
����������
�������

Citation: Zhong, D.; Sun, R.; Gong,

H.; Wang, T. System-Theoretic

Process Analysis Based on

SysML/MARTE and NuSMV. Appl.

Sci. 2022, 12, 1671. https://doi.org/

10.3390/app12031671

Academic Editors: Giancarlo Mauri

and Augusto Ferrante

Received: 6 November 2021

Accepted: 1 February 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

System-Theoretic Process Analysis Based on SysML/MARTE
and NuSMV
Deming Zhong * , Rui Sun, Haoyuan Gong and Tianhuai Wang

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China;
by1414107@buaa.edu.cn (R.S.); ghy@buaa.edu.cn (H.G.); zy2114128@buaa.edu.cn (T.W.)
* Correspondence: 07961@buaa.edu.cn

Abstract: Systems Theoretical Accident Model and Process (STAMP), which considers system safety
as an emergent property of the system, is a more effective accident/loss causality model for modern
complex systems. Based on STAMP, System Theoretical Process Analysis (STPA) has attracted
increasing attention as a new approach to hazard analysis, and relevant international standards
are being developed. However, STPA is mainly performed manually, leading to inefficiencies,
and constructs models in non-standard language, hindering the integration with existing systems
engineering. STPA-SN (STPA based on SysML/MARTE and NuSMV) is proposed to build model in
SysML, describing the timing with MARTE (Modeling and Analysis of Real-Time and Embedded
Systems), transform SysML model into NuSMV model and output loss scenarios automatically with
model checker. An application example of STPA-SN is provided to demonstrate potentials for higher
efficiency of analysis and for collaboration with SysML-based systems engineering.

Keywords: system theory process analysis (STPA); SysML; NuSMV; unsafe control action (UCA);
loss scenario

1. Introduction

Due to the use of software, the system accident mechanism gradually changes and the
traditional safety theory, based on physical failures, shows its inadequacy. In 2004, Nancy
G. Leveson proposed the Systems Theory Accident Model and Process (STAMP), which
believes that system safety is an emergent property of the system [1] (pp. 10–12). Based
on STAMP, STPA (System-Theoretic Process Analysis) was proposed as a hazard analysis
method, considering that unsafe interactions between components can lead to accidents
even in the absence of physical failures [1] (p. 4). Numerous comparative studies have
shown that STPA has identified not only the causal scenarios found by traditional methods,
but also causal scenarios not found by traditional methods, such as the fault tree analysis
(FTA), failure mode and effect criticality analysis (FMECA), event tree analysis (ETA) and
hazard and operability analysis (HAZOP) [1] (p. 4).

STPA is now accepted in standards, such as “RTCA DO 356A: Airworthiness Security
Methods and Considerations” and “ISO/PAS 21448: Safety of the Intended Functionality
(SOTIF)”. In addition, the Society of Automotive Engineers (SAE) is developing two STPA-
related standards: “SAE AIR6913: Using STPA during Development and Safety Assessment
of Civil Aircraft” and “SAE J3187: Applying System Theoretic Process Analysis (STPA) to
Automotive Applications”.

In March 2018, Nancy G. Leveson and John P. Thomas published the “STPA Hand-
book” [1], which is the basis for the standards development, industrial applications, tool
designs and methodological improvements of STPA. To distinguish STPAs from the other
literature, STPA in the “STPA Handbook” is abbreviated as HSTPA. HSTPA consists of
four steps:

Step 1: Define the purpose of the analysis. This includes identifying losses, identifying
system-level hazards, identifying system-level safety constraints and refining hazards.

Appl. Sci. 2022, 12, 1671. https://doi.org/10.3390/app12031671 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031671
https://doi.org/10.3390/app12031671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7368-7438
https://doi.org/10.3390/app12031671
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031671?type=check_update&version=2

Appl. Sci. 2022, 12, 1671 2 of 19

Step 2: Model the control structure. An effective control structure will enforce con-
straints on the behavior of the overall system. The hierarchical control structure model
includes at least five types of elements: controllers, controlled processes, control actions,
feedbacks and inputs/outputs among other components. The controller includes control
algorithms and the process model.

Step 3: Identify the unsafe control actions. An unsafe control action (UCA) is a control
action that will lead to a hazard in a particular context and worst-case environment. The
UCA consists of five parts: control action (CA), source of CA, unsafe type, context and link
to hazards.

The unsafe types include:

• Not provided CA;
• Provided CA;
• Provided CA too early or provided CA too late;
• Stopped CA too early or applied CA too long.

Step 4: Identify the loss scenarios. The loss scenario describes the causal factors (CFs)
that can lead to UCAs and to hazards.

At present, HSTPA still has two drawbacks in industrial practice:

• Manual analysis, which is inefficient [2] (p. 151);
• Modeling with non-standard language, which is difficult to be integrated into existing

systems engineering.

Automation can improve the efficiency, and the formalization of STPA is the basis for
automation. Only after formalizing STPA can tools be developed to realize automation and
may STPA support standardized modeling languages, such as SysML, AADL and AltaRica.

The formalization of STPA includes the definitions of UCA and loss scenario, the
construction of the analytical model, the identification processes of UCAs and the loss
scenarios. The related representative work is described below.

John P. Thomas [3] formalized the definition of UCA, which was adopted by HSTPA.
However, there are still some ambiguities. It is not specified whether UCA is a state or not.
Similarly, it is not specified whether the CA in the definition of UCA is the one received
by the controlled process or the one issued by the controller, which may lead to critical
differences while identifying the loss scenario.

John P. Thomas [3] identified UCAs with truth calculations, which was adopted by
many subsequent works, e.g., [4,5]. Under certain conditions, the truth calculation is
effective to identify UCAs automatically.

Asare et al. [2] and Zhu et al. [6] proposed their respective formal analysis methods,
which include analytical model construction and model analysis. They suffer from short-
comings in terms of ease of use and quality of analysis due to the inability to use existing
established methods. Although STPA has the concepts of UCA and the loss scenario, the
STPA analytical model is still able to be modeled with existing mature model methods, such
as SysML and AADL. Similarly, the STPA analytical model can be analyzed by existing
mature analytical methods, such as model checking and simulation.

Abdulkhaleq et al. [7] used finite state machines to describe the system information, but
only used the information in the state machines manually and therefore could not acquire
the dynamic process of loss scenario rigorously. State machine is an effective, sufficient and
convenient way to construct system behaviors. State machine is also supported by many
modeling languages, such as SysML, AADL and AltaRica, and could be analyzed by either
simulation or model checking. Therefore, state machine is ideal method to build the system
behaviors for the identifications of UCAs and loss scenarios.

Chen et al. [8] applied the “four-variable model” to identify the variables that are used
in the analytical model. Although the truth table was used to describe the relationships
between some of the variables, the system behavior was not adequately described.

Rey et al. [9] agreed that STPA lacks formalism and proposed a method that combines
STPA and SysML modeling activities, but did not change the STPA method itself.

Appl. Sci. 2022, 12, 1671 3 of 19

Zhu et al. [10] constructed the analytical model with Petri Net. Despite its mathe-
matical formality, Petri Net is not as popular as SysML, which is the de facto standard for
model-based systems engineering.

Zhong et al. [11] put forth ISTPA (Improved STPA), having contributed the following
improvements to the formalization of STPA:

• Using CA-PR (control action that controlled process receives) to update the definition
of UCA.

• Defining the loss scenario as the process in which the system emerges UCA and
system-level hazard with the involvement of causal factors.

• Using the finite state machine to describe the system behavior and using model
checking [12] to identify the loss scenario.

Nevertheless, ISTPA still needs to be instantiated for its application.
Based on ISTPA, STPA-SN (STPA based on SysML/MARTE and NuSMV) is put

forth to demonstrate how to solve the aforementioned two drawbacks of HSTPA. Herein,
NuSMV [13] is an open-source model checker and MARTE (Modeling and Analysis of Real-
Time and Embedded systems) [14] is specification of a UML profile that adds capabilities
to UML for the model-driven development of real-time and embedded systems.

In the following sections, STPA-SN is first introduced, then an application example of
STPA-SN is presented; next, the differences against HSTPA are discussed; and finally, both
the advantages and disadvantages are summarized.

The readers should be familiar with HSTPA, NuSMV, SysML and MARTE, otherwise
the following contents might be impenetrable.

2. STPA-SN

STPA-SN consists of four steps, as shown in Figure 1. Each step is briefly introduced
as follows:

1. Step 1: Define the purpose of the analysis.

The contents of STPA-SN in this step are basically the same as those in the first step of
HSTPA, but the definition of “system-level hazard” is optimized.

HSTPA defines system-level hazards as follows: “A hazard is a system state or set of
conditions that, together with a particular set of worst-case environmental conditions, will
lead to a loss”. Since a hazard does not necessarily occur under “worst environmental con-
ditions”, STPA-SN slightly changes the definition as “System-level hazard is a system state
that can lead to a loss under certain conditions” and loss scenario provides such conditions.

Among the outputs of Step 1, the safety constraints (SCs) will be used in Step 4 to create
safety properties in temporal logic, i.e., computation tree logic (CTL) or linear temporal
logic (LTL) (see NuSMV tutorial in [13]).

2. Step 2: Construct the system model.

This step constructs the analytical model for the identifications of UCAs and loss scenarios.
SysML internal block diagram (IBD) is used to construct the hierarchical control

structure model, and the SysML state machine diagram is used to describe the system
behaviors. The system behaviors required to identify UCAs and identify loss scenarios are
all described by SysML state machine diagrams, including the behaviors of the controller,
controlled process, sensor, actuator and their interaction relationships, therein controller
behaviors further include the process model and control algorithms.

Due to time-dependent UCAs, the modeling methods need to describe the temporal
characteristics. Since MARTE and SysML are closely interrelated, MARTE is used to
describe the temporal characteristics.

Appl. Sci. 2022, 12, 1671 4 of 19

Appl. Sci. 2022, 12, 1671 4 of 19

Due to time-dependent UCAs, the modeling methods need to describe the temporal

characteristics. Since MARTE and SysML are closely interrelated, MARTE is used to de-

scribe the temporal characteristics.

Figure 1. Steps of STPA-SN.

3. Step 3: Identify the unsafe control actions.

The system-level hazard is caused by the state of the controlled process and CA-PR.

CA-PR is different from the control action issued by the controller because of the actua-

tor’s delay or mishandling. Hence, CA-PR is used in the definition of UCA, instead of the

control action issued by the controller.

Step1: Define purpose of the
analysis

Step2: Contruct the system
model (in SysML/MARTE)

Losses(L), system-level
Hazards(H), system-level Safety

Constraints(SCs)

Hierarchical control
structure&State machines

UCA
Step3: Identify unsafe control

actions

Contruct the system
model by addition of CFs

(in SysML/MARTE)

Contruct the system
model by addition of CFs

(in SysML/MARTE)

State machines after
addition of CFs

NuSMV model

Convert SCs into temporal
logics

properties in CTL/LTL

Model Checking

Loss Scenarios
i.e. Couterexamples

Step4: Identify loss scenarios

supplement

STPA-SN

Figure 1. Steps of STPA-SN.

3. Step 3: Identify the unsafe control actions.

The system-level hazard is caused by the state of the controlled process and CA-PR.
CA-PR is different from the control action issued by the controller because of the actuator’s
delay or mishandling. Hence, CA-PR is used in the definition of UCA, instead of the control
action issued by the controller.

In STPA-SN, UCA is such a combination as {CA-PR, Type, Context}, which leads to
system-level hazards under certain conditions. Therein, Type stands for unsafe type and
Context is the state of the system, controlled process and the environment.

When identifying UCAs, all instances of {CA-PR, Type, Context} should be given first,
with each instance considered as a potential unsafe control action (PUCA). This process
could be automated.

Then, each PUCA is analyzed one by one to determine whether it is a UCA. This
process relies heavily on manual analysis, though truth calculation could play a role.

Appl. Sci. 2022, 12, 1671 5 of 19

4. Step 4: Identify the loss scenarios.

STPA-SN adopts the definition of loss scenario as the process in which the system
emerges UCA and system-level hazard with the involvement of causal factors. There are
many causes, such as hardware failure, software defect, data deviation, data error, process
model error, component interaction, mode change, environmental change, environmental
interference, controlled process change, feedback missing or error, feedback delay, actuator
failure or delay, etc.

There are two ways to analyze the models constructed in Step 2: one is simulation,
the other is model checking. Simulation is usually visualized, but could not exhaust all the
operations of the system model. Hence, theoretically, simulation may miss loss scenario,
which may be unaccepted for the safety-critical system. Model checking is a formal method,
requiring more expertise. However, model checking can prove whether the system model
meets some safety attributes or properties, which is precious to the safety-critical system.

Since STPA highlights the high-level design logics of the system, and control actions
are usually discrete logical variables, model checking is selected to identify the loss scenario.

Model checking consists of the finite state system model, the properties in temporal
logics and the algorithm that determines whether the system model satisfies the properties.
Counterexamples would be produced when a property is not true in the system model [12].
A counterexample provides the state transitions’ path from the initial state to the state
where the property is violated.

When identifying the loss scenario, the analytical model is converted into NuSMV
model, the system safety constraints are converted into safety properties in CTL/LTL
and the model checking is carried out by NuSMV. If a counterexample is acquired, the
counterexample is a loss scenario. If no counterexample is found, the system model meets
the safety properties.

3. STPA-SN Application Example

As the train door control is often utilized in the studies of formalization of STPA, such
as [3,4,8], this section also uses train door control to demonstrate the application process of
STPA-SN. In order to highlight the features of STPA-SN, many simplifications are made to
the example.

3.1. Step 1: Define the Purpose of the Analysis

Assume the train is stationary and the door of the train is aligned with the platform.
Loss (L), hazards (H) and safety constraints (SCs) are initialized as follows:

• L: The door squeezes people or things in the doorway, causing damage to people,
things or the door.

• H1: When the door is completely opened and there is an obstacle in the doorway, the
door receives the command to close.

• SC1: When the door is completely opened and there is an obstacle in the doorway, the
close command should not be received by the door.

3.2. Step 2: Construct the System Model

Please note that the system model is the model to be analyzed. Hence, it does not
imply that the system model in this section is reasonable or free from defects in terms of
design. The same applies to the system model in Section 3.4.1.

3.2.1. Construct the Hierarchical Control Structure

The internal block diagram of the train door control system describes the hierarchical
control structure of the system, including four levels, which are the Driver level, Door-
Controller level, Actuator/Sensor level and PhysicalDoor level, respectively, as shown in
Figure 2.

Appl. Sci. 2022, 12, 1671 6 of 19

Appl. Sci. 2022, 12, 1671 6 of 19

3.2. Step 2: Construct the System Model

Please note that the system model is the model to be analyzed. Hence, it does not

imply that the system model in this section is reasonable or free from defects in terms of

design. The same applies to the system model in Section 3.4.1.

3.2.1. Construct the Hierarchical Control Structure

The internal block diagram of the train door control system describes the hierarchical

control structure of the system, including four levels, which are the Driver level, DoorCon-

troller level, Actuator/Sensor level and PhysicalDoor level, respectively, as shown in Fig-

ure 2.

Figure 2. Internal block diagram of the train door control system.

The commands, i.e., control actions, and feedbacks passed between the components

are also shown in Figure 2, and their meanings are described in Table 1.

Table 1. The meaning of each command or feedback.

Commands or

Feedbacks
Meaning

Drv_Open_CA

Drv_Close_CA

Open and close commands sent by the Driver, passed to the DoorControl-

ler

Ctlr_Open_CA

Ctlr_Close_CA

Open and close commands sent by the DoorController, passed to the

DoorActuator

Act_Open_CA

Act_Close_CA

Open and close commands sent by the DoorActuator, passed to the Physi-

calDoor

Dr_Closed

Dr_Closing

Dr_Opened

Dr_Opening

The states of the PhysicalDoor, which, respectively, represent “completely

closed”, “in the process of closing”, “completely opened” and “in the pro-

cess of opening”

DrSnr_Closed_FB

DrSnr_Closing_FB

DrSnr_Opened_FB

DrSnr_Opening_FB

The feedbacks provided by the DoorSensor to the DoorController. They

indicate the door states sensed by the DoorSensor, which are “completely

closed”, “in the process of closing”, “completely opened” and “in the pro-

cess of opening”, respectively

ibd [block] TrainDoorDomain [TrainDoor_HCS]

External EnvironmentSystem Composition

: Driver

: DoorController

: DoorActuator : DoorSensor

: PhysicalDoor

: PhysicalObstacle: ObstacleSensor

DrSnr_Closed_FB,

DrSnr_Closing_FB,

DrSnr_Opened_FB,

DrSnr_Opening_FB

ObsSnr_Existing_FB,

ObsSnr_NotExisting_FB

Obs_Existing,

Obs_NotExistingDr_Closed, Dr_Closing,

Dr_Opened, Dr_Opening

Act_Close_CA,

Act_Open_CA

Ctlr_Close_CA,

Ctlr_Open_CA

Drv_Close_CA, Drv_Open_CA

Figure 2. Internal block diagram of the train door control system.

The commands, i.e., control actions, and feedbacks passed between the components
are also shown in Figure 2, and their meanings are described in Table 1.

Table 1. The meaning of each command or feedback.

Commands or Feedbacks Meaning

Drv_Open_CA
Drv_Close_CA

Open and close commands sent by the Driver, passed to
the DoorController

Ctlr_Open_CA
Ctlr_Close_CA

Open and close commands sent by the DoorController,
passed to the DoorActuator

Act_Open_CA
Act_Close_CA

Open and close commands sent by the DoorActuator,
passed to the PhysicalDoor

Dr_Closed
Dr_Closing
Dr_Opened
Dr_Opening

The states of the PhysicalDoor, which, respectively,
represent “completely closed”, “in the process of closing”,

“completely opened” and “in the process of opening”

DrSnr_Closed_FB
DrSnr_Closing_FB
DrSnr_Opened_FB
DrSnr_Opening_FB

The feedbacks provided by the DoorSensor to the
DoorController. They indicate the door states sensed by
the DoorSensor, which are “completely closed”, “in the
process of closing”, “completely opened” and “in the

process of opening”, respectively

ObsSnr_Existing_FB
ObsSnr_NotExisting_FB

The feedback from the ObstacleSensor feedbacks to the
DoorController indicating whether the ObstacleSensor has

sensed an obstacle in the doorway or not

Obs_Existing
Obs_NotExisting Indicate whether there is an obstacle in the doorway

3.2.2. Construct the System State Machine Diagrams

STPA-SN uses MARTE to define clocks, including the two clocks as shown in Figure 3.
These clocks are used to describe the time properties of the states and transitions. Their
detailed purposes are shown in Table 2.

Appl. Sci. 2022, 12, 1671 7 of 19

Appl. Sci. 2022, 12, 1671 7 of 19

ObsSnr_Existing_FB

ObsSnr_NotExist-

ing_FB

The feedback from the ObstacleSensor feedbacks to the DoorController in-

dicating whether the ObstacleSensor has sensed an obstacle in the door-

way or not

Obs_Existing

Obs_NotExisting
Indicate whether there is an obstacle in the doorway

3.2.2. Construct the System State Machine Diagrams

STPA-SN uses MARTE to define clocks, including the two clocks as shown in Figure

3. These clocks are used to describe the time properties of the states and transitions. Their

detailed purposes are shown in Table 2.

Figure 3. Defining clocks with MARTE.

Table 2. The needed clocks and their purposes.

Clock Name Purpose

clkDoorOpeningDuration
Records the time taken for the door to open, starting if Dr_Opening is

true and ending if Dr_Opened is true

clkDoorClosingDuration
Records the time taken for the door to close, starting if Dr_Closing is

true and ending if Dr_Closed is true

Corresponding to 7 parts in Figure 2, the system has 7 state machines, as shown in

Figure 4. Every state machine corresponds to a state variable. They are, respectively, the

Driver, DoorController, DoorActuator, DoorSensor, PhysicalDoor, ObstacleSensor and

PhysicalObstacle.

bdd [package] TDStructure [TDStructure]

«block»

Blocks::TrainDoorDomain

«Clock»

+ clkDoorClosingDuration: IdealClock [-1..100] = 0

+ clkDoorOpeningDuration: IdealClock [-1..100] = 0

+ clkDoorOpenSinceObstacle: IdealClock [-1..100] = 0

«block»

Blocks::Driver

- Driver: Driver_States = driverOutputClose

owned behaviors

«stateMachine» Driver ()

«block»

Blocks::DoorController

- DoorController: DoorController_States = controllerOutpu...

receptions

+ «signal» DrSnr_Closed_FB()

+ «signal» DrSnr_Closing_FB()

+ «signal» DrSnr_Opened_FB()

+ «signal» DrSnr_Opening_FB()

+ «signal» Drv_Close_CA()

+ «signal» Drv_Open_CA()

+ «signal» ObsSnr_Existing_FB()

+ «signal» ObsSnr_NotExisting_FB()

owned behaviors

«stateMachine» DoorController ()

«block»

Blocks::PhysicalDoor

- PhysicalDoor: PhysicalDoor_States = physicalClosed

receptions

+ «signal» Act_Close_CA()

+ «signal» Act_Open_CA()

owned behaviors

«stateMachine» PhysicalDoor ()

«block»

Blocks::PhysicalObstacle

- PhysicalObstacle: PhysicalObstacle_States = physicalNotExisting

owned behaviors

«stateMachine» PhysicalObstacle ()

«block»

Blocks::ObstacleSensor

- ObstacleSensor: ObstacleSensor_States = sensoredNotExisting

receptions

+ «signal» Obs_Existing()

+ «signal» Obs_NotExisting()

owned behaviors

«stateMachine» ObstacleSensor ()

«block»

Blocks::DoorSensor

- DoorSensor: DoorSensor_States = sensoredClosed

receptions

+ «signal» Dr_Closed()

+ «signal» Dr_Closing()

+ «signal» Dr_Opened()

+ «signal» Dr_Opening()

owned behaviors

«stateMachine» DoorSensor ()

«block»

Blocks::DoorActuator

- DoorActuator: DoorActuator_States = actuatorOutputClose

receptions

+ «signal» Ctlr_Close_CA()

+ «signal» Ctlr_Open_CA()

owned behaviors

«stateMachine» DoorActuator ()

«signal»

Drv_Open_CA

(from Signals)

«signal»

Drv_Close_CA

(from Signals)

«enumeration»

Enums::Driver_States

 driverOutputClose

 driverOutputOpen

«enumeration»

Enums::DoorController_States

 controllerOutputCloseCommand

 controllerOutputOpenCommand

«signal»

Ctlr_Open_CA

(from Signals)

«signal»

Ctlr_Close_CA

(from Signals)

«enumeration»

Enums::PhysicalObstacle_States

 physicalNotExisting

 physicalExisting

«signal»

Obs_NotExisting

(from Signals)

«signal»

Obs_Existing

(from Signals)

«enumeration»

Enums::ObstacleSensor_States

 sensoredNotExisting

 sensoredExisting

«signal»

Act_Open_CA

(from Signals)

«signal»

Act_Close_CA

(from Signals)

«enumeration»

Enums::DoorActuator_States

 actuatorOutputClose

 actuatorOutputOpen

«enumeration»

Enums::DoorSensor_States

 sensoredClosed

 sensoredClosing

 sensoredOpening

 sensoredOpened

«enumeration»

Enums::PhysicalDoor_States

 physicalClosed

 physicalClosing

 physicalOpened

 physicalOpening

«timedDomain»

ApplicationTimeDomain

+ IdealClock

«clockType»

ApplicationTimeDomain::IdealClock

tags

isLogical = false

nature = discrete

«clock»

clkDoorOpeningDuration

(from ApplicationTimeDomain)

«clock»

clkDoorClosingDuration

(from ApplicationTimeDomain)

«ClockConstraint»

{PhysicalDoor=physicalClosed &

Act_Open_CA:0;

PhysicalDoor=physicalClosing &

Act_Open_CA:10;}

«ClockConstraint»

{PhysicalDoor=physicalOpened &

Act_Close_CA:0;}

«signal»

DrSnr_Closing_FB

(from Signals)

«signal»

DrSnr_Closed_FB

(from Signals)

«signal»

DrSnr_Opened_FB

(from Signals)

«signal»

DrSnr_Opening_FB

(from Signals)

«signal»

Dr_Closing

(from Signals)

«signal»

Dr_Closed

(from Signals)

«signal»

Dr_Opened

(from Signals)

«signal»

Dr_Opening

(from Signals)

«signal»

ObsSnr_NotExisting_FB

(from Signals)

«signal»

ObsSnr_Existing_FB

(from Signals)

Figure 3. Defining clocks with MARTE.

Table 2. The needed clocks and their purposes.

Clock Name Purpose

clkDoorOpeningDuration Records the time taken for the door to open, starting if
Dr_Opening is true and ending if Dr_Opened is true

clkDoorClosingDuration Records the time taken for the door to close, starting if
Dr_Closing is true and ending if Dr_Closed is true

Corresponding to 7 parts in Figure 2, the system has 7 state machines, as shown
in Figure 4. Every state machine corresponds to a state variable. They are, respectively,
the Driver, DoorController, DoorActuator, DoorSensor, PhysicalDoor, ObstacleSensor and
PhysicalObstacle.

1. Driver state machine.

As Figure 4a shows, the driver can send Drv_Open_CA to the door controller and
changes from driverOutputClose to driverOutputOpen. Similarly, the driver can send out
Drv_Close_CA and changes from driverOutputOpen to driverOutputClose.

2. DoorController state machine.

As Figure 4b shows, when Drv_Open_CA is true, the door controller sends Ctlr_Open_CA.
When the obstacle sensor finds an obstacle in the doorway (i.e., ObsSnr_Existing_FB

is true), the door controller will send Ctlr_Open_CA to open the door.
When DoorController is in the state of controllerOutputOpenCommand, if the obstacle

sensor finds an obstacle in the doorway (i.e., ObsSnr_Existing_FB is true), the door controller
will send Ctlr_Open_CA to open the door.

The absence of obstacle (i.e., ObsSnr_NotExisting_FB is true) is a necessary condition
for the door controller to send Ctlr_Close_CA. When the door is in the opening process
(i.e., DoorSensor = sensedOpening), the controller will not send Ctlr_Close_CA.

Appl. Sci. 2022, 12, 1671 8 of 19
Appl. Sci. 2022, 12, 1671 8 of 19

(a)

(b)

(c)

(d)

stm [StateMachine] Driver [Driver]

Initial

driverOutputClose driverOutputOpen/Drv_Open_CA()

/Drv_Close_CA()

stm [StateMachine] DoorActuator [DoorActuator]

Initial

actuatorOutputClose actuatorOutputOpen

Ctlr_Close_CA

/Act_Close_CA()

Ctlr_Open_CA

/Act_Open_CA()

Figure 4. Cont.

Appl. Sci. 2022, 12, 1671 9 of 19Appl. Sci. 2022, 12, 1671 9 of 19

(e)

(f)

(g)

Figure 4. Seven state machines of the system: (a) Driver; (b) DoorController; (c) Actuator; (d)

DoorSensor; (e) PhysicalDoor; (f) ObstacleSensor and (g) PhysicalObstacle.

1. Driver state machine.

As Figure 4a shows, the driver can send Drv_Open_CA to the door controller and

changes from driverOutputClose to driverOutputOpen. Similarly, the driver can send out

Drv_Close_CA and changes from driverOutputOpen to driverOutputClose.

2. DoorController state machine.

As Figure 4b shows, when Drv_Open_CA is true, the door controller sends

Ctlr_Open_CA.

When the obstacle sensor finds an obstacle in the doorway (i.e., ObsSnr_Existing_FB

is true), the door controller will send Ctlr_Open_CA to open the door.

When DoorController is in the state of controllerOutputOpenCommand, if the obsta-

cle sensor finds an obstacle in the doorway (i.e., ObsSnr_Existing_FB is true), the door

controller will send Ctlr_Open_CA to open the door.

stm [StateMachine] PhysicalDoor [PhysicalDoor]

physicalClosed

Initial

physicalOpening

physicalClosing

physicalOpened

[clkDoorOpeningDuration>=10]

/Dr_Opened()

Act_Open_CA

/Dr_Opening()

Act_Close_CA

/Dr_Closing()

Act_Open_CA

/Dr_Opening()

[clkDoorClosingDuration>=10]

/Dr_Closed()

stm [StateMachine] PhysicalObstacle [PhysicalObstacle]

Initial

physicalNotExisting physicalExisting

/Obs_NotExisting()

/Obs_Existing()

[PhysicalDoor!=physicalClosed]

/Obs_Existing()

/Obs_NotExisting()

Figure 4. Seven state machines of the system: (a) Driver; (b) DoorController; (c) Actuator;
(d) DoorSensor; (e) PhysicalDoor; (f) ObstacleSensor and (g) PhysicalObstacle.

3. DoorActuator state machine.

As Figure 4c shows, the actuator sends Act_Open_CA when receives Ctlr_Open_CA
and sends Act_Close_CA when receives Ctlr_Close_CA.

4. DoorSensor state machine.

As Figure 4d shows, the door sensor will feed back the corresponding information to
the train door controller according to the actual status of the door.

5. PhysicalDoor state machine.

As Figure 4e shows, there are four states of the physical door:

• physicalOpened: The physical door is completely opened.
• physicalClosed: The physical door is completely closed.
• physicalOpening: The physical door is in the process of opening.

Appl. Sci. 2022, 12, 1671 10 of 19

• physicalClosing: The physical door is in the process of closing.

Before entering physicalOpened, physicalOpening lasts for at least 10 units of time.
Similarly, before entering physicalClosed, physicalClosing lasts for at least 10 units of time.

6. ObstacleSensor state machine.

As Figure 4f shows, the obstacle sensor feeds back to the door controller according to
the actual state of the obstacle.

7. PhysicalObstacle state machine.

As Figure 4g shows, the obstacle has two states standing for the presence or absence
of an obstacle in the doorway.

3.3. Step 3: Identify the Unsafe Control Actions
3.3.1. Specify the System-Level Hazards with the Information in the System Model

Use the variables and states in the system model to describe the hazards. H1 will be
changed to:

H1: PhysicalDoor = physicalOpened and PhysicalObstacle = physicalExisting and
Act_Close_CA = TRUE.

3.3.2. Determine CA-PR, Type and Context in the {CA-PR, Type, Context}

The control action, CA, provided by the actuator includes Act_Open_CA and Act_Close_CA.
Therefore, the value of CA-PR can be Act_Open_CA or Act_Close_CA.

The types of UCA includes:

• Type1: Not provided;
• Type2: Provided;
• Type3: Too early or too late;
• Type4: Stopped too soon or applied too long.

Therefore, the possible values of Type are Type 1, Type 2, Type 3 and Type 4.
Select the train state variable, PhysicalDoor, and the obstacle state variable, Phys-

icalObstacle, as the variables of the Context from the state machines in Figure 4. Therefore,
Context = (PhysicalDoor, PhysicalObstacle).

The values of PhysicalDoor can be:

• 1: PhysicalClosing;
• 2: PhysicalOpening;
• 3: PhysicalClosed;
• 4: PhysicalOpened.

The values of PhysicalObstacle can be:

• 1: PhysicalNotExisting;
• 2: PhysicalExisting.

Therefore, Context can be: (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1) and (4, 2).

3.3.3. Give All the Potential UCAs through Traversal

Each instance of {CA-PR, Type, Context} is considered as a potential UCA (PUCA).
A PUCA that contains a time-independent Type is called a time-independent PUCA,

and a PUCA that contains a time-dependent Type is called a time-dependent PUCA.
There are 64 instances of PUCA, some of which are presented in Table 3.

Appl. Sci. 2022, 12, 1671 11 of 19

Table 3. PUCAs and their analysis results.

PUCAs Analysis Results of PUCAs

ID CA-PR Type Context Analysis
Method A True UCA or NotPhysicalDoor PhysicalObstacle

1

Act_Close_CA

Type 1

PhysicalOpened
PhysicalExisting Manual

analysis Not UCA

2 PhysicalNotExisting Manual
analysis Not UCA

3
PhysicalClosed

PhysicalExisting Manual
analysis N/A

4 PhysicalNotExisting Manual
analysis Not UCA

5
PhysicalOpening

PhysicalExisting Manual
analysis Not UCA

6 PhysicalNotExisting Manual
analysis Not UCA

7
PhysicalClosing

PhysicalExisting Manual
analysis

A true UCA, causing
a new system-level

hazard to be
identified

8 PhysicalNotExisting Manual
analysis Not UCA

9

Type 2

PhysicalOpened
PhysicalExisting Truth

calculation
A true UCA, but

equal to H1

10 PhysicalNotExisting Manual
analysis Not UCA

11
PhysicalClosed

PhysicalExisting Manual
analysis N/A

12 PhysicalNotExisting Manual
analysis Not UCA

13
PhysicalOpening

PhysicalExisting Manual
analysis

A true UCA, causing
a new system-level

hazard to be
identified

14 PhysicalNotExisting Manual
analysis Not UCA

15
PhysicalClosing

PhysicalExisting Manual
analysis

A true UCA, causing
a new system-level

hazard to be
identified

16 PhysicalNotExisting Manual
analysis Not UCA

17

Type 3

PhysicalOpened
PhysicalExisting Manual

analysis

A true UCA, causing
a new system-level

hazard to be
identified

18 PhysicalNotExisting Manual
analysis Not UCA

19
PhysicalClosed

PhysicalExisting Manual
analysis N/A

20 PhysicalNotExisting Manual
analysis Not UCA

21
PhysicalOpening

PhysicalExisting Manual
analysis

A true UCA, causing
a new system-level

hazard to be
identified

22 PhysicalNotExisting Manual
analysis Not UCA

23
PhysicalClosing

PhysicalExisting Manual
analysis

A true UCA, causing
a new system-level

hazard to be
identified

24 PhysicalNotExisting Manual
analysis Not UCA

Appl. Sci. 2022, 12, 1671 12 of 19

Table 3. Cont.

PUCAs Analysis Results of PUCAs

ID CA-PR Type Context Analysis
Method A True UCA or NotPhysicalDoor PhysicalObstacle

25

Type 4

PhysicalOpened
PhysicalExisting Manual

analysis N/A

26 PhysicalNotExisting Manual
analysis N/A

27
PhysicalClosed

PhysicalExisting Manual
analysis N/A

28 PhysicalNotExisting Manual
analysis N/A

29
PhysicalOpening

PhysicalExisting Manual
analysis N/A

30 PhysicalNotExisting Manual
analysis N/A

31
PhysicalClosing

PhysicalExisting Manual
analysis N/A

32 PhysicalNotExisting Manual
analysis N/A

. . .

Act_Open_CA

Type 1 Manual
analysis . . .

. . . Type 2 Manual
analysis . . .

49

Type 3

PhysicalOpened
PhysicalExisting Manual

analysis . . .

50 PhysicalNotExisting Manual
analysis . . .

51
PhysicalClosed

PhysicalExisting Manual
analysis N/A

52 PhysicalNotExisting Manual
analysis . . .

53
PhysicalOpening

PhysicalExisting Manual
analysis . . .

54 PhysicalNotExisting Manual
analysis . . .

55
PhysicalClosing

PhysicalExisting Manual
analysis

A true UCA, causing
a new system-level

hazard to be
identified

56 PhysicalNotExisting Manual
analysis . . .

. . .
Type 4

. Manual
analysis N/A

64 Manual
analysis N/A

3.3.4. Analyze Each PUCA to Determine Whether It Is a UCA

Analyze PUCAs one by one. Similar to [3–5], truth calculations could be used.
A PUCA is a UCA if it implies that the expression of H1 in Section 3.3.1 is true.

By truth calculation, the PUCA of ID 9 is judged as true UCA, but equal to H1, because the
PUCA of ID 9 means CA-PR= Act_Close_CA, Type = Provided, PhysicalDoor = physicalOpened
and PhysicalObstacle = physicalExisting.

However, for those PUCAs that could not be judged as true UCAs by truth calculations,
they still need to be analyzed manually, since truth calculations only apply to those PUCAs,
which are the instances of hazards already identified in Step 1 of STPA-SN. This means the
manual identification of UCA is indispensable. Hence, the remaining 63 PUCAs should be
analyzed manually.

Since Act_Open_CA and Act_Close_CA are discrete commands and not continuous
ones, Type 4 is not applicable. Assuming PhysicalClosed and PhysicalExisting cannot be
true simultaneously, the corresponding entries are also not applicable.

Through manual analysis, many of the PUCAs are judged as true UCAs, each of which
causes a new hazard to be identified.

Appl. Sci. 2022, 12, 1671 13 of 19

For example, the PUCA with ID 55 means that door receives CA-PR = Act_Open_CA
with Type 3 when PhysicalDoor = PhysicalClosing and PhysicalObstacle = PhysicalExisting.
This PUCA would be a hazard if receiving CA-PR = Act_Open_CA too late; therefore, this
PUCA is a true UCA and a new hazard can be generated, marked as H2. By design, the
meaning of “too late” is defined as “later more than 3 units of time”.

Although every true UCA, which is judged by manual analysis, causes a new hazard to
be identified, it does not mean every true UCA will correspond to a new hazard one-to-one;
instead, several true UCAs could correspond to a common new hazard.

After the new hazards are identified, the system-level hazards will be updated. Here,
the system-level hazards are updated as follows after H2 is added:

• H1: PhysicalDoor = physicalOpened and PhysicalObstacle = physicalExisting and
Act_Close_CA = TRUE.

• H2: PhysicalDoor = physicalClosing and PhysicalObstacle = physicalExisting and (the
time, from Obs_Existing to Act_Open_CA when physicalClosing = TRUE, is larger
than 3 units of time).

Corresponding to the hazards H1 and H2, the safety constraints of the system are
determined as follows:

• SC1: PhysicalDoor = physicalOpened, PhysicalObstacle = physicalExisting, Act_Cl-
ose_CA = TRUE, these three conditions cannot hold simultaneously.

• SC2: PhysicalDoor = physicalClosing, PhysicalObstacle = physicalExisting, (the time,
from Obs_Existing to Act_Open_CA when physicalClosing = TRUE, is larger than
3 units of time), these three conditions cannot hold simultaneously.

3.4. Step 4: Identify the Loss Scenarios
3.4.1. Construct System Model by the Addition of CFs

There is no delay caused by either the obstacle sensor or the door actuator in Figure 4c,g.
In this section, a two-unit time delay is added to both the obstacle sensor and the door
actuator, respectively. Two clocks are added to describe the delays: one is clkObstacleSen-
sorDelay, standing for the delay between Obs_Existing and ObsSnr_Existing, the other
is clkActuatorDelay, standing for the delay between Ctlr_Open_CA and Act_Open_CA.
Additionally, a third clock named clkDoorOpenSinceObstacle is added to record the time
from Obs_Existing to Act_Open_CA when the door is in the state of physicalClosing.

After adding the CFs, the updated system model has five clocks (Figure 5), and the
state machines of the door actuator and the obstacle sensor are shown in Figure 6.

Figure 5. Five clocks after updating the system model.

Appl. Sci. 2022, 12, 1671 14 of 19Appl. Sci. 2022, 12, 1671 14 of 19

(a)

(b)

Figure 6. State machines after the addition of CFs. (a) The actuator state machine after the addition

of delay. (b) The obstacle sensor state machine after the addition of delay.

3.4.2. Convert the SCs into Temporal Logics

The two SCs in Section 3.3.4 are changed into specifications (SPEC) in CTL, which is

supported by NuSMV for the description of correctness properties:

• SPEC_SC1: AG! (PhysicalDoor = physicalOpened and PhysicalObstacle = physicalEx-

isting and Act_Close_CA);

• SPEC_SC2: AG! (PhysicalDoor = physicalClosing and PhysicalObstacle = physicalEx-

isting and clkDoorOpenSinceObstacle > 3).

Two specifications are described by the SysML requirement diagram, shown in Fig-

ure 7, making up the system safety specification, which will be verified for the door con-

trol system model marked with the TDStructure.

Figure 7. The properties to be checked, described by the SysML requirement diagram.

3.4.3. Construct the System Model in NuSMV

The attributes of the blocks in the BDD (Block Definition Diagram) are converted into

system variables in NuSMV. The state machines defined in the blocks are converted into

stm [StateMachine] DoorActuator [DoorActuator]

Initial

actuatorOutputClose actuatorOutputOpen

Ctlr_Close_CA

/Act_Close_CA()

Ctlr_Open_CA

[clkActuatorDelay>=2]

/Act_Open_CA()

stm [StateMachine] ObstacleSensor [ObstacleSensor]

Initial

sensoredNotExisting sensoredExisting

Obs_NotExisting

/ObsSnr_NotExisting_FB()

Obs_Existing

[clkObstacleSensorDelay>=2]

/ObsSnr_Existing_FB()

req [package] SystemSafetyConstraint [SystemSafetyConstraint]

«requirement»

SystemSafetySpecification

(from Requirements)

«requirement»

SafetyConstraint2

id = "SC2"

text = "AG! (PhysicalDoor =

physicalClosing & PhysicalObstacle =

physicalExisting &

clkDoorOpenSinceObstacle>3)"

(from Requirements)

TDStructure

+ ApplicationTimeDomain

+ Blocks

+ Enums

+ Signals

(from Model)

«requirement»

SafetyConstraint1

id = "SC1"

text = "AG!(PhysicalDoor =

physicalOpened & PhysicalObstacle =

physicalExisting & Act_Close_CA)"

(from Requirements)
«verify»

Figure 6. State machines after the addition of CFs. (a) The actuator state machine after the addition
of delay. (b) The obstacle sensor state machine after the addition of delay.

3.4.2. Convert the SCs into Temporal Logics

The two SCs in Section 3.3.4 are changed into specifications (SPEC) in CTL, which is
supported by NuSMV for the description of correctness properties:

• SPEC_SC1: AG! (PhysicalDoor = physicalOpened and PhysicalObstacle = physicalEx-
isting and Act_Close_CA);

• SPEC_SC2: AG! (PhysicalDoor = physicalClosing and PhysicalObstacle = physicalEx-
isting and clkDoorOpenSinceObstacle > 3).

Two specifications are described by the SysML requirement diagram, shown in
Figure 7, making up the system safety specification, which will be verified for the door
control system model marked with the TDStructure.

Appl. Sci. 2022, 12, 1671 14 of 19

(a)

(b)

Figure 6. State machines after the addition of CFs. (a) The actuator state machine after the addition

of delay. (b) The obstacle sensor state machine after the addition of delay.

3.4.2. Convert the SCs into Temporal Logics

The two SCs in Section 3.3.4 are changed into specifications (SPEC) in CTL, which is

supported by NuSMV for the description of correctness properties:

• SPEC_SC1: AG! (PhysicalDoor = physicalOpened and PhysicalObstacle = physicalEx-

isting and Act_Close_CA);

• SPEC_SC2: AG! (PhysicalDoor = physicalClosing and PhysicalObstacle = physicalEx-

isting and clkDoorOpenSinceObstacle > 3).

Two specifications are described by the SysML requirement diagram, shown in Fig-

ure 7, making up the system safety specification, which will be verified for the door con-

trol system model marked with the TDStructure.

Figure 7. The properties to be checked, described by the SysML requirement diagram.

3.4.3. Construct the System Model in NuSMV

The attributes of the blocks in the BDD (Block Definition Diagram) are converted into

system variables in NuSMV. The state machines defined in the blocks are converted into

stm [StateMachine] DoorActuator [DoorActuator]

Initial

actuatorOutputClose actuatorOutputOpen

Ctlr_Close_CA

/Act_Close_CA()

Ctlr_Open_CA

[clkActuatorDelay>=2]

/Act_Open_CA()

stm [StateMachine] ObstacleSensor [ObstacleSensor]

Initial

sensoredNotExisting sensoredExisting

Obs_NotExisting

/ObsSnr_NotExisting_FB()

Obs_Existing

[clkObstacleSensorDelay>=2]

/ObsSnr_Existing_FB()

req [package] SystemSafetyConstraint [SystemSafetyConstraint]

«requirement»

SystemSafetySpecification

(from Requirements)

«requirement»

SafetyConstraint2

id = "SC2"

text = "AG! (PhysicalDoor =

physicalClosing & PhysicalObstacle =

physicalExisting &

clkDoorOpenSinceObstacle>3)"

(from Requirements)

TDStructure

+ ApplicationTimeDomain

+ Blocks

+ Enums

+ Signals

(from Model)

«requirement»

SafetyConstraint1

id = "SC1"

text = "AG!(PhysicalDoor =

physicalOpened & PhysicalObstacle =

physicalExisting & Act_Close_CA)"

(from Requirements)
«verify»

Figure 7. The properties to be checked, described by the SysML requirement diagram.

Appl. Sci. 2022, 12, 1671 15 of 19

3.4.3. Construct the System Model in NuSMV

The attributes of the blocks in the BDD (Block Definition Diagram) are converted into
system variables in NuSMV. The state machines defined in the blocks are converted into the
state machines in NuSMV. The states contained in the SysML state machines are converted
into enumerated variables, and the state transitions and constrain conditions are converted
into the transition statements with “next” as the keyword in NuSMV.

The signals defined in the SysML model are converted into Boolean variables in
NuSMV, clock variables into integer variables, and transition conditions of each variable
into transition statements with “next” as the keyword of the corresponding variable.

3.4.4. Model Checking

The NuSMV model is used to analyze the CTL specifications and the results show that
the system model does not satisfy the two CTL specifications. Below is the analysis result
of SPEC_SC2, which is output as a counterexample, i.e., a loss scenario.

1. In the beginning, the door is completely closed, i.e., in the state of Dr_Closed, and
there is no obstacle in the doorway, i.e., in the state of Obs_NoExisting.

2. The driver sends the command of opening the door (Drv_Open_CA), triggering the
door controller to send Ctlr_Open_CA.

3. After receiving Ctlr_Open_CA, the door actuator performs the door opening action
(Act_Open_CA).

4. Triggered by Act_Open_CA, the door changes its state from physicalClosed to phys-
icalOpening. After 10 units of time, it changes to the state of physicalOpened.

5. The driver sends the command of closing the door (Drv_Close_CA), triggering the
door controller to send Ctlr_Close_CA.

6. The door actuator executes the closing action (Act_Close_CA) after receiving Ctlr_Close_CA.
7. The door changes its state from physicalOpened to physicalClosing.
8. The obstacle appears in the doorway and physicalExisting is true. When the door

is closing and an obstacle exists, clkDoorOpenSinceObstacle is set to zero and starts
the timing.

9. A total of 2 units of time delay happens to the obstacle sensor and clkDoorOpenSinceObstacle
increases by 2 units of time.

10. The door controller sends the command of door opening (Ctlr_Open_CA), and
the door actuator delays 2 units of time from receiving Ctlr_Open_CA to sending
Act_Open_CA. The clkDoorOpenSinceObstacle adds 2 units of time, reaching 4 units
of time in total.

At this point, the door of the train is in the physicalClosing state and the obstacle
is in the physicalExisting state. The total duration (clkDoorOpenSinceObstacle) from the
moment when an obstacle appears in the doorway to the moment when the door receives
the command to open the door, is 4 units of time, which is longer than 3 units of time.
Hence, SPEC_SC2 is violated and the system becomes hazardous.

4. Discussion

The main differences between STPA-SN and HSTPA are summarized and presented
in Table 4. These differences reflect that STPA-SN has more reasonable definitions of
terminologies, more disciplined analysis processes and more accurate analysis results.

STPA-SN improves the formalization of STPA, which involving the definitions of
UCA and loss scenario, the construction of the analytical model, the identification of the
processes of UCAs and loss scenarios.

Appl. Sci. 2022, 12, 1671 16 of 19

Table 4. Comparisons between STPA-SN and HSTPA.

HSTPA STPA-SN

Step 1: Define the purpose of the analysis Step 1: Define the purpose of the analysis.
No major modification.

Step 2: Model the control structure:
(a) Boxes and lines are used to describe the hierarchical control
structure between the components, including the components
and the commands and feedbacks between components.
(b) The process model needs to be built exclusively and mainly
consists of static information.

Step 2: Construct the system model:
(a) The SysML internal block diagram is used to describe the
hierarchical control structure and state machine diagrams to
describe the behaviors.
(b) The process model is included in the SysML state
machine diagrams.

Step 3: Identify the unsafe control actions
(a) It is not specified whether UCA is a state and whether the
CA in the definition of UCA is the one received by the
controlled process or the one issued by the controller.
(b) Extract the information required for UCA identification from
the boxes and lines model in step 2.

Step 3: Identify the unsafe control actions
(a) Define UCA as a state and define UCA with the CA received
by the controlled process.
(b) Extract the information required for UCA identification from
the internal block diagram and state machine diagrams.

Step 4: Identify the loss scenarios
(a) The loss scenario is defined as describing the causal factors
that lead to UCAs and to hazards.
(b) Loss scenarios are identified manually.

Step 4: Identify the loss scenarios
(a) The loss scenario is defined as the process in which the
system emerges UCA and system-level hazard with the
involvement of causal factors.
(b) SysML state machine diagrams are automatically converted
into the NuSMV model, through which the loss scenarios are
automatically obtained.

4.1. About the Definition of UCA

While judging whether a PUCA is a UCA, it is required to judge whether the PUCA
causes a hazard. The hazard is the state of the controlled process and CA-PR is the direct
input of the controlled process. Therefore, it is CA-PR that should be used to decide
whether the state of controlled process is hazardous, instead of other CAs, such as CAs
issued by controllers.

In Section 3, the physical door is the controlled process. In Figure 2, Act_Close_CA and
Act_Open_CA are two CA-PRs. However, Drv_Close_CA, Drv_Open_CA, Ctlr_Close_CA
and Ctlr_Open_CA are not CA-PRs, although they are closely related to the two CA-PRs.

If it is not specified that CA-PR should be used in the definition of UCA, either
Drv_Open_CA or Ctlr_Open_CA might take the place of Act_Open_CA and leads to error.

For example, in Section 3.3.3, PUCA with ID 55 is judged as a true UCA, therein the
CA-PR of Act_Open_CA is used. Corresponding to this UCA, H2 and SC2 are generated.
And corresponding to SC2, SPEC_SC2 is generated as follows:

SPEC_SC2: AG! (PhysicalDoor = physicalClosing and PhysicalObstacle = physicalEx-
isting and clkDoorOpenSinceObstacle > 3). Therein, Act_Open_CA is one condition used
to calculate clkDoorOpenSinceObstacle (see the description of clkDoorOpenSinceObstacle
in Figure 5).

If Drv_Open_CA or Ctlr_Open_CA is used to calculate clkDoorOpenSinceObstacle, it
is impossible for STPA-SN to identify the loss scenario that appears in Section 3.4.4, because
Act_Open_CA is different from Drv_Open_CA or Ctlr_Open_CA due to a delay of 2 units
of time.

Through above explanation, it might be understood why CA-PR must be used in the
definition of UCA.

4.2. About the Definition of Loss Scenario

In STPA-SN, loss scenario is defined as the process in which the system emerges UCA
and system-level hazard with the involvement of causal factors. In HSTPA, loss scenario is
defined as describing the causal factors that lead to UCAs and to hazards.

Appl. Sci. 2022, 12, 1671 17 of 19

As shown in Section 3.4.4, STPA-SN can offer a loss scenario with a complete process.
However, HSTPA does not have this capability, just pointing out possible causal factors [1]
(pp. 42–53). Hence, the loss scenario by STPA-SN is more rigorous and specific than the
one by HSTPA, which benefits the design.

If a loss scenario is identified by STPA-SN, the system designer can accurately analyze
the causality and rapidly decide the system modification scheme. After modification, the
updated system model can soon be verified by STPA-SN, until no loss scenario is identified.

4.3. About the Construction of the Analytical Model

• As for the dynamic modeling:

The analytical model that HSTPA constructs lacks sufficient behaviors. It could be
observed from HSTPA’s hierarchical control structure, such as Figure 2.12 in [1] (p. 30), and
HSTPA’s description about the model of the controlled process, which has little information
about behaviors. HSTPA believes “The model of the controlled process is the state that the
automated controller thinks that the controlled process is in” [1] (p. 182). Hence, it is nearly
impossible for HSTPA to present a detailed dynamic loss scenario.

STPA-SN avoids this disadvantage since all the needed behaviors are modeled with
state machines (shown in Figures 4 and 5). These behaviors underlie identifying loss
scenarios among all the components.

• As for the static modeling:

STPA-SN uses the SysML internal block diagram to describe the hierarchical con-
trol structure, such as Figure 2, not only standardized, but also matching SysML state
machine diagrams.

4.4. About the Process of Identifying UCAs

Truth calculations could be automated. However, it can be observed from Section 3.3.4
that the role of the truth calculations is limited. Manual analysis occupies the majority of
the workload to identify UCAs. In our opinion, manual analysis is inevitable because a
new system-level hazard must be judged by a human.

4.5. About the Process of Identifying the Loss Scenario

HSTPA categorizes loss scenarios into two types [1] (p. 43): one type is the loss
scenarios that exist among actuators and controlled process, the other is scenarios that exist
among sensors and controllers; therefore, it seems impossible to identify loss scenarios
caused by the interactions among all those components, i.e., actuators, controlled process,
sensors and controllers.

Nevertheless, STPA-SN is competent to find such loss scenarios. The loss scenario in
Section 3.4.4 involves the actuator, controlled process, sensors and controllers. This feature
benefits from the following:

• All the needed behaviors are modeled, including those of the actuators, controlled
process, sensors and controllers;

• NuSMV could analyze all the behaviors simultaneously and automatically.

5. Conclusions
5.1. Two Advantages of STPA-SN

1. Higher efficiency.

The formalization of the STPA is the foundation of the automation. After the STPA-
SN is defined, a prototype tool was developed, and the example in Section 3 can be
demonstrated through the tool (see the video at https://youtu.be/LQVuWO38tJY, accessed
on 16 January 2022. Slight variations exist).

According to the tool’s demonstration, the following features could be observed:

• PUCAs could be generated automatically.

https://youtu.be/LQVuWO38tJY

Appl. Sci. 2022, 12, 1671 18 of 19

• The loss scenario can be generated automatically.
• Hence, it can be concluded that STPA-SN has higher efficiency than HSTPA.

2. Better collaboration with SysML-based systems engineering.

It could be found from the tool that the SysML model is the main interface for users
and the NuSMV model is transparent to the users. This feature is attributed to the automatic
conversion between the SysML model and the NuSMV model.

If a system already has artifacts in SysML, it is more possible for STPA-SN to reuse these
artifacts to construct the analytical model than HSTPA, which uses non-standard language.
Therefore, it can be concluded that STPA-SN is more convenient to be incorporated into
SysML-based systems engineering than HSTPA.

5.2. Three Disadvantages of STPA-SN

State machines and model checking contribute to the automation of STPA-SN, mean-
while, they also contribute to three disadvantages of STPA-SN:

1. As STPA-SN describes the system behaviors with state machines, which are insuffi-
cient to describe the continuous behaviors, STPA-SN does not apply to the hybrid
system that comprises both continuous and discrete dynamic behaviors.

2. STPA-SN is not competent to analyze an excessively complicated system, which
leads to state explosion, exceeding the ability of model checking used by STPA-SN.
However, since STPA is mainly applied to the high-level design of the system, this
disadvantage might not be so prominent.

3. In STPA-SN, an SC must be converted into temporal logic for the identification of the
loss scenario. If an SC cannot be converted into the temporal logic supported by the
model checker, the loss scenario cannot be identified against the SC either.

5.3. Future Research Directions

1. The formalization of time-dependent UCAs.

It can be observed from Section 3.3 that “Type 3: Too early or too late” and “Type 4:
Stopped too soon or applied too long” have not been formalized, which brings ambiguity to the
identification of UCAs. Asare et al. added timing property to the definition of UCA [2] (p. 153),
which is beneficial to solve the problem, but further empirical evidence is still in need.

2. Improving the automatic conversion between the SysML model and the NuSMV model.

Although our prototype tool is capable of converting the SysML model into the
NuSMV model, the technique is not general and is still far from maturity.

3. The variants of STPA-SN could be developed.

Similar to STPA-SN, AltaRica or AADL could replace SysML, and other model check-
ers, such as SPIN and PAT, could replace NuSMV.

4. The STPA that can automatically identify the loss scenario for hybrid system.

Construct the analytical model of a hybrid system and analyze the model through
simulation. For example, discrete dynamic behaviors can be modeled with Stateflow and
continuous dynamic behaviors can be modeled with the differential/difference equations
in Simulink (Stateflow and Simulink are two tools of MATLAB). After modeling, simulation
can be used to identify the loss scenario.

Author Contributions: Conceptualization, D.Z. and R.S.; methodology, D.Z. and R.S.; Software, H.G.;
validation H.G.; formal analysis, R.S. and H.G.; investigation, D.Z. and H.G.; resources, D.Z. and
R.S.; data curation, H.G.; writing—original draft preparation, D.Z. and H.G.; writing—review and
editing, D.Z. and T.W.; visualization, H.G.; supervision, D.Z.; project administration, D.Z.; funding
acquisition, D.Z. All authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2022, 12, 1671 19 of 19

Funding: This research was funded by Civil Aviation Joint Funds under National Natural Science
Foundation of China and Civil Aviation Administration of China, grant number U1533201, and by
Science and Technology on Reliability and Environmental Engineering Laboratory, grant number
6142004200405.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. STPA Handbook. Available online: https://psas.scripts.mit.edu/home/materials/ (accessed on 28 September 2021).
2. Asare, P.; Lach, J.; Stankovic, J.A. FSTPA-I: A formal approach to hazard identification via system theoretic process analysis.

In Proceedings of the 4th IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS), Philadelphia, PA, USA,
8–11 April 2013; pp. 150–159.

3. Thomas, J. Extending and automating a systems-theoretic hazard analysis for requirements generation and analysis. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 29 April 2013.

4. Suo, D. Tool-assisted hazard analysis and requirement generation based on STPA. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 7 December 2015.

5. Souza, F.; Pereira, D.; Pagliares, R.; Nadjm-Tehrani, S. WebSTAMP: A Web Application for STPA & STPA-Sec. In Proceedings of
the MATEC Web of Conferences, Wuhan, China, 22–24 October; 2019; pp. 12–24.

6. Zhu, D.; Yao, S. A Hazard Analysis Method for Software-Controlled Systems Based on System-Theoretic Accident Modeling and
Process. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS),
Beijing, China, 23–25 November 2018; pp. 90–95.

7. Abdulkhaleq, A.; Wanger, S. Integrating state machine analysis with system-theoretic process analysis. In Software Engineering
2013–Workshopband, Proceedings of Fachtagung des GI-Fachbereichs Softwaretechnik, Aachen, Germany, 26 February–1 March 2013;
Stefan, W., Horst, L., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2013; pp. 501–514.

8. Chen, M.; Wang, L.; Hu, J. An Extraction Method of STPA Variable Based on Four-Variable Model. In Proceedings of the
3rd International Conference on Intelligent and Interactive Systems and Applications, Hong Kong, China, 29–30 June 2018;
pp. 375–381.

9. Rey, F.; Melo, J.; Hirata, C.; Saqui-Sannes, P.; Apvrille, L. Combining STPA with SysML Modeling. In Proceedings of the 14th
annual IEEE International Systems Conference (SysCon 2020), Montreal, QC, Canada, 20–23 April 2020; pp. 1–8.

10. Zhu, D.; Yao, S.; Wu, J. Petri nets-based method for component-interaction related hazard identification in computer-controlled
systems. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai,
China, 27–29 March 2018; pp. 1–6.

11. Zhong, D.; Gong, H.; Sun, R. An STPA for Accurately Identifying Loss Scenarios. Available online: http://220.228.59.187/KCMS/
detail/detail.aspx?filename=BJHK20210705000&dbcode=CJFD&dbname=CAPJ2021 (accessed on 5 July 2021).

12. Clarke, E.M.; Henzinger, T.A.; Veith, H.; Bloem, R. Handbook of Model Checking; Springer: Cham, Switzerland, 2018; pp. 2–3.
13. NuSMV: A New Symbolic Model Checker. Available online: https://nusmv.fbk.eu/ (accessed on 22 December 2021).
14. Modeling and Analysis of Real-Time and Embedded Systems. Available online: https://www.omg.org/omgmarte/ (accessed on

22 December 2021).

https://psas.scripts.mit.edu/home/materials/
http://220.228.59.187/KCMS/detail/detail.aspx?filename=BJHK20210705000&dbcode=CJFD&dbname=CAPJ2021
http://220.228.59.187/KCMS/detail/detail.aspx?filename=BJHK20210705000&dbcode=CJFD&dbname=CAPJ2021
https://nusmv.fbk.eu/
https://www.omg.org/omgmarte/

	Introduction
	STPA-SN
	STPA-SN Application Example
	Step 1: Define the Purpose of the Analysis
	Step 2: Construct the System Model
	Construct the Hierarchical Control Structure
	Construct the System State Machine Diagrams

	Step 3: Identify the Unsafe Control Actions
	Specify the System-Level Hazards with the Information in the System Model
	Determine CA-PR, Type and Context in the {CA-PR, Type, Context}
	Give All the Potential UCAs through Traversal
	Analyze Each PUCA to Determine Whether It Is a UCA

	Step 4: Identify the Loss Scenarios
	Construct System Model by the Addition of CFs
	Convert the SCs into Temporal Logics
	Construct the System Model in NuSMV
	Model Checking

	Discussion
	About the Definition of UCA
	About the Definition of Loss Scenario
	About the Construction of the Analytical Model
	About the Process of Identifying UCAs
	About the Process of Identifying the Loss Scenario

	Conclusions
	Two Advantages of STPA-SN
	Three Disadvantages of STPA-SN
	Future Research Directions

	References

