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Abstract: China’s Mars rover Zhurong successfully landed on Mars on 15 May 2021, and it is currently
conducting an exploration mission on the Red Planet. This paper develops slip estimation models
for the Mars rover Zhurong based on the data drive approach. Data were obtained by Zhurong’s
validator ground indoor tests, and the test site was equipped with a low-gravity simulation device
and simulated Mars soil to simulate the Mars conditions as much as possible. The obtained slip
models trained by BP and GA-BP algorithms were applied to estimate Zhurong’s longitudinal (slip_x)
and lateral slip (slip_y) on Mars, and the slip estimation values were used to display Zhurong’s actual
driving path. The analyzed results prove that the GA-BP slip models perform better than the BP
models, and can both be applied for correcting Zhurong’s path. The proposed models have high
potential in guiding the path planning and monitoring of the slip for the Mars rover Zhurong.
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1. Introduction

China’s Mars rover Zhurong landed on the southern region of Utopia Planitia on
15 May 2021, and it separated from the landing platform on 22 May to conduct an explo-
ration mission on the Martian surface [1]; Figure 1 shows the image of Zhurong and its
landing platform on Mars. As of 31 December 2021, Zhurong has worked on the surface of
Mars for 225 Martian days and traveled a total of more than 1400 m south from its landing
platform. In order to explore scientific targets, Zhurong inevitably passed through complex
terrains with slip-prone areas, which called for better research on slip.
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Figure 1. The image of Zhurong and landing platform on Mars; it was released by the China National
Space Administration (CNSA).
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Zhurong is a six-wheel rover, which can be seen as a special kind of wheeled robot
working on Mars. For a wheeled robot, slip means the actual velocity of the wheel different
from the command velocity, which can be regarded as a measure of the lack of traction [2].
Slip directly leads to deviation from the scheduled path and the inability to reach targeted
goals. A high slip means a severe lack of traction, which can cause wheel sinkage and even
permanent immobility [3–5]. Most Mars and Lunar rovers had suffered slip-related hazards
of varying degrees. For example, the rovers Yutu and Curiosity fortunately escaped from
the high slips, and the rover Opportunity resumed movement after being entrapped for
five weeks; in the worst case, the rover Spirit experienced significant slips and became
stuck with permanent immobility at a stationary science platform. Therefore, it is essential
to focus on slip for Zhurong’s safety.

Roughly speaking, researches on rover slip mainly focus on the following three aspects:

(1) Model-based approach. Slip is caused by the complex interaction between the wheel
and soil, which allows the estimation of the wheel-level slip by utilizing accurate
kinematic and dynamical equations with a slip variable [6,7]. Some research has also
focused on the enhancement of 3D kinematic models to predict the body-level slip for
articulated, wheeled mobile robots [8–11]. The model-based approach explains slip
from the perspective of motion and force mechanisms, but the estimation accuracy is
dependent on the knowledge of soil parameters and the accuracy of the model, which
is not the best choice for a planetary exploration.

(2) Visual-based approach. Visual odometry is a reliable source of information, which
is widely used in planetary explorations. Its main working principle is that in the
process of movement, image data are collected from the surrounding environment
through the camera, a continuous image sequence is used as the input signal, and its
motion estimation is obtained by calculating its own pose change [12,13]. However,
it has some limitations for planetary rovers, such as the sequence image matching
calculation cost being high [14], the feature point matching on the surface features
being sparse or the shadow area being limited, and it is not suitable for high-speed
operation environments (>0.8 m/s), as the image would appear blurry in a high-speed
motion environment [15].

(3) Data-based approach. Based on the data mining algorithm, the collected historical data
are used as the input, and the corresponding slip observations are used as the output,
so as to train to obtain the corresponding slip estimation value. Angelova et al. [16,17]
established a nonlinear regression mapping relationship between terrain geometry
and slip by using a locally weighted projection regression (LWPR) and neural network,
and the obtained models had a good slip prediction performance. The dataset used
to train and validate the models was all obtained on completely natural, off-road
terrains. Gonzalez et al. [2] transformed the slip value estimation problem into a
classification problem through several machine learning algorithms, and they used
signals of the Inertial Measurement Unit to predict the slip level (low, moderate, or
high). This method was designed for the wheel-level slip, not the body-level slip.
Rothrock et al. [18] presented slope slip methods, which were established based
on data collected in the Jet Propulsion Laboratory Mars Yard. The models were
analyzed by data from the Mars rover Curiosity, the results showing a good prediction
performance in small rock and bedrock terrains, but could not fully predict the slip
of the rover in sand. Cunningham et al. [19] proposed adjusting the model based on
the on-orbit slip data, which significantly improved the prediction performance in
sand. These researches indicated that a data-based approach provides adaptability
in complex environments without the involvement of detailed mechanical models,
overcoming the dependence on images of environmental characteristics. The data-
based approach is becoming a common trend in slip research. So far, however,
there has been little research considering the difference in environmental conditions
between Earth and Mars, especially regarding the reduced gravity on Mars [20].
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In this paper, the primary aim is to establish a slip estimation model for the Mars
rover Zhurong, which can be used to assess the risk level of slip, as well as correct the
path planning. A data-based approach is selected to establish the models, and we collected
data through ground indoor tests. In order to simulate the situation of Zhurong on Mars
as much as possible, the test site was equipped with a low-gravity simulation device and
simulated Mars soil. Slip estimation models were built using a back propagation neural
network (BP), and an optimized BP based on a genetic algorithm (GA-BP). The obtained
models were applied to estimate longitudinal slip (slip_x) and lateral slip (slip_y) using
on-orbit data. Then, the path planning points were corrected with the slip prediction values
and compared with the actual path points, which verified the feasibility of the model.

The rest of this paper is arranged as follows: Section 2 introduces the ground tests and
on-orbit validation Section 3 illustrates the training methods, Section 4 displays the training
results obtained through ground tests and the estimation results compared to on-orbit real
data, and Section 5 presents the conclusion.

2. Ground Tests and on-Orbit Validation

This research was designed in two parts: the ground test and on-orbit validation. The
ground test was used to collect data to train the model and to verify it by using the on-orbit
data. The ground testing site and on-orbit situation were described in detail as follows.

2.1. Ground Tests

The ground tests were performed in the Chinese Academy of Space Technology. The
indoor test site was composed of a horizontal area (25.3 m × 13.2 m) and an adjustable
angle ramp area (8 m× 5 m), and the simulated angle could increase up to 35◦ [21]. Figure 2
displays the indoor test site of ground tests. To simulate the situation of Zhurong on the
surface of Mars as much as possible, the test site was equipped with the following key
devices or equipment.

(1) Low-gravity simulation device. For the gravitational acceleration for Mars, which
is about 40% of that on Earth, the whole test site was equipped with a low-gravity
simulation device to provide a simulated Martian gravity environment for the rover,
so that the vertical pressure of each wheel always stayed consistent with that on Mars.
The low-gravity simulator had the ability to follow the movement of the rover and
the simulation effect remained stable during tests [22].

(2) The validator of Zhurong. The rover used in tests was the validator of Zhurong,
whether regarding the structural configuration, sensor configuration, or material, it
was largely the same as Zhurong.

(3) Simulated soil. The soil is an important part of the surface environment of Mars, and
the mechanical parameters of the soil are closely related to the wheel movement [23].
The simulated Mars soil, named JLU Mars-2, was used in this paper, and was laid
out on the test site with a thickness of more than 500 mm [21]. The JLU Mars-2
used volcanic ash as the raw material, and the mechanical parameters of the soil
were adjusted through a sprinkling and compaction process; Table 1 presents the
mechanical parameters of JLU Mars-2 [24,25].

Table 1. The mechanical parameters of JLU Mars-2.

kc(kPa · m−(n+1)) kϕ(kPa ·m−(n+2)) n c (kPa) ϕ (◦) k (m)

15.69 983.36 1.023 0.609 37.2 0.019
* kc: the cohesive modulus of the soil; kϕ: the frictional modulus; n: slip sinkage exponent; c: cohesion; ϕ: internal
friction angle; k: shear deformation modulus.
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2.2. On-Orbit Validation

The designed life of Zhurong was 90 Mars days. Within the design life, Zhurong
operated in a highly efficient detection mode, and traveled a total of 899 m with 57 move-
ments [26,27], 15.7 m on average each time, and the longest planning distance for a single
time was 26.8 m, which posed a challenge to the visual positioning accuracy of the Mars
rover. To solve this problem, Zhurong would have a short stay between adjacent stations
for imaging, and its imaging area overlapped with the two adjacent stations, so as to obtain
precise positioning, the specific process was as follows:

(1) Step 1: Station N. When Zhurong arrived at Station N (as shown in Figure 3), a 3D
reconstruction of the environment and the visual positioning was performed. Selecting
the middle point X and the target point Station N+1 based on the environment
information and generating the Station N-X path planning strategy.

(2) Step 2: Station X. Zhurong drove to the Station N-X according to the instructions,
which were called the blind movement mode. It performed a visual positioning at
point X to obtain the relative position of point X to Station N.

(3) Step 3: Station N+1. Then, Zhurong drove to the X-Station N+1 section using the
autonomous obstacle avoidance movement mode. When it arrived at Station N+1,
step one was repeated.

From the above described process, when Zhurong drove using blind movement mode
in step two, we knew its planning path and the actual end point of arrival. It was available
for the on-orbit slip validation. The wheel of the Zhurong Mars rover is printed with the
Chinese word “中”. When driving on the surface of Mars, the distance and position of
two adjacent words in the rut mark (as shown in Figure 4) can be used to assist in judging
whether the rover has slipped.
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3. Method

The research work of this paper is displayed in Figure 5. The ground tests were
randomly divided into training set and testing set. Training of the model using machine
learning algorithms on the training set and the performances of the models were evaluated
on the testing set. Then, models were validated using on-orbit data. In this section, we
illustrate several key issues in the model establishment and verification: the input features
selection, output calculation, dataset division, training method, and evaluation method.
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3.1. Input Features Selection

The goal of input features selection was to select the relevant features from available
sensor inputs for good model accuracy [28]. In this work, four features were chosen
to form input feature vector to the algorithms: (1) the rover’s pitch; (2) the rover’s roll;
(3) the average current I of six-wheel driving motors; (4) the average angular velocity w of
six-wheel driving motors.

(1), (2), and (3) were used for slip prediction in previous work [16,17,29,30]. The rover’s
pitch and roll corresponded to the terrain geometry [16], and directly reflected the vertical
loads acting on wheels. Additionally, there was a linear relationship between driving motor
current and torques applied to the wheels. According to the complex relation between
force and the wheel–soil interface, changes in vertical load and driving torque would affect
wheel slip, so (1), (2), (3), and slip could be related [30]. There was some correspondence
between wheel angular velocity and slip because of non-ideal motor behaviors [31]; it was
useful to select (4) as one of the input features.

3.2. Output Calculation

Slip s means the actual velocity of the was wheel different from the command velocity
for each of the wheels; it is defined as Equation (1).

s = (vc − v)/vc (1)

where v and vc are the actual velocity and the expected velocity of the wheel, respectively.
Similar to the wheel slip, calculating the rover slip needed both the expected velocity of
the rover and the actual velocity of the rover. Slip was measured in the rover body frame
as shown in Figure 6a, and included longitudinal slip (slip_x), lateral slip (slip_y), and
rotational slip (slip_z) [29]. This paper reports on slip_x and slip_y of the rover, which are
defined as Equations (2) and (3), respectively [32].

slip_x = (vc − vx)/vc (2)

slip_y = vy/vc (3)

where vc is the command velocity of rover, vx is the actual longitudinal velocity, and vy is
the lateral slip velocity of the rover (Figure 6b).
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3.3. Dataset

The raw data collected in ground tests and their usage are summarized in Table 2. The
position and attitude of the rover were measured by the global indoor positioning system
(iGPS) with sampling frequency of 20 Hz, while the sampling frequency of current and
angular velocity was 1 Hz. We set the step time of the analysis as 0.05 s, and the current
and angular velocity had to be interpolated. In order to ensure the rationality and accuracy
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of the interpolation, data segments with large angular velocity or current fluctuations were
not selected.

Table 2. The data collected in ground tests.

Raw Data Sampling Frequency Usage

The rover’s pitch 20 Hz Input feature (1)
The rover’s roll 20 Hz Input feature (2)

The current of each wheel’s driving motor 1 Hz Calculate the input feature (3)
the angular velocity of each wheel’s driving motor 1 Hz Calculate the input feature (4)

The position of rover 20 Hz Calculate the slip of rover

The hold-out method was used to randomly split the ground tests data into the training
set (66.7%) and testing set (33.3%). After that, the data were normalized.

3.4. Learning Algorithms

In this paper, BP neural network was used to train models for their good nonlinear
mapping ability and self-adaptability, as well as strong robustness and fault tolerance [33,34].
The simple learning rules were easy to implement [35]. However, the models were prone
to trap in local optima. In order to achieve better performance of models, GA was used
to optimize the initialization weights and thresholds of the BP, based on the global search
ability of GA. In our previous work, we used BP and GA-BP to establish slip_x models [36].
In this paper, we aimed to establish slip models which could predict slip_x and slip_y at
the same time, so that the models could not only be used for slip early warning, but also
guide path planning.

BP neural network presented a multi-layer structure, as shown in Figure 7. It is typically
composed of three layers: input layer, hidden layer, and output layer [37].
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Figure 7. Topology structure of BP neural network model.

Input signals (x1,x2, . . . ,xn) were received by the input layer and reached the output
layer after being processed by the hidden layer. Neurons in adjacent layers were connected
by different weights (ωij,ωjk).

hj = f
∣∣∑ ωijxi − aj

∣∣, j = 1, 2, . . . , l (4)

Ok = ψ
∣∣∣∑ hjωjk − bk

∣∣∣, k = 1, 2, . . . , m (5)

where hj and Ok are the output of the hidden layer and output layer, respectively. ωij is the
weight from the ith input layer neuron to the jth hidden layer neuron, and ωjk is the weight
from the jth hidden layer neuron to kth output layer neuron. The hidden layer threshold is
aj and the output layer threshold is bk. f (x) and ψ(h) are the active function of the hidden
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layer and output layer, f (x) is the sigmoid type of nonlinear function, and ψ(h) is the linear
function.

When the actual output (y1,y2, . . . ,ym) could not obtain the expected output values,
it switched to error back propagation, and the connection weights and thresholds were
modified according to the error, so that the output values would constantly approach the
expected output.

GA is a self-adaptive global optimization algorithm by simulating the genetic and
evolution process of living beings in the natural environment. It encodes the parameters
of certain problems as chromosomes, performing the selection based on survival of the
fittest, and then obtaining new generations of individuals through crossover and mutation
operation [38].

In this paper, GA was used to optimize the initial connection weights and thresholds
of BPNN. The optimization process was described as follows.

(1) Step 1: Encoding

When the topology of BP was determined, connection weights and thresholds were
encoded into chromosomes. The encoding length L was defined as follows:

L = m + n + ml + ln, (6)

where m, l, and n are the numbers of neurons in input layer, hidden layer, and output layer,
respectively.

(2) Step 2: Calculating fitness function

In order to obtain better performance of model, we defined the fitness function f f it as
Equation (7).

f f it = 1/(η1 ·∑ (ŝxi − sxi)
2 + η2 ·∑ (ŝyi − syi)

2) (7)

where ŝxi and ŝyi represent the predicted slip_x and slip_y, respectively. sxi and syi are the
actual slip_x and slip_y, respectively. η1 and η2 represent coefficients.

(3) Step 3: Genetic operations

Genetic operations included three basic genetic operators: selection, crossover, and
mutation.

Selection was to select superior individuals from the population and eliminate inferior
individuals based on fitness values. For a population of size N, where the fitness of
individual i was f f it_i, the probability of i being selected was pi:

pi = f f it_i/∑ f f it_j (8)

The crossover was to recombine part of the structure of the selected parent individuals
to generate new individuals. The crossover operator adopted the single-point crossover
operator, an intersection was randomly selected, and two parent individuals swapped at
the front or back of the point to produce new individuals.

The new individuals formed after the crossover operation had a certain probability
of mutation. Similar to the selection operation, this operation was based on probability.
Generally speaking, the mutation probability was set very small.

(4) Step 4: Iterative optimization

When termination condition was met, the optimization process stopped, and the
obtained optimized weights and thresholds were assigned to the BPNN.

BPNN used the optimized result weights and thresholds to perform training, and
could avoid the prediction results from falling into the local optimal solution.
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3.5. Evaluation of Models

In this paper, mean absolute error (MAE) and root mean square error (RMSE) were
used to evaluate the accuracy of the slip model.

MAE_x =
1
n

n

∑
i=1
|ŝxi − sxi| (9)

MAE_y =
1
n

n

∑
i=1

∣∣ŝyi − syi
∣∣ (10)

RMSE_x =

√√√√ n

∑
i=1

(ŝxi − sxi)
2

n
(11)

RMSE_y =

√√√√ n

∑
i=1

(ŝyi − syi)
2

n
(12)

4. Results and Discussion
4.1. Ground Tests

We repeated the hold-out validation on the models of each type ten times to ensure a
better stability and reliability of results. Twenty models were obtained in total with BP and
GA-BP; the prediction results are summarized in detail in Table 3. A boxplot was used to
show the distribution of evaluation results for each model in the following, as shown in
Figure 8: the maximum value, upper quartile, median, lower quartile, and minimum value
are represented from top to bottom.

Table 3. Prediction results of BP and GA-BP.

BP GA-BP

Group
Number

Slip_x Slip_y Group
Number

Slip_x Slip_y

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

(1) 3.314 4.300 1.239 1.652 (1) 3.163 4.022 1.150 1.577
(2) 3.058 4.114 1.137 1.511 (2) 3.082 4.045 1.184 1.523
(3) 3.165 4.156 1.215 1.621 (3) 3.138 4.091 1.127 1.487
(4) 3.123 4.112 1.263 1.618 (4) 3.063 4.059 1.190 1.537
(5) 3.147 4.140 1.161 1.539 (5) 3.121 4.061 1.117 1.450
(6) 3.020 4.035 1.233 1.595 (6) 2.987 3.961 1.131 1.474
(7) 3.224 4.228 1.118 1.485 (7) 3.186 4.096 1.058 1.414
(8) 3.275 4.277 1.244 1.637 (8) 3.148 4.144 1.194 1.529
(9) 3.149 4.195 1.129 1.499 (9) 3.175 4.094 1.115 1.470

(10) 3.170 4.169 1.093 1.476 (10) 3.021 4.001 1.131 1.522
Mean 3.164 4.173 1.183 1.563 Mean 3.108 4.058 1.140 1.498

Appl. Sci. 2022, 12, 1676 10 of 17 
 

4. Results and Discussion 

4.1. Ground Tests 

We repeated the hold-out validation on the models of each type ten times to ensure 

a better stability and reliability of results. Twenty models were obtained in total with BP 

and GA-BP; the prediction results are summarized in detail in Table 3. A boxplot was used 

to show the distribution of evaluation results for each model in the following, as shown 

in Figure 8: the maximum value, upper quartile, median, lower quartile, and minimum 

value are represented from top to bottom. 

Table 3. Prediction results of BP and GA-BP. 

BP GA-BP 

Group 

Number 

slip_x Slip_y Group 

Number 

slip_x Slip_y 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

(1) 3.314  4.300  1.239  1.652  (1) 3.163  4.022  1.150  1.577  

(2) 3.058  4.114  1.137  1.511  (2) 3.082  4.045  1.184  1.523  

(3) 3.165  4.156  1.215  1.621  (3) 3.138  4.091  1.127  1.487  

(4) 3.123  4.112  1.263  1.618  (4) 3.063  4.059  1.190  1.537  

(5) 3.147  4.140  1.161  1.539  (5) 3.121  4.061  1.117  1.450  

(6) 3.020  4.035  1.233  1.595  (6) 2.987  3.961  1.131  1.474  

(7) 3.224  4.228  1.118  1.485  (7) 3.186  4.096  1.058  1.414  

(8) 3.275  4.277  1.244  1.637  (8) 3.148  4.144  1.194  1.529  

(9) 3.149  4.195  1.129  1.499  (9) 3.175  4.094  1.115  1.470  

(10) 3.170  4.169  1.093  1.476  (10) 3.021  4.001  1.131  1.522  

Mean 3.164  4.173  1.183  1.563  mean 3.108  4.058  1.140  1.498  

 

Figure 8. Structure of boxplot. 

Figures 9 and 10 present the prediction results of five test groups for slip_x and slip_y, 

respectively. As can be seen in Figures 8a,c and 9a,c for most test groups, after GA opti-

mization, the MAE and RMSE of slip_x and slip_y were reduced to varying degrees at the 

same time. Combining the data in Table 2 to obtain the MAE results for slip_x as an ex-

ample, the MAE results of BP were between around 3.020 and 3.314%, with an average of 

3.164%, and the MAE results of GA-BP were between around 2.987 and 3.216%, with an 

average of 3.108%. The MAE predicted by GA-BP was decreased by 0.056% on average 

compared to the MAE predicted by BP. It can be seen that the GA-BP model had a higher 

prediction accuracy for slip_x and slip_y. From Figures 8b,d and 9b,d, the GA-BP predic-

tion was more concentrated and the model performance was more stable. 

Figure 8. Structure of boxplot.



Appl. Sci. 2022, 12, 1676 10 of 16

Figures 9 and 10 present the prediction results of five test groups for slip_x and
slip_y, respectively. As can be seen in Figures 8a,c and 9a,c for most test groups, after GA
optimization, the MAE and RMSE of slip_x and slip_y were reduced to varying degrees at
the same time. Combining the data in Table 2 to obtain the MAE results for slip_x as an
example, the MAE results of BP were between around 3.020 and 3.314%, with an average
of 3.164%, and the MAE results of GA-BP were between around 2.987 and 3.216%, with an
average of 3.108%. The MAE predicted by GA-BP was decreased by 0.056% on average
compared to the MAE predicted by BP. It can be seen that the GA-BP model had a higher
prediction accuracy for slip_x and slip_y. From Figures 8b,d and 9b,d, the GA-BP prediction
was more concentrated and the model performance was more stable.
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Figures 11 and 12 show part of the prediction results of slip_x and slip_y in group (1),
respectively. Since the testing set data were randomly selected, the testing data points
were not continuous, and so it was not suitable to show all testing data since they were
too dense and no trend could be seen. In order to show the prediction results more clearly,
Figures 11 and 12 only show the prediction of 100 data points. The predicted results were
consistent with the trends of actual values, but the actual slip_x and slip_y had a larger
variation range, while the prediction data of BP and GA-BP were relatively concentrated.
According to statistics, out of 1911 test points in group (1), there were 987 slip_x points
predicted by GA-BP, which was closer to the actual slip_x than the points predicted by BP,
and the amount of 1078 slip_y GA-BP prediction points was closer to the actual slip_y than
the BP prediction points. It can be seen from the above analysis that GA-BP had a higher
prediction accuracy than BP.
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4.2. On-Orbit Validation

The BP models and GA-BP models which learned from the ground tests data were
validated using Zhurong’s on-orbit data. The real-time actual coordinates during Zhurong’s
walking process could not be obtained, so it was impossible to directly verify the accuracy
of the predicted slip values during the walking process. We could convert the predicted
slip_x and slip_y into a longitudinal offset ∆x and lateral offset ∆y, respectively. Therefore,
we could obtain the slip prediction corrected path points. When we compared the end
point of the predicted path with the actual points, the predictive effect of the models could
be seen. The specific implementation steps were as follows:

(1) The planning path could be drawn from the planning curvature, planning distance,
and planning target point. Positive curvatures represented right turns, negative cur-
vatures represented left turns, and a larger planning curvature value meant a smaller
steering radius. According to the introduction in Section 2.2, Zhurong travelled ac-
cording to the planning path during the blind walking stage. Figure 13 shows the
coordinates of the planning path. Each starting point was regarded as (0,0), with
+Y facing east and +X facing north. We could draw the planning path based on the
planning curvature, planning target point, and planning distance.

(2) Visual positioning was performed when Zhurong completed a blind walk to obtain
the real positioning of the actual point.

(3) The offsets ∆x and ∆y of path points were calculate from the predicted slip, and
so we could obtain a serial of predicted path points with slip correction. These
predicted path points formed a predicted path. It should be noted that the ∆x and ∆y
of slip prediction were based on the rover’s body coordinate system, and need to be
transformed into ∆X and ∆Y through a coordinate transformation.

(4) We compared the coordinates of the end point of the BP and GA-BP predicted path
with the actual point.
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Figure 13. Path planning coordinates.

In this paper, an on-orbit validation was conducted based on data obtained from
mid-June 2021 (sol.27–sol.36) with five movements. Table 4 shows the planning path
information and actual end points of arrival. We could see that there was always a deviation
∆L between the actual path end point and the planning point, The maximum ∆L could be
obtained as 0.6784 m. Table 5 displays the information of the BP and GA-BP predicted end
points of the path. In each set of data, the ∆L_BP and ∆L_GABP were always smaller than
∆L; combined with the predicted path and planning path shown in Figure 14, we could see
that the predicted end points were closer to the actual points. From the relative positional
relationship between the actual end point and the planned path, it could be seen that the
rover deviated to the right during the driving process. Both BP and GA-BP predicted paths
simulated this movement trend, but the BP model predicted the path to a greater degree
of deviation compared to the GA-BP model, which led to the BP predicting end points
relatively far from the actual end point, especially in Figure 14d. The GA-BP model had
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a more stable prediction performance, and the GA-BP predicted paths were reasonably
acceptable for showing the slip behavior of the rover during motion.

Table 4. Planning end points and actual end points of arrival.

Sol
Planning

Curvature (1/m)
Planning

Distance (m)

Planning Points Actual Points Deviation
X_Plan

(m)
Y_Plan

(m)
X_Actual

(m)
Y_Actual

(m) ∆X (m) ∆Y (m) ∆L (m)

27 0.038 8.459 −4.9805 −6.7917 −4.9408 −7.1753 0.0397 −0.3836 0.3856
28 −0.071 9.196 −7.6869 −4.7449 −7.8924 −4.9153 −0.2055 −0.1704 0.2670
29 −0.037 9.635 −9.3236 −2.2155 −9.2034 −2.5153 0.1202 −0.2998 0.3230
34 −0.039 9.23 −9.107 −1.1502 −9.7244 −1.4313 −0.6174 −0.2811 0.6784
36 −0.0594 9.644 −5.1775 −7.9800 −5.5369 −8.3848 −0.3594 −0.4048 0.5413

* ∆X = (X_actual) − (X_plan); ∆Y = (Y_actual) − (Y_plan); ∆l =
√

∆X2 + ∆Y2.

Table 5. BP and GA-BP predicted end points of path.

Sol

BP Predicted Points GA-BP Predicted
Points Deviation

X_BP
(m)

Y_BP
(m)

X_GABP
(m)

Y_GABP
(m)

∆X_BP
(m)

∆X_GABP
(m)

∆Y_BP
(m)

∆Y_GABP
(m)

∆L_BP
(m)

∆L_GABP
(m)

27 −4.8409 −7.0760 −5.0808 −7.1068 −0.14 0.0993 0.0685 0.14085631 0.1559 −0.14
28 −8.1185 −5.2808 −8.1139 −4.90956 −0.2215 −0.3655 0.00574 0.429780712 0.2216 −0.2215
29 −9.6685 −2.6229 −9.4854 −2.5799 −0.282 −0.1076 −0.0646 0.4773843 0.2893 −0.282
34 −9.9452 −2.0637 −9.4868 −1.3970 0.2376 −0.6324 0.0343 0.669837592 0.2401 0.2376
36 −4.9544 −8.3107 −5.3848 −8.3828 0.1521 0.0741 0.002 0.587194227 0.1521 0.1521

* ∆x_GABP = (x_GABP)− (x_actual); ∆y_GABP = (y_GABP)− (y_actual); ∆l_GABP=
√
(∆x_GABP)2 + (∆y_GABP)2.
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5. Conclusions

This paper established slip estimation models based on ground tests data, and the
testing site restored the situation of the rover Zhurong on Mars from the aspects of gravity,
soil, etc. Proprioceptive sensor signals were selected as the input features to train the
models, which ensured models could be used in shadowed or near-featureless areas. By
validating the models of Zhurong’s on-bit data, the results showed that the slip estimation
models were reasonably accurate in showing the slip behavior of the rover during motion,
and the proposed models had a high potential in guiding the path planning and monitoring
the slip for Zhurong.
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