T L) T L)
0.0 0.2 0.4 0.6 0.8
Normalised Defect Depth

Figure 9. Failure pressure against normalised defect depth, with 0.0 and 0.7 normalised longitudinal
compressive stresses for X52, X65, and X80.

Figure 10 shows the effect of defect depth on the failure pressure of corroded pipelines
with 0.2 and 1.2 1/ D defect lengths when the longitudinal compressive stress was 0.4 0¢/0y.
The trendlines of Figure 11 show that the failure pressure of the corroded pipelined linearly
decreases with increasing defect depth, albeit not as steep as the trendlines in Figure 9. For
trendlines with 0.2 [/ D, the average failure pressure reduction rates per 0.1 d/¢ of the X52,
X65, and X80 pipelines were —4.29%, —3.94%, and —6.11%, respectively. For trendlines
with 1.2 1/D, the average failure pressure reduction rates per 0.1 4/t of the X52, X65, and
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X80 pipelines were —7.93%, 8.38%, and —8.33%, respectively. A comparison of shallow and
deep corrosion defects showed that the average failure pressure reduction rate increased
when [/ D increased from 0.2 to 1.2. This shows that increasing defect length of deeper
corrosion defects could lower the failure pressure of a corroded pipeline (by —21.94% on
average). Similar trends were also observed for longitudinal compressive stresses of 0.0,
0.2,0.5,and 0.7 0./ 0y.

60.0 1
----- X52(1D=02) - - - --X65(1D=02) - - - —- X80 (1D =0.2)
X52(1D=12) X65(1D=12) X80(1D=12)
50.0
<
% 40.0 A
v
2
g) 30.0 1
A~
5
3 20.0
[
10.0 A1
0./0y, =04
w/t=10
0.0 v - - :
0.0 0.2 0.4 0.6 0.8
Normalised Defect Depth

Figure 10. Failure pressure against normalised defect depth with 0.2 and 1.2 normalised defect
lengths for X52, X65, and X80.

60.0 1
----- X52 (dt=02) - - - - X65 (dt = 0.2) - - - - - X80 (dt = 02)
X52 (dt = 0.8) X65 (dt=0.8) X80 (dt = 0.8)
50.0 1
o [FEEEIEIIIIIIIIIIIIIIICIoo-ll
%40.0 e T U S
5 RS
73 \‘::
§30.0 1
A~
5
2 20.0
£
R
10.0 1
I/D=0.8
w/t=10
0.0 T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalised Longitudinal Compressive Stress

Figure 11. Failure pressure against normalised longitudinal compressive stress with 0.2 and
0.8 normalised defect depths for X52, X65, and X80.

Figure 11 shows the effect of longitudinal compressive stress on failure pressure
for a corroded pipeline with 0.2 and 0.8 d/t normalised defect depths when the defect
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length was fixed at 0.8 I/D and defect width was fixed at 10 w/t. The trendlines in
Figure 11 demonstrate the same trend across all three types of material for both shallow
and deep corrosion defects. The failure pressure of pipelines with deep corrosion defects
was significantly lower (on average —65.90%) than the failure pressure of pipelines with
shallow corrosion defects. This could be attributed to the higher stress concentration at
the defect region for deeper corrosion defects. The failure pressure remained the same for
longitudinal compressive stress of less than 0.4 ¢. /0y for shallow corrosion defects, and
then the failure pressure decreases linearly beyond 0.4 0./ 0y. The failure pressure was not
significantly reduced when the longitudinal compressive stress was increased in a pipeline
with deep corrosion defects. Similar trends were observed for defect lengths of 0.2, 0.4, 1.0,
and 1.21/D.

Figure 12 shows the effect of longitudinal compressive stress on failure pressure for
a corroded pipeline with 0.2 and 1.2 I/ D normalised defect depths when the defect length
was 0.5 d/t. The trendlines in Figure 12 demonstrate a similar pattern across all three types
of material for both short and long corrosion defects. The failure pressure of long corrosion
defects was lower (on average —25.00%) than the failure pressure of short corrosion defects,
though it was not as significant as that shown in the trendlines of Figure 11. Similar trends
were also observed for defect depths of 0.2, 0.4, 0.6, and 0.8 d/t.

60.0
————— X52(ID=02) -~ -~--X65(ID=0.2) - - -~- X80 (/D =0.2)
X52(1D=12) X65(!D=12) X80('D=12)

50.0
< - ———————
g 40.0 Teeeea -
o - ~ -
; - - -
§300 77T —
& - B R —— : e
v T - - Ss~o
3 ==
5 200
[

10.0 1

dit=0.5
w/t =10
0.0 T T T T T r T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalised Longitudinal Compressive Stress

Figure 12. Failure pressure against normalised longitudinal compressive stress with 0.2 and
1.2 normalised defect lengths for X52, X65, and X80.

The effect of defect length on failure pressure for all three types of material is plotted
in Figure 13, where the trendlines for 0.2 and 0.8 d/t defect depths are compared at a fixed
defect width of 10 w/t. Similar to the results shown in Figure 11, the failure pressure of
a pipeline with deep defects was significantly lower (—66.91% on average) than failure
the pressure of pipeline with shallow defects. Based on the trendlines of Figure 13, the
failure pressure generally linearly decreased before plateauing at 0.8 I/ D. For trendlines of
0.2 d/t, the average failure pressure reduction rates per 0.1 //D of the X52, X65, and X80
pipelines were —0.66%, —0.81%, and —1.03%, respectively. For trendlines with 0.8 d/¢, the
average failure pressure reduction rates per 0.1 // D of the X52, X65, and X80 pipelines were
—2.17%, —1.84%, and —1.66%, respectively. The average failure pressure reduction rate
increased from 0.2 to 0.8 d/t, which indicates that defect depth impacted failure pressure.
The failure pressure of a pipeline with shallow corrosion defects slightly decreased when
the defect length increased, but failure pressure of a pipeline with deep defects increased
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with the increasing defect length (up until the plateau point of 0.8 /D). Similar trends
were also observed for longitudinal compressive stresses of 0.0, 0.2, 0.5, and 0.7 ¢/ 0y,.

60.0 -
----- X52 (dt=02) X52 (dt=0.38)
----- X65 (dt=02) X65 (dt=0.8)
5009 oo X80 (dt=0.2) X80 (dt=0.38)
<
% 40.0 1
g
§ 30.0
Ay
E
2 200 -
(£
10.0 1
0./0y, =04
w/t =10
0.0 - - - - - :
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalised Defect Length

Figure 13. Failure pressure against normalised defect length with 0.2 and 0.8 normalised defect

depths for X52, X65, and X80.

Figure 14 shows the effect of defect length on failure pressure for a corroded pipeline
with 0.0 and 0.7 0. /0y normalised longitudinal compressive stresses when the defect

depth was fixed at 0.5 d/t. The trendlines in

Figure 14 are similar to the trendlines in

Figure 13, showing that failure pressure linearly decreased and then started to plateau at
0.81/D. The failure pressure difference between 0.0 and 0.7 0. / 0y, was —20.79% on average.
Longitudinal compressive stress did not influence the failure pressure as much as defect
depth. Similar trends were also observed for defect depths of 0.2, 0.4, 0.6, and 0.8 d/¢.

60.0 -
----- X52(LCS = 0) X52(LCS = 0.7)
----- X65 (LCS = 0) X65 (LCS = 0.7)
5004 - X80 (LCS = 0) X80 (LCS=0.7)
< ~<
% 40.0 1
v S TSl -
E S Tl
2 30.0 B Tt T
& eI S
g e Tl
3 20.0
&9
10.0 -
dit=0.5
w/t =10
0.0 : : . . . r
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Nommalised Defect Length

Figure 14. Failure pressure against normalised defect length with 0.0 and 0.7 normalised longitudinal

compressive stresses for X52, X65, and X80.
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5. Conclusions

An artificial neural network-based equation for a corroded pipeline subjected to
combined loadings was formulated in this study. An ANN model was trained with the FEA
results of mid-to-high strength grade pipelines (API 5L X52, API 5L X65, and API 5L X80)
with a single corrosion defect subjected to internal pressure and longitudinal compressive
stress. The weights and biases of the network were used to formulate the assessment
equation and evaluated with an unseen dataset. The percentage error of predictions based
on the assessment equation ranged from —6.33% to 2.39%, with a standard deviation of 2.12,
an R? value of 0.9975, an MSE of 0.000126, and an MAE of 0.00699. The assessment equation
was subsequently used to perform a comprehensive parametric study to investigate the
effect of material property, defect depth, defect length, and longitudinal compressive stress
on the remaining strength of pipelines with single corrosion defects. In conclusion:

1. The higher the strength of the pipeline, the higher its failure pressure when subjected
to combined loadings. Here, X80 generally had the highest failure pressure, followed
by X65 and X52.

2. Defect depth had the most impact on reductions in failure pressure (average reductions
of —65.90% and —66.91%), while longitudinal compressive stress (average reductions
of —23.99% and —20.79%) and defect length (average reductions of —21.94% and
—25.00%) had similar impacts on failure pressure.

3. Across all three materials, the trend for failure pressure against defect depth, defect
length, and longitudinal compressive stress exhibited similar patterns.
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