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Abstract: This paper considers a novel fault-tolerant control (FTC) scheme for a category of cascade
nonlinear systems with mismatched uncertainties and unknown actuator faults. The robust adap-
tive dynamic programming (RADP) is used to design a novel optimal sliding surface (SS) off-line,
which renders the corresponding sliding-mode dynamics able to obtain robustness of stability to
mismatched uncertainties. Subsequently, a simple sliding-mode control (SMC) with the adaptive
fault compensation is developed to guarantee reachability of the sliding mode. Then, it is proven that
the weight errors of neural networks (NN) of RADP and the closed-loop system are stable based on
Lyapunov stability theory. In the simulation section, this proposed scheme is used to deal with the
attitude FTC of a spacecraft, and simulation results verify the effectiveness of the proposed novel
control scheme.

Keywords: nonlinear spacecraft systems; mismatched uncertainties; fault-tolerant control; sliding
surface design; adaptive dynamic programming (ADP)

1. Introduction

In areas with high safety requirements such as spacecraft, the fault-tolerant control
(FTC) has always attracted the attention [1,2] of many scholars and engineers. In [1], a novel
discontinuous adaptive failure compensation controller with system chattering rejection
based on a common approximate function was designed for a rigid satellite with actuator
failure. In [2], an ADP-based tracking FTC with an adaptive fault compensation was given
for a spacecraft attitude system with additive faults. In the FTC community, a common
and very important method is the sliding-mode control (SMC) that was widely applied
in industrial and academic fields due to the extremely simple design and strong anti-
disturbance ability [3]. The equivalent control of SMC can cope with matched uncertainties
inherently, but for mismatched uncertainties, including faults or failures, it is an open
problem [4,5]. The SMC with a new sliding surface including the information of mismatched
uncertainties through a disturbance observer was designed in [4]. The invariant manifold-
based SS was applied to transform the multiple mismatched disturbances into matched
ones in [5]. It has always been very interesting to find more and better ways to solve this
open problem.

The ADP approaches have developed a relatively complete paradigm for the optimal
control [6]. An online adaptive algorithm was proposed in [7], which involves the simulta-
neous updating of both critic and actor NN. A classical thinking [8] of transformation from
robust control into optimal control was used in RADP methods [9] for adaptive control
problems subject to matched or mismatched uncertainties. Specifically, in [10], ADP was
introduced to integral sliding-mode control (ISMC) for systems with mismatched distur-
bance, but the SS design was not considered. Hence, combining SMC with ADP to cope
with mismatched uncertainties induces our attentions.

The idea of using other control methods to design SS is an optional combination
solution, which is an effective way to deal with nonlinear FTC problems. In [11], the classical
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control-based SS design combined two control algorithms. When the system states are in
sliding mode, the classical control is conducted. The method [12] also adopted the above
idea and used a pseudo control input in the SS design process. In [13], a novel fast terminal
sliding mode control without the reaching phase was designed, which makes the derivative
of an augmented state satisfy an optimal cost function. In [14], the optimal SS similar to [15]
was given for a linear system. The robustness of SS to mismatched uncertainties were not
considered in these two papers [13,14]. In references [16–19], optimal SSs were developed
based on the first subsystem of the normal form [19]. In [16], an optimal sliding manifold
was designed based on kinematics without uncertainties and the angular velocity was
seen as the control input in this design process. In [17], optimal design of reaching phase
and sliding phase of the SMC was given. In [18], the successive approximation approach
was used to solve a novel optimal sliding mode that was designed by the same method.
In [19], after an optimal equivalent control was first solved, a novel SS was derived from
the above equivalent control. Recently, the ADP algorithm has also been introduced into
the integral SMC design [10,20]. In [10], ADP was used to solve the optimal guaranteed
cost control problem of sliding mode dynamics. In [20], ADP was employed to design the
nominal control, which aimed at stabilizing sliding mode dynamics. However, in these two
papers [10,20], ADP was adopted to stabilize sliding mode dynamics rather than to design
SS directly.

In this paper, we intend to explore a unifying design of sliding-mode FTC with the
RADP-based SS for mismatched uncertain nonlinear cascade systems with actuator faults.
To this end, the RADP-based SS is developed to obtain robust sliding mode for mismatched
uncertainties, and an adaptive sliding-mode FTC is designed to guarantee the reachability
of above sliding mode in the presence of faults. The detailed contributions are summarized
as follows.

1. The RADP-based SS is designed, which is robust to the mismatched uncertainties. An
adaptive fault compensation is used to deal with the actuator faults. Compared with
the traditional sliding-mode FTC [21], the novel scheme in the present paper achieves
a certain sense of optimized performance by introducing the RADP-based SS. To the
best knowledge of the authors, the ADP-based SS does not appear in previous reports,
and the more important factor of a novel SMC tackling mismatched uncertainties
based on this new SS is not reported either.

2. The idea of the ADP-based SS design method may be open a door that we can obtain
many kinds of sliding modes with various properties inherited from ADP methods,
such as finite-horizon optimal SS [22] or safety SS [23]. These provide more methods
or possibilities for solving FTC problems.

The rest of this article is organized as follows. Section 2 gives the problem formulation.
In Section 3, an adaptive sliding-mode FTC with RADP-based SS for the uncertain cascade
systems is developed. The simulation examples are provided in Section 4 followed by the
conclusions in Section 5.

2. Problem Formulation

In this section, the system model, the fault model, and the problem formulation
are given.

2.1. System Model and Fault Model

Consider a class of the nonlinear cascade systems [24,25] encountering mismatched
uncertainties and actuator faults [26,27], and it can be depicted by

ẋ1(t) = f1(x1(t)) + g1(x1(t))x2(t) +4 f (x1(t)), (1)

ẋ2(t) = f2(x(t)) + g2(x(t))(u(t) + fa), (2)
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where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 are system states, u(t) ∈ Rm is the control input, and fi(·)
and gi(·) (i = 1, 2) are differentiable in their arguments with fi(0) = 0 (i = 1, 2),4 f (x1) is
the unknown perturbation with4 f (0) = 0, fa is the actuator fault vector.

For ease of the description and the following RADP design, nominal systems of above
systems (1) and (2) are given as

ẋ1(t) = f1(x1(t)) + g1(x1(t))x2(t), (3)

ẋ2(t) = f2(x(t)) + g2(x(t))u(t). (4)

In order to simplify the expression, some function arguments are omitted in the
description below. Then, for convenience of later analysis, the following assumptions and
definition are given.

Assumption 1. It is assumed that the control input matrix g1(x1) is bounded i.e., ‖ g1(x1) ‖≤ λg,
where λg is a positive constant. The g2(·) is a full row rank matrix and the function g+2 (·) is defined
as the Moore–Penrose pseudo-inverse of g2(·), i.e., g+2 (·) = gT

2 (·)(g2(·)gT
2 (·))−1.

Assumption 2. It is assumed that the uncertainty is bounded by a function λ f (x1), i.e., ‖ 4
f (x1)‖ ≤ λ f (x1) with λ f (0) = 0, and fa is the unknown constant bias actuator fault vector.

Definition 1 ([7]). The equilibrium point denoted x = 0 of a dynamical system is said to be
uniformly ultimately bounded (UUB) if there exists a compact set Ω ⊂ Rn so that for all state
variable initial value x0 ∈ Ω there exists a bound B and a time T(B, x0) such that ‖ x− x0 ‖≤ B
for all t ≥ t0 + T.

2.2. Control Objective

The purpose of the present paper is to design a novel SS and the corresponding FTC
algorithm, which causes the following novel quadratic performance index to be minimized
when the closed-loop system is reaching the SS:

J(x1(t)) =
∫ ∞

t
Q(x1(τ)) + U(x1(τ), x2(τ))dτ, (5)

where Q is positive semi-definite matrix, which is associated with the dynamical uncer-
tainty, and U(x1, x2) = xT

1 Qx1 + xT
2 Rx2 is a utility function. The overall utility function

Q(x1) +U(x1, x2) reflects the uncertainty, regulation, and control policy simultaneously. In
particular, the state x2 in subsystem (3) is so-called virtual control [18], which is designed
based on a nominal subsystem (3).

Remark 1. The choice of the utility function is a critical step for optimal control problems. In this
paper, a robust control problem is transformed into an optimal control problem by choosing a novel
utility function as described above. For an optimal control with input constraints, a popular utility
function [28] is chosen as

U(x, u) = x(t)TQx(t) + 2
∫ u

0
(Φ−1(v))T Rdv,

where Φ(v) = [φ(v1) . . . φ(vm)]T , v ∈ Rm, Φ ∈ Rm, and φ(·) is a bounded one-to-one function
that belongs to Cp(p > 1) and L2(Ω). The hyperbolic tangent φ(·) = tanh(·) is an example. For
an optimal control problem with state constraints, the utility function can be selected as

U(x, u) = x(t)TQx(t) + Vx + u(t)T Ru(t),

where Vx is a barrier function with respect to state x(t) [29]. It is not difficult to see from the above
examples that the utility function is not only related to the requirements for state and control, but
also directly related to the uncertainty and constraints to be dealt with.
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Remark 2. The value function (5) is designed based on the idea that the robust stabilization problem
can be transformed into an optimal control of nominal systems [30].

3. Sliding Surface and Control Design

Concretely, for the system (1) and (2), a RADP-based SS is designed as

s = x2 +
1
2

R−1gT
1 (x1)(∇σc(x1))

TŴc, (6)

where s is the sliding-mode variable for the mismatched uncertain cascade system, the
matrix R is a penalty matrix in the utility function, the σc is an activation function vector
of critic neural network (CNN) in ADP, the ∇σc is gradient with respect to x1 denoted
as ∇σc = ∂σc

∂x1
, and Ŵc is an estimation of ideal weight vector in ADP. The following

assumption is a standard assumption in ADP-related literatures, such as [2,10,31].

Assumption 3. The ideal NN weights Wc is bounded, i.e., ‖Wc‖ ≤ λW . The NN activation
functions and their gradient are bounded, i.e., ‖σc(x1)‖ ≤ λσ, and ‖∇σc(x1)‖ ≤ λ∇σ. The NN
approximation error and its gradient are bounded on the compact set Ω, i.e., ‖εc(x1)‖ ≤ λε, and
‖∇εc(x1)‖ ≤ λ∇ε.

3.1. Optimal Control-Based Sliding Surface Design

In what follows, the x2 is regarded as the control input of subsystem (3) and assumed
that it is admissible. For the continuously differentiable cost function J(x1), we can obtain
the nonlinear Lyapunov equation is

0 = Q(x1) + U(x1, x2)

+ (∇J(x1))
T( f1(x1) + g1(x1)x2),

(7)

where J(0) = 0. The Hamiltonian function of this optimal control problem is

H(x1, x2,∇J(x1)) = Q(x1) + U(x1, x2)

+ (∇J(x1))
T( f1(x1)

+ g1(x1)x2). (8)

Define the optimal cost function (OCF) as

J∗(x1(t)) = min
x2∈A (Ω)

∫ ∞

t
Q(x1(τ)) + U(x1(τ), x2(τ))dτ, (9)

where A (Ω) is the admissible control set on the Ω, and the HJB equation of this system is
given as

0 = min
x2∈A (Ω)

H(x1, x2,∇J∗(x1)). (10)

Therefore, by differentiating (10) with respect to x∗2 , the optimal control policy is

x∗2 = −1
2

R−1gT
1 (x1)∇J∗(x1). (11)

The control policy (11) is unbounded, and if the problem of input constraints is to be
studied, an alternative approach is to use a generalized non-quadratic utility function [28].
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Substitute the optimal control (11) into the Equation (10) and then the HJB equation can be
expressed as

0 = Q(x1) + U(x1, x∗2) + (∇J∗(x1))
T( f1(x1) + g1(x1)x∗2)

= Q(x1) + xT
1 Qx1 + (∇J∗(x1))

T f1(x1)

− 1
4
(∇J∗(x1))

T g1(x1)R−1gT
1 (x1)∇J∗(x1), (12)

which means that H(x1, x∗2 ,∇J∗(x1)) = 0.
The design of Q(x1) is a key point in the robust stabilization scheme. In what follows,

the term Q(x1) is specified as

Q(x1) =
1
8
(∇J∗(x1))

T∇J∗(x1) + 2λ2
f (x1), (13)

and Q(x1) ≥ 0 meets. Based on the help of this form, the following lemma showing
stability of the sliding-mode dynamics of the systems (1) and (2) is derived as follows.

Lemma 1. Consider the nominal subsystem (3) and the cost function (5) with the term (13). It is
assumed the HJB Equation (12) is of a solution J∗(x1), x∗2 is given by (11) and the SS designed as
s = x2 − x∗2 = 0 exists. According to these conditions, on this SS, the sliding-mode dynamics of
this mismatched uncertain nonlinear system described by (1) and (2) is asymptotic stability.

Proof of Lemma 1. According to the Theorem 1 of [30], we know that the optimal control
policy (11) can ensure asymptotic stability of the uncertain nonlinear subsystem (1). On the
SS, there is x2 = x∗2(x1) and explicitly the state x2 is also asymptotically convergent to the
equilibrium point.

3.2. RADP-Based Sliding Surface Design

In what follows, the RADP with NN approximation is used to find this SS through
obtaining a numerical solution for the above HJB equation, the analytical solution of which
is rather difficult to calculate.

Based on the universal approximation property of NN, approximate J∗(x1) by a NN
with only one hidden layer as

J∗(x1) = WT
c σc(x1) + εc(x1), (14)

where Wc ∈ Rp is the ideal weight, σc(x1) ∈ Rp is the activation function, p is the number
of neurons, and εc(x1) is the unknown approximation error of this NN. Next, partial
derivative of the OCF is written as

∇J∗(x1) =
∂J∗(x1)

∂x1

= (∇σc(x1))
TWc +∇εc(x1). (15)

However, the ideal NN weights are unknown, the estimation of NN weight vector Ŵc
approximates the OCF.

Ĵ∗(x1) = ŴT
c σc(x1). (16)

The partial derivative of the OCF by approximation is

∇ Ĵ∗(x1) =
∂ Ĵ∗(x1)

∂x1
= (∇σc(x1))

TŴc. (17)
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From (15), the optimal control can be given as

x∗2 = − 1
2

R−1gT
1 (x1)((∇σc(x1))

TWc +∇εc(x1)). (18)

From (17), the approximate optimal control policy can be expressed as

x̂∗2 = −1
2

R−1gT
1 (x1)(∇σc(x1))

TŴc. (19)

For the following derivation, two non-negative matrices are denoted as follows

A(x1) = ∇σc(x1)g1(x1)R−1gT
1 (x1)((∇σc(x1))

T ,

B(x1) = ∇σc(x1)((∇σc(x1))
T .

By using the cost function and control policy denoted by the NN, the Hamiltonian
function could be given by

H(x1, Wc) = xT
1 Qx1 + WT

c ∇σc(x1) f1(x1)

− 1
4

WT
c A(x1)Wc + 2λ2

f (x1)

+
1
8

WT
c B(x1)Wc + ecH = 0, (20)

where the term ecH is the residual error of the NN expression.

ecH = (∇εc(x1))
T f1(x1)

− 1
2
(∇εc(x1))

T g1(x1)R−1gT
1 (x1)((∇σc(x1))

TWc

− 1
4
(∇εc(x1))

T g1(x1)R−1gT
1 (x1)∇εc(x1)

+
1
4
(∇εc(x1))

T(∇σc(x1))
TWc

+
1
8
(∇εc(x1))

T∇εc(x1). (21)

The approximate Hamiltonian by the estimated weight is described as

Ĥ(x1, Ŵc) = xT
1 Qx1 + ŴT

c ∇σc(x1) f1(x1)

− 1
4

ŴT
c A(x1)Ŵc

+ 2λ2
f (x1) +

1
8

ŴT
c B(x1)Ŵc, (22)

letting ec = Ĥ(x1, Ŵc)− H(x1, Wc), and W̃c = Wc − Ŵc. Based on (20) and (22), the ec with
W̃c is formulated by

ec = Ĥ(x1, Ŵc)− H(x1, Wc)

= − W̃T
c ∇σc(x1) f1(x1)−

1
4

W̃T
c A(x1)W̃c

+
1
2

W̃T
c A(x1)Wc +

1
8

W̃T
c B(x1)W̃c

− 1
4

W̃T
c B(x1)Wc − ecH . (23)

Now, the next step is to train the CNN and obtain an update law of weights by
minimizing the simple cost criterion Ec = (1/2)e2

c . For avoiding the difficulty of finding an
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admissible initial control policy, the improved weight updating rule [30] is also selected.
The following general assumption [2,32] are given before the training process and the
stability analysis.

Assumption 4. Considering the nominal subsystem (3) with the cost function (5) and substituting
the optimal feedback control (11) into the subsystem (3). Let Js(x1) be a continuously differentiable
function and simultaneously a Lyapunov function candidate. It can be written as

J̇s(x1) = (∇Js(x1))
T( f1(x1) + g1(x1)x∗2) < 0. (24)

The Γ ∈ Rn1 is a positive definite matrix ensuring that

(∇Js(x1))
T( f1(x1) + g1(x1)x∗2)

= −(∇Js(x1))
TΓ∇Js(x1)

≤ −λmin(Γ) ‖ ∇Js(x1) ‖2, (25)

is true, where λmin(Γ) is the minimal eigenvalue of the matrix Γ.

For implementing this algorithm, Js(x1) can be given by some polynomials of the sys-
tem states, such as Js(x1) = 0.5xT

1 x1. Then, a weight update law of the CNN is constructed

˙̂Wc = − αc(
∂Ec

∂Ŵc
)

− αs(
∂[(∇Js(x1))

T( f1(x1) + g1(x1)x̂∗2)]
∂Ŵc

), (26)

where αc > 0 is the basic update rate of the critic network, and αs > 0 is the learning rate of
the additional stabilization term. Substitute the optimal control (19) into (26) and then the
update law is expressed as

˙̂Wc = − αc(
∂Ec

∂Ŵc
)

+
1
2

αs∇σc(x1)g1(x1)R−1gT
1 (x1)∇Js(x1). (27)

According to the above formula, ˙̃Wc = − ˙̂Wc and dynamics of the weight estimation
error (WEE) could be expressed as

˙̃Wc = αc(
∂Ec

∂Ŵc
)− 1

2
αs∇σc(x1)g1(x1)

× R−1gT
1 (x1)∇Js(x1), (28)

where

∂Ec

∂Ŵc
= ec

∂ec

∂Ŵc

= ec(∇σc(x1) f1(x1)−
1
2
A(x1)Ŵc +

1
4
B(x1)Ŵc).
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Thus, dynamics of WEE could be expressed as

˙̃Wc = αc(−W̃T
c ∇σc(x1) f1(x1)−

1
4

W̃T
c A(x1)W̃c

+
1
2

W̃T
c A(x1)Wc +

1
8

W̃T
c B(x1)W̃c

− 1
4

W̃T
c B(x1)Wc − ecH)

× (∇σc(x1) f1 +
1
2
A(x1)W̃c

− 1
2
A(x1)Wc −

1
4
B(x1)W̃c +

1
4
B(x1)Wc)

− 1
2

αs∇σc(x1)g1(x1)

× R−1gT
1 (x1)∇Js(x1). (29)

According to this design, the following Lemma 2 shows the property of the system on
the novel robust SS.

Lemma 2. Assuming the sliding mode exists, and considering the nominal system described by (3)
and (4) under the proposed RADP-based SS (6), the states of system (1) and (2) on this SS and the
weight error dynamics are both UUB.

Proof of Lemma 2. Based on Theorem 2 of [30], we can know that state x1 on this SS
and dynamics of WEE are both UUB. For brevity, the proof process will not be repeated.
Additionally, according to the SS s = 0, state x2 of the system on this SS is also UUB.

Remark 3. The use of ADP faces some problems, such as the difficulty of choosing the initial
admissible control, how to choose activation functions of the neural network, and the training taking
too much time. In order to avoid the impact of these problems, the off-line training method and other
empirical methods are used to ensure the real-time performance of the overall control system as much
as possible.

3.3. Sliding-Mode Control Design

After this novel SS is obtained through the above off-line design process, an adaptive
fault-tolerant sliding-mode control is developed.

Considering the system (1) and (2) and the approximating optimal control policy
of (19), the sliding-mode variable can be expressed as

s = x2 − x̂∗2(x1). (30)

Note that the control x̂∗2(x1) is differential according to (19), and the factory is that
Ŵc is a constant vector after convergence. Therefore, the derivative of the sliding-mode
variable is written as

ṡ = ẋ2 − ˙̂x∗2(x1)

= f2(x) + g2(x)(u + fa)− ˙̂x∗2(x1). (31)

The novel SMC design with the RADP-based SS and the adaptive fault compensation
law is designed as

u = g+2 (x)( ˙̂x∗2(x1)− f2(x)− Ks(sgn(s)))− f̂a, (32)
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and

˙̂fa = K f gT
2 (x)s, (33)

respectively, where Ks, K f > 0 are the control gain and learning rate of the adaptive law
and f̂a is estimation of actuator faults. Define the fault estimation error as f̃a = fa − f̂a.

Theorem 1. Considering the mismatched uncertain and faulty system described by (1) and (2)
under the proposed RADP-based sliding-mode variable (6), the control policy (32) and adaptive fault
compensation law (33), the fault estimation error is bounded and the closed-loop system dynamics
is UUB.

Proof of Theorem 1. Choose the following Lyapunov function candidate

V(t) =
1
2

sTs +
1

2K f
f̃ T
a f̃a. (34)

The derivative of the Lyapunov function candidate (34) with respect to time along the
sliding mode variable dynamics is

V̇(t) = sT ṡ− 1
K f

f̃ T
a

˙̂fa

= sT( f2(x) + g2(x)(u + fa)− ˙̂x∗2(x1))

− 1
K f

f̃ T
a

˙̂fa. (35)

Substituting the control policy (32) and the actuator fault compensation law (33) into
above formula (35), we obtain

V̇(t) = −Ks‖s‖+ sT g2(x) f̃a −
1

K f
f̃ T
a

˙̂fa

= −Ks‖s‖
≤ 0. (36)

According to the above derivation process, we could find that all signals of closed-
loop system are bounded. Based on the Lyapunov theorem and Lemma 2, the sliding
mode exists and the states of the whole system are uniformly ultimately bounded. From
the above derivation, it can be seen that the reaching time of the SMC can be estimated

by tr ≤ 2V1/2(0)
α , where tr is the reaching time, V(0) is the initial value of the Lyapunov

function candidate, and α is a positive design parameter. Therefore, the corresponding time
can be reduced by adjusting the parameter α. The proof ends here.

Novelty and comparison: How to make the designed sliding surface (SS) insensitive
to the mismatched uncertainties is crucial for the SMC design and the SMC-based FTC.

In [4], a mismatched disturbance is estimated by a disturbance observer, and then the
obtained estimation signal of this disturbance is used to design the SS. The disturbance
observer makes the system more complex, which increases the difficulty of controller
design. However, our designed SS can directly deal with this problem by the optimal
control method without designing any estimator. Even though finding the solution of
optimal control is tricky, we can solve it directly using the ADP method off-line.

In [10], the integral SMC (ISMC) law is divided into two parts, one is a continuous
part, and the other is a discontinuous part. The continuous part of control is used to reject
the mismatched uncertainties and consequently the SS is insensitive to the mismatched
uncertainties. In this process, the complex zero-sum games and online complex neural
network training are used in the continuous part of control, which are not conducive to
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practical applications and the realization of engineers. Our method is simpler in the design
process and implemented off-line.

In the papers [13,14], although they all use the optimal control to design the SS, they
cannot solve the problem that is making the SS insensitive to the mismatched uncertainties
in the SS design process.

4. Simulation Examples

In this part, the novel sliding-mode FTC with the RADP-based SS is applied in the
mismatched uncertain spacecraft attitude control systems (ACS), which are the benchmark
nonlinear cascade systems. The model of this ACS [2,33] is presented asϑ̇

ψ̇
γ̇

 = f (x1)ω +4 f (x1), (37)

and
Jω̇ = −ω× Jω + u(t) + fa, (38)

where the inertia matrix J and f (x1) are characterized by

J =

20 0 0.9
0 17 0

0.9 0 15

kg ·m2, (39)

f (x1) =

 0 sin γ cos γ
0 cos γ/ cos ϑ − sin γ/ cos ϑ
1 − tan ϑ cos γ − tan ϑ sin γ)

, (40)

the mismatched uncertainties4 f (x1) and the actuator faults fa are given as

4 f (x1) =

0.1ϑsin(ψ)cos(γ)
−0.1γcos(ψ2)

0.1ψsin(ϑ)

, (41)

fa =

{
[0, 0, 0]T , t < 50s

[0, 0.5, 0.8]T , t ≥ 50s
(42)

furthermore, ϑ, ψ, and γ are pitch angle, yaw angle, and roll angle of a spacecraft, simply
denoted as a vector x1 = [ϑ, ψ, γ]T , and ωx, ωy, and ωz are angular velocities with respect to
an inertial reference frame expressed in the body-fixed frame. In addition, the uncertainty
4 f (x1) is bounded, i.e., ‖4 f (x1)‖ 6 ‖x1‖. The initial value of states of this ACS are
x1(0) = [0.5, 0.5,−0.5]Trad, and ω(0) = [0.1,−0.1, 0.1]Trad/s.

4.1. Traditional SMC-Based Fault-Tolerant Controller

To compare with the proposed method in this paper, a traditional SMC-based FTC is
designed as follows

u = ( f (x1)J−1)−1(− ḟ (x1)ω + f (x1)J−1ω× Jω− c f (x1)ω− f (x1)J−1 f̂a − Kssat(st), (43)

and the adaptive fault compensation is

˙̂fa = K f J−T f (x1)
Tst, (44)

where the designed sliding surface is st = f (x1)ω + cx1 with c = 0.1 and let Ks = 2 and
K f = 100. The simulation results are given as follows, and comments are given in the next
subsection in a comparative manner.
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4.2. RADP-Based Sliding-Mode Fault-Tolerant Controller

The total utility function is chosen as Q(x1) + U(x1, ω) = Q(x1) + xT
1 Qx1 + ωT Rω

with Q = I3 and R = I3 for the uncertain ACS. A CNN is constructed to approximate the
OCF as

Ĵ∗n(x1) = Ŵc1ϑ2 + Ŵc2ψ2 + Ŵc3γ2 + Ŵc4ϑψ

+ Ŵc5ϑγ + Ŵc6ϑψγ.

Note that σc(a) = [ϑ2, ψ2, γ2, ϑψ, ϑγ, ϑψγ]T and Ŵc = [Ŵc1, Ŵc2, Ŵc3, Ŵc4, Ŵc5, Ŵc6]
T

are the activation function and the estimation of the ideal weight of NN, respectively. In
these simulations, we set αc = 0.1 and σs = 0.5. Substitute the constant weight Ŵc after
convergence into the novel SS and let Ks = 2 and K f = 100.

Via Figures 1–3, it can be found that, under the basically same parameter settings, the
proposed control scheme posses better convergence characteristics and less adjustment
time and, through the boundary layer technology, no chattering phenomena. Observe the
above simulation results of the proposed novel control scheme and it can be found that the
states of the systems are asymptotic stability rather than UUB in Theorem 1. The reason
for this behaviour is that g2(x) = J is invertible constant matrix and this makes the error
− 1

2 R−1gT
1 (x1)∇εc(x1) in (18) matched with g2(x). Therefore, if Ks is large enough, the

SMC (32) can guarantee its robustness against this error. However, in the SS design process
of traditional SMC-based FTC, it is not considered to deal with the mismatched uncertain-
ties, so that system states cannot eventually converge to zero, even if the SMC guarantees
reachability of the SS. The evolution of the weight Ŵc is shown in Figure 4, and finally the
weight vector eventually converges to [0.1370, 0.1467, 0.1326, 0.1307,−0.1204,−0.0786]T .

(a) (b)

Figure 1. Evolution of attitude of the ACS under different control schemes in the presence of
mismatched uncertainties and actuator faults. (a) Traditional SMC-based FTC. (b) The proposed FTC
with RADP-based sliding surface.

(a) (b)

Figure 2. Evolution of angular velocity of the ACS under different control schemes in the presence of
mismatched uncertainties and actuator faults. (a) Traditional SMC-based FTC. (b) The proposed FTC
with RADP-based sliding surface.
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(a) (b)

Figure 3. Evolution of control inputs of the ACS under different control schemes in the presence of
mismatched uncertainties and actuator faults. (a) Traditional SMC-based FTC. (b) The proposed FTC
with RADP-based sliding surface.

Figure 4. Evolution of the critic neural network weights.

4.3. RADP-Based Sliding-Mode Fault-Tolerant Controller in Presence of Input Delay

Factors that cause delays are numerous in the ACS, such as the response time of
actuators and sensors, faults of actuators and sensors, signal sampling and transmission,
etc. The effects will be reflected in the input delay [34]. The existence of the input delay will
cause the degradation of control performance and even destroy the stability of the system.
To verify whether the proposed controller can cope with the time delay uncertainty, in the
above simulation example, an unknown constant time delay is added into the original
control system:

Jω̇ = −ω× Jω + u(t− τ) + fa, (45)

where the time delay is set as τ = 0.1 and other parameters are the same as the values set
above. The simulation results are shown as Figures 5–7.

(a) (b)

Figure 5. Comparison of attitude of ACS without and with input delay. (a) Evolution of attitude of
the ACS. (b) Evolution of attitude with input delay.
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(a) (b)

Figure 6. Comparison of angular velocity of ACS without and with input delay. (a) Evolution of
angular velocity of the ACS. (b) Evolution of attitude with input delay.

(a) (b)

Figure 7. Comparison of inputs of ACS without and with input delay. (a) Evolution of control input
of the ACS. (b) Evolution of control input with input delay.

By comparing the simulation results before and after adding the input delay, it can
be found that the proposed control scheme can make the time delay system bounded, but
the control performance has dropped. If a better control performance is pursued, special
design for time delay is essential.

5. Conclusions

In the present paper, a novel SMC based FTC scheme with RADP-based SS for a
category of uncertain cascade systems is proposed. In particular, a novel idea for the
ADP-based SS design is proposed to cope with the mismatched uncertainties in the SMC
theory and application. For the practical implementing, the off-line design of RADP-based
SS avoids the time-consuming training of neural network weights, and the adaptive SMC
is also helpful to implement. In addition, the simulation part demonstrates a practical
example that is the attitude control system of the spacecraft. Note that the uncertainty
is also mismatched for the subsystem in this paper. Furthermore, matched uncertainties
including certain faults for the subsystem are worth researching in the future. In addition,
more new sliding surfaces based on the ADP algorithm treasure house could be designed,
which can be combined with the powerful SMC mechanism to solve more difficult FTC
problems.
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