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Abstract: A lot of studies have been conducted to introduce self-prestress to structures using Fe-
based shape memory alloys (Fe-SMAs). Technology to introduce self-prestress using Fe-SMAs can
resolve the disadvantages of conventional prestressed concrete. However, most of the research to
introduce a self-prestress force to a structure using Fe-SMAs has been focused on using Fe-SMAs for
the repair and strengthening of aging structures. Therefore, in this paper, a study was conducted to
introduce self-prestress into a new structure. To this end, in this paper, an experimental study was
conducted to evaluate the flexural behavior of self-prestressed concrete slabs with Fe-SMA rebar.
Nine specimens were built with consideration of the amount and activation of Fe-SMA rebars as
experimental variables. The Fe-SMA rebars used in the specimens exhibited recovery stress of about
335 MPa under the conditions of a pre-strain of 0.04 and a heating temperature of 160 ◦C. Activation
of the Fe-SMA rebars by electrical resistance heating applied an eccentric compression force to the
specimen to induce a camber of 0.208–0.496 mm. It was confirmed through a 4-point bending test that
the initial crack loads of the activated specimens were 40~101% larger than that of the non-activated
specimens. However, the ultimate loads of the activated specimens showed a difference within 3%
from that of the non-activated specimens, confirming that the effect of activation on improving the
ultimate strength was negligible. Finally, it was confirmed that repetitive activation of the Fe-SMA
rebar could repeatedly apply compressive force to the slab.

Keywords: shape memory alloy; recovery stress; initial crack; self prestressing; camber

1. Introduction

Prestressed concrete is structural concrete in which internal stress is introduced using
tendons in areas where tensile stress resulting from the external load is likely to occur. The
internal stress can effectively control the occurrence of cracks by offsetting the tensile stress
caused by the external load [1,2]. Therefore, since prestressed concrete is recognized as
being effective in resisting the load, the size of the cross-section and its self-weight can be
reduced compared with a reinforced concrete (RC) member [3]. The prestressed method
can be broadly divided into pre-tension and post-tension methods [4]. The pre-tension
method is a method in which the tendons are tensioned before concrete is poured. In this
method, the bonding force between the concrete and the tendon resists the recovery of
elastic deformation of the tendon released after curing of the concrete and consequently
acts as a compressive force on the cross-section. Because bulkheads are required in the
process of introducing prestress with this method, this method is mostly used in precast
concrete (PC) factories rather than on-site [5]. On the other hand, the post-tension method
entails tensioning and anchoring the tendon after the concrete has been cured [6]. Unlike
the pre-tension method, it can be easily applied in the field because separate support is not
required. For this reason, the post-tension method is widely used in large-scale construction
works such as long-span bridges [7]. Prestressed concrete manufactured by the post-
tension method is classified into bonded prestressed concrete and unbonded prestressed
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concrete [8]. In bonded prestressed concrete, the concrete and the tendon work integrally
by grouting the ducts after tensioning and anchoring the tendon [9]. However, the grouting
operation complicates the construction process and increases the construction period.
Moreover, the prestressing force of the bonded prestressed concrete cannot be recovered,
even if it decreases due to various causes such as concrete creep, drying shrinkage, and
tendon relaxation over time [10]. On the other hand, in unbonded prestressed concrete,
the sheath pipe is not grouted after tensioning the tendon [11]. Unlike bonded prestressed
concrete, the tendons of unbonded prestressed concrete can be re-tensioned when the
prestressing force is reduced. However, unbonded prestressed concrete has lower strength
and lower durability due to increased crack widths compared with bonded prestressed
concrete [12].

Technology to introduce prestress using shape memory alloy (SMA) can resolve the
aforementioned disadvantages of conventional prestressed concrete [13]. SMA is a metal
with special properties where even if plastic deformation occurs, it can be recovered by
the shape recovery effect (SME), which is triggered by activation consisting of heating
and cooling [14]. When the pre-tensioned SMA is activated under restraint, the alloy
tries to return to its original shape by the SME, but because it is restrained, compressive
stress, referred to as recovery stress, occurs inside the alloy [15]. Similarly, when a pre-
tensioned SMA embedded in concrete is heated by electric resistance heating, the SME
will be exerted on the SMA toward shrinking it to its original state by the SME. However,
the recovery of the SMA deformation is restrained by the bond between the SMA and
concrete, resulting in the generation of recovery stress acting as a compressive force on
the concrete [16]. This prestress introduction principle is similar to that of the pre-tension
method, in which the bonding force between the concrete and the tendon resists the
recovery of elastic deformation of the tendon released and acts as a compressive force on
the cross-section. In addition, this method has the advantage of being easily applied in the
field like the conventional post-tension method because separate support is not required.
Concrete to which prestress is introduced in this way can have excellent mechanical
performance because the SMA and concrete work integrally, similar to conventional bonded
prestressed concrete. Moreover, unlike bonded prestressed concrete, the prestressing force
of prestressed concrete using SMAs can be recovered through its reactivation, even if it is
reduced by various causes. To date, more than 300 types of SMAs have been reported [17].
Among them, Ni-Ti-based SMA (Nitinol), developed by Buehler et al. [18] in 1963, is
currently the most widely used because it shows excellent superelasticity and an SME [19].
However, Nitinol has a relatively narrow temperature history. Moreover, because it contains
high-priced nickel and titanium in large proportions, Nitinol is not used as a construction
material [20].

On the other hand, Fe-based shape memory alloy (Fe-SMA) has a lower manufacturing
cost compared with Nitinol because iron is the main constituent material, and many
researchers are studying it for use as a construction material. Shahverdi et al. [21] conducted
an experimental study to use Fe-SMA strips as a strengthening material in conjunction
with use of the NSM method. They evaluated the flexural performance of RC beams with
Fe-SMA strips as reinforcement in the NSM method through a four-point loading test.
They reported that the specimen with activated Fe-SMA exhibited a higher initial stiffness
than the specimen with non-activated Fe-SMA through analysis of the test results. In
addition, they argued that the cause was the action on the cross-section of the compressive
force due to the activation of Fe-SMA. Shahverdi et al. [22] evaluated the mechanical
properties, recovery properties, and relaxation of Fe-SMA in order to secure basic data for
using Fe-SMA strips as strengthening materials for RC members. The alloy composition
ratio of the Fe-SMA strip used in the study was Fe-17Mn-5Si-10Cr-4Ni-1(V,C) (mass %),
and the specimen was 100 mm wide and 1.5 mm thick. They reported that when Fe-
SMA was heated to 160 ◦C, a recovery stress of 300–350 MPa was generated, which was
reduced by about 10% by relaxation after 1000 h. Abouali et al. [23] performed an analytical
study to predict the flexural performance of RC members strengthened with Fe-SMA
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by the NSM method. They presented a finite element analysis model of an RC member
strengthened with Fe-SMA by the NSM method using a commercial structural analysis
program. They compared the experimental results published by Shahverdi et al. [21] with
the results predicted by the FE model in order to secure the reliability of the finite element
analysis results. They also confirmed through a parametric analysis that the ductility of
the RC beams strengthened with Fe-SMA increased as the concrete strength increased,
and the initial stiffness of the RC beams increased by more than 60% when the Fe-SMA
was activated.

As such, few studies on the use of Fe-SMA rebars in new structures have been reported.
Most of the research to introduce a prestress force to a structure using Fe-SMA has been
focused on using Fe-SMA for the repair and strengthening of aging structures [24–26]. In
previous studies, a cementitious matrix or anchoring device was used to attach Fe-SMA
rebars, plates, or strips to RC members. However, it is difficult to accurately evaluate the
effect of Fe-SMA on the RC member because the behavior of the strengthening RC member
is affected by the anchoring device and the bonding strength between the RC member
and the cement matrix. In addition, previous studies evaluated the reactivation potential
of Fe-SMA through material tests [27], and there are few studies testing the reactivation
possibility of Fe-SMA used in the RC member. Therefore, this study conducts flexural tests
on one-way RC slabs using Fe-SMA rebars as a tensile reinforcement and evaluates the
effect of the prestressing force by Fe-SMA rebar on their flexural behavior. In addition, the
possibility of reactivation of Fe-SMA was experimentally evaluated.

2. Materials and Methods
2.1. Test Specimens

Nine specimens were constructed to evaluate the flexural behavior of concrete slabs
using Fe-SMA rebars. As shown in Figure 1, the section of the specimen was 400 mm
wide and 250 mm high, and the concrete cover and the effective depth of the section were
35 mm and 210 mm, respectively. The total length of the specimens was 2800 mm, and
their net span was set to 2600 mm. The Fe-SMA rebars used in the experiment had a
10 mm × 10 mm square cross-section. In order to prevent the Fe-SMA rebar from slipping
during the experiment, a 100-mm long thread was machined to install the fixing device
at both ends of the rebar. These rebars were tensioned to a target pre-strain of 0.04 by a
horizontal tensioning device and assembled into a rebar mesh. After all preliminary work
was completed, the specimens were cast. After that, the specimens were cured for 28 days
through moist curing. Table 1 shows the test variables considered for the evaluation of
the flexural behavior of concrete slabs using Fe-SMA rebars. The amount of the Fe-SMA
rebar (200 mm2, 300 mm2, 400 mm2, or 500 mm2) and its activation were considered to
be experimental variables. The variable name ‘SL’ in Table 1 denotes ‘Slab’, and Arabic
numerals indicate the number of Fe-SMA rebars. In addition, the letters ‘A’, ‘N’, and
‘R’ after the Arabic number denote the activation, non-activation, and reactivation of the
Fe-SMA bar, respectively.

Table 1. Test variables.

Specimen Area of Fe-SMA Rebar (mm2) Activation

SL-2N
200

Non-activation
SL-2A Activation

SL-3N
300

Non-activation
SL-3A Activation
SL-3R Re-activation

SL-4N
400

Non-activation
SL-4A Activation

SL-5N
500

Non-activation
SL-5A Activation
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Figure 1. Details of the test specimens: (a) SL-2N and SL-2A, (b) SL-3N, SL-3A, and SL-3R, (c) SL-4N
and SL-4A, and (d) SL-5N and SL-5A.

2.2. Materials

The concrete used in constructing the specimens was ready-mixed concrete, and the
mixture design of the concrete is shown in Table 2. The design compressive strength,
the water-to-cement ratio, and the cement type of the mixture with a 25-mm maximum
aggregate size were 40 MPa, 30.7%, and type 1 ordinary Portland cement, respectively.
Simultaneous with the concrete pouring, 5 cylinders with a size of Φ 100 mm × 200 mm
were produced to measure the compressive strength of the concrete. The cylinders were
demolded and cured under the same conditions as the specimens, and a compressive
strength test was performed in accordance with the ASTM standard [28] on the testing date.
Through the analysis of the test results, the average compressive strength of the concrete
was determined to be 46.2 MPa.

Table 2. Test variables.

Slump
(cm)

Air Content
(%)

W/B
(%)

S/a
(%)

Weight Per Unit Volume (kg/m3)

W C S G AD

12 4.5 30.7 47 192 625 684 780 4.38

The chemical composition ratio of the Fe-SMA rebar used in this study was Fe-17Mn-
5Si-5Cr-0.3C-4Ni-1Ti (mass %). A vacuum induction melting apparatus was used to
manufacture the Fe-SMA plate. The Fe-SMA rebar was prepared as follows. (1) The
elements of the alloy were put into a vacuum induction melting device and manufactured
into an ingot of 1000 kg. (2) A homogenization treatment of the ingot was given for 6 h at
1250 ◦C. (3) The Fe-SMA plate was manufactured by forging into a plate with a thickness
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of 10 mm by a hydraulic press. Finally, (4) the Fe-SMA rebar was manufactured by cutting
a 10-mm thick Fe-SMA plate to a width of 100 mm with a water jet.

A direct tensile test was performed to investigate the mechanical properties of the
Fe-SMA rebar. For the direct tensile test, the Fe-SMA rebar was machined into a tensile
specimen having a thickness of 2.5 mm, a width of 10 mm, and a length of 200 mm.
Lee et al. [29] reported that the corrosion resistance of Fe-SMA rapidly decreased when its
pre-strain exceeded 0.04. Referring to their research results, the pre-strain of the specimen to
evaluate the mechanical properties of the Fe-SMA rebar was set to 0.04. First, the specimen
was tensioned with a displacement control of 0.25 mm/min up to a pre-strain of 0.04 by a
universal testing machine (UTM) with a capacity of 100 kN. Afterward, the load applied
to the specimen was reduced at the same speed until it became zero. A residual strain of
0.032 occurred in the specimen that had undergone a pre-strain of 0.04. The direct tensile
test for evaluating the mechanical properties of the pre-strained specimen was performed
with a displacement control of 0.5 mm/min using the same equipment. A strain gauge was
attached to measure the strain of the specimen during the test, and the measured data were
collected at a time interval of 1 s through a data acquisition system (DAQ). Figure 2 shows
the stress–strain relationship of the Fe-SMA obtained by the direct tensile test. The modulus
of elasticity of the Fe-SMA was 127.3 GPa, and its ultimate strength and elongation were
1035 MPa and 16.8%, respectively.
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Figure 2. Stress–strain relationship of Fe-SMA rebar.

Figures 3 and 4 show the test set-up for evaluating the recovery stress of Fe-SMA
and the strain–temperature–stress relationship of the Fe-SMA rebar in three dimensions,
respectively. The X, Y, and Z axes in Figure 4 represent the strain, temperature, and stress
of the Fe-SMA specimen, respectively. The specimen used in this test was the same as the
specimen used in the direct tensile test. Park et al. [30] reported that ettringite between
the cement and aggregates begins to hydrolyze when the temperature of concrete exceeds
160 ◦C. Yeon [31] reported that when Fe-SMA was heated to a temperature exceeding
160 ◦C to activate Fe-SMA embedded in mortar, moisture inside the mortar was vaporized,
and cracks occurred. Referring to their research results, the heating temperature (Tmax) of
the specimen to evaluate the recovery stress of the Fe-SMA rebar was set to 160 ◦C. The
recovery stress test was performed as follows. (1) The specimen on the 100kN UTM was
tensioned to the target pre-strain (εpre) with a displacement control of 0.25 mm/min (black
line in Figure 4). (2) After the strain of the specimen reached 0.04, which was εpre, the load
applied to the specimen was released at 0.25 mm/min until the load on the specimen was
set to 0 (green line in Figure 4). (3) To prevent buckling due to the thermal expansion,
stress of about 50 MPa was applied to the specimen, and then the displacement of the
specimen was constrained. (4) The displacement-constrained specimen was heated up to
Tmax (160 ◦C) with electrical resistance by supplying a current of 2 A/mm2 (red line in
Figure 4). Finally, (5) when the surface temperature of the specimen reached the target
temperature, the power supply was cut off, and it was cooled to room temperature (Troom)
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(blue line in Figure 4). While the Fe-SMA was activated, the temperature of the specimen
was measured by an infrared ray heat sensor, as shown in Figure 3, and the measured
data were collected at a time interval of 1 s with a DAQ. As shown in Figure 4, when the
temperature of the specimen reached about 35 ◦C at the beginning of heating, its stress was
slightly reduced due to thermal expansion. Afterward, the specimen was continuously
heated, and when the specimen reached the target temperature, the recovery stress (Tmax)
was about 168 MPa, and when the Fe-SMA specimen was cooled to Troom, the recovery
stress (σrec) was about 335 MPa.
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2.3. Test Set-Up

As shown in Figure 1, the net span of the concrete slab specimens was 2600 mm,
and the Fe-SMA rebars embedded in the specimens were activated by electric resistance
heating with an electric power supplier of 5 A/mm2. As shown in Figure 5, the temperature
of the Fe-SMA rebar was measured using an infrared ray heat sensor. It was confirmed
through a preliminary experiment that the temperature of the middle section of the Fe-SMA
rebar reached the target temperature of 160 ◦C when the end temperature of the Fe-SMA
rebar with a thread reached 440 ◦C. Accordingly, the power supply was stopped when
the surface temperatures of the rebar with and without the thread reached 440 ◦C and
160 ◦C, respectively. The camber generated during the activation of the Fe-SMA rebar was
measured with a linear variable differential transformer (LVDT) with a capacity of 10 mm,
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which was installed on the lower face of the middle of the specimen. Data measured by the
thermal sensor and LVDT were collected and stored at a time interval of 1 s using a DAQ.
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Figure 5. Overview of the activation system.

After displacement of the specimen due to the activation of the Fe-SMA rebar became
stable, four-point bending tests to evaluate the flexural behavior of the concrete slab
specimens were performed using an actuator with a capacity of 2000 kN. As shown in
Figure 1, the distance between the two loading points of the specimen was 400 mm, with
each 200 mm from the middle of the specimen to both ends. Displacement-controlled
loading was applied at a rate of 3 mm/min. The deflection of the specimen during the
loading was measured with two LVDTs with a capacity of 200 mm installed on the lower
face of the middle of the specimen, and the initial cracks and crack development that
occurred in the specimen during loading were visually observed and recorded on the
surface of the specimen. Figure 6 shows the test set-up for the four-point bending test.
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3. Experiment Results and Discussion
3.1. Activation of Fe-SMA Rebar

Figure 7 shows the time–displacement curve of the middle of the specimen according
to the activation of the Fe-SMA rebar. As shown in Figure 7, the time–displacement curve
at the middle caused by the activation of the Fe-SMA rebar was clearly divided into two
branches. As shown in Figure 7a, at the initial stage of activation, downward displacement
occurred in the specimen due to thermal expansion of the Fe-SMA rebar. However, as it
was continuously activated, the eccentric compressive force applied to the concrete section
gradually recovered the downward displacement due to thermal expansion and finally
induced upward displacement (camber), as shown in Figure 7b. The maximum cambers of
SL-2A, SL-3A, SL-4A, and SL-5A, according to the activation of the Fe-SMA rebar, were
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0.208 mm, 0.301 mm, 0.398 mm, and 0.496 mm, respectively. As the cross-sectional amount
of Fe-SMA rebar increased by 100 mm2, the camber increased by 0.096 mm on average. It
was considered that a larger eccentric compressive force was applied to the specimen as
the amount of Fe-SMA rebar was increased.
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Figure 7. Time–displacement relationship according to amount of Fe-SMA rebar. (a) Heating region.
(b) Cooling region.

3.2. Failure Mode

At the beginning of loading, the initial cracks occurred in the middle zone of all
specimens. As the deflection of the specimen increased with the increment of the applied
load, the initial crack propagated toward the compression zone. Finally, yielding of the
Fe-SMA rebar was followed by crushing of the compressive fiber concrete, and the applied
load to the specimen was decreased.

Figure 8 shows the shape of the specimen after the experiment was completed, and
Table 3 presents the summarized experimental results. As shown in Figure 8a, four flexural
cracks were visually observed in SL-2N, the non-activated test specimen. On the other
hand, three flexural cracks were observed in SL-2A, which had the same amount of rebar
as SL-2N, and the Fe-SMA rebar was activated. Additionally, by comparing Figure 8a,b,
it can be confirmed that the crack distribution width of SL-2N was wider than that of
SL-2A. A reduction in both the number of flexural cracks and the crack distribution width
according to the activation of the Fe-SMA rebar was also observed in the specimens with
different amounts of Fe-SMA rebar. This reduction was considered to be the result of the
recovery stress generated in the Fe-SMA rebar by activation, acting as a compressive force
on the specimens.

Table 3. Summary of test results.

Specimen

Initial Crack Ultimate
Failure
ModeDeflection

(mm)
Load
(kN)

Deflection
(mm)

Load
(kN)

SL-2N 1.45 25.59 87.69 58.66

Flexural

SL-2A 1.42 35.88 89.34 59.05
SL-3N 1.2 27.73 74.73 92.04
SL-3A 1.99 46.92 72.59 93.23
SL-3R 2.35 45.66 79.77 94.87
SL-4N 0.88 29.06 75.52 117.01
SL-4A 3.24 52.81 71.53 120.82
SL-5N 1.00 29.28 96.95 147.91
SL-5A 2.33 59.03 59.03 148.09
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Figure 8. Failure modes of the specimens: (a) SL-2N, (b) SL-2A, (c) SL-3N, (d) SL-3A, (e) SL-4N,
(f) SL-4A, (g) SL-5N, and (h) SL-5A.

3.3. Load–Fe-SMA Rebar Strain Relationship

Figure 9 shows a comparison of the load–Fe-SMA rebar strain relationship of the
specimens in which the Fe-SMA was not activated. The strain of the Fe-SMA rebar was
measured by a strain gauge attached to the middle of the rebar. The strain of the specimen
with the activated Fe-SMA rebar was not measured due to damage to the strain gauge
during electrical resistance heating. As shown in Figure 9, the strain of the Fe-SMA rebar
increased rapidly after cracking in the concrete. This was because of the material that
resisted external load changes from concrete to rebar after cracking.
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Figure 9. Comparison of load–Fe-SMA rebar strain curves of non-activated specimens according to
area of Fe-SMA rebar.

3.4. Load–Deflection Relationship
3.4.1. Effect of the Fe-SMA Rebar Activation

Figure 10 shows a comparison of the load–displacement relationship between the
non-activated specimens and activated specimens. As shown in Figure 10a, the initial crack
of SL-2N, in which the Fe-SMA rebar was not activated, occurred at a load of 25.59 kN,
whereas the initial crack of SL-2A, in which the Fe-SMA rebar was activated, occurred at a
load of 35.88 kN, which was 40.2% higher than that of SL-2N. In addition, the initial crack
loads of SL-3A, SL-4A, and SL-5A, where the Fe-SMA rebar was activated, were 69.2%,
81.7%, and 101.6% larger than those of SL-3N, SL-4N, and SL-5N, where the Fe-SMA rebar
was non-activated, respectively. As shown in Figure 10, the stiffness of the specimen in
which the Fe-SMA rebar was activated was greater than that of the specimen in which
the Fe-SMA rebar was not activated. For example, the deflection of SL-2N and SL-2A at
50 kN was 18.82 mm and 15.54 mm, respectively, and the deflection of SL-2A was about
17% smaller than that of SL-2N. In addition, the deflection of SL-3N and SL-3A at 50 kN
was 8.68 mm and 3.52 mm, respectively. The deflection of SL-3A was about 59% smaller
than that of SL-3N. The larger initial cracking loads and stiffness of the activated specimens
than those of the non-activated specimens are thought to be attributable to the recovery
stress generated by rebar activation acting as a compressive force on the specimen. On the
other hand, the ultimate load of the specimens with the same amount of Fe-SMA bar was
only slightly different, changing in a range of 0.12–3.15% regardless of activation of the
Fe-SMA rebar. Therefore, similar to conventional prestressed concrete, it can be confirmed
that the effect of the prestressing force due to Fe-SMA activation on the ultimate load
of the reinforced concrete member was negligible. It can also be confirmed through the
experimental results that activation of the Fe-SMA rebar was more effective in terms of
improving usability, such as improvement of initial crack load and initial stiffness, rather
than improvement of the strength of the member reinforced with Fe-SMA rebar.

3.4.2. Effect of the Amount of Fe-SMA Rebar

Figure 11 presents a comparison of the load–displacement relationship of the specimen
according to an increase in the amount of Fe-SMA rebar. As shown in Figure 11a, the
initial crack loads of SL-2N, SL-3N, SL-4N, and SL-5N, wherein the Fe-SMA rebar was
not activated, were 25.59 kN, 27.73 kN, 29.06 kN, and 29.28 kN, respectively. When the
amount of Fe-SMA rebar was increased by 100 mm2, the initial crack load increased
slightly (by 4.63% on average). As shown in Figure 11a, when the amount of the Fe-
SMA rebar was increased, the flexural stiffness was significantly improved after initial
cracking. The ultimate loads of SL-2N, SL-3N, SL-4N, and SL-5N were 58.66 kN, 92.04 kN,
117.01 kN, and 147.91 kN, respectively, and when the amount of the Fe-SMA rebar was
increased by 100 mm2, the ultimate load increased linearly by approximately 30 kN on
average. Therefore, the initial cracking load of the member without the activated Fe-SMA
rebar was not significantly affected by the amount of Fe-SMA rebar, but the ultimate
load was significantly affected. Figure 11b shows a comparison of the load–displacement
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relationship of the activated specimens according to the increase in the amount of Fe-SMA
rebar. The initial crack loads of the activated specimens SL-2A, SL-3A, SL-4A, and SL-5A
were 35.88 kN, 46.92 kN, 52.81 kN, and 59.03 kN, respectively. Unlike the non-activated
specimens, when the amount of the Fe-SMA rebar was increased by 100 mm2, the initial
crack load increased by an average of 18.4%. In addition, as the amount of the Fe-SMA
rebar was increased, the stiffness of the specimens increased remarkably after the initial
crack occurred. In the case of the activated specimens, when the amount of the Fe-SMA
rebar was increased by 100 mm2, the ultimate load increased by about 29 kN, similar to
that of the non-activated specimens.
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The initial cracking moment (Mcr) is the moment that makes the tensile stress of the
outermost fiber of the concrete cross-section equal to the flexural tensile strength ( fcr) of
the concrete.
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The internal stresses of the concrete member with Fe-SMA rebar subjected to external
load are composed of the compressive stress ( fc1) generated by the recovery stress of Fe-
SMA, the flexural stress ( fc2) generated by the eccentric compressive force, and the flexural
stress ( fc3) generated by an external load. These three stresses in the outermost concrete
fiber below the neutral axis can be expressed as Equations (1)–(3), respectively. The sum
of the bending stresses ( fc) in the outermost concrete fibers below the neutral axis can be
expressed as Equation (4). The compressive force (Prec) generated by the activation of the
Fe-SMA rebar of Equation (1) can be calculated through Equation (5), and the recovery
stress ( frec) of the Fe-SMA rebar of 335 MPa was used based on the experimental results:

fc1 =
Prec

Ac
(1)

fc2 =
Prec × e

Ig
y (2)

fc3 = −Ma

Ig
y (3)

fc = fc1 + fc2 + fc3 (4)

Prec = frec Asma (5)

where Ac is the area of the concrete section, e is the eccentric distance, and Asma is the area
of the Fe-SMA rebar. In addition, y represents the distance from the outermost concrete
fiber to the neutral axis, Ma is the moment applied to the member by an external load, and
Ig is the moment of inertia of the specimen.

In ACI 318 [32], fcr is defined via Equation (6). Therefore, by assuming that the flexural
stress in the outermost concrete fiber below the neutral axis in Equation (4) is equal to the
flexural tensile strength of the concrete, and that the moment generated by an external load
is equal to the initial cracking moment, the initial crack moment and the initial crack load
(Pcr) can be obtained from Equations (7) and (8), respectively:

fcr = 0.63
√

f ′c (6)

Mcr =
fcr Ig

y
+

Prec Ig

Acy
+ Prec × e (7)

Pcr =
2Mcr

a
(8)

where f ′c is the compressive strength of concrete and a is the distance from the support
point to the load point.

Figure 12 shows a comparison between the theoretical initial crack load (Pcr,theory)
calculated from Equations (1)–(8) and the experimental initial crack load (Pcr,exp). The
theoretical initial crack loads of SL-2A, SL-3A, SL-4A, and SL-5A calculated by these
formulas were 47.87 kN, 55.59 kN, 63.30 kN, and 71.02 kN, respectively. The ratio of the
theoretical value to the experimental value was calculated to have an average value of
0.81. The experimental value was smaller than the theoretical value for the following two
reasons. This first was the thermal expansion of the Fe-SMA rebar interfacial concrete
during activation of the Fe-SMA rebar. Hosseini et al. [27] reported that when thermal
expansion of the matrix occurred, the recovery stress of Fe-SMA was reduced by about
50% compared with that of Fe-SMA under the ideal constraint condition. In addition, they
argued that the reduction in the recovery stress of the Fe-SMA due to thermal expansion of
the matrix should be minimized by heating the Fe-SMA as soon as possible during Fe-SMA
activation. Although the Fe-SMA rebar heating time was as short as 30 s in this study, it was
considered that thermal expansion occurred in the concrete surrounding the interface of
the Fe-SMA rebar. Therefore, additional studies are required in the future to quantitatively
evaluate the thermal expansion of the interfacial concrete and the corresponding decrease
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in the recovery stress of Fe-SMA during activation of the Fe-SMA rebar. The second cause
may be some activation of the Fe-SMA rebar by the heat of hydration of concrete during
curing of the concrete. According to ACI, concrete with a compressive strength of 41.4 MPa
(6000 psi) or more is classified as high-strength concrete [33]. High-strength concrete is
known to have a relatively high heat of hydration due to the use of a large amount of
cement [34]. The compressive strength of the concrete used in this study was 46.2 MPa, and
it was thus classified as high-strength concrete. Therefore, it was judged that a relatively
high heat of hydration occurred during concrete curing. Accordingly, when Fe-SMA rebar
is applied to high-strength concrete members, appropriate measures are required to reduce
the concrete hydration heat.
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3.4.3. Reactivation of Fe-SMA Rebar

As mentioned earlier, the prestressed concrete member with the SMA rebar has the
advantage of being able to recover the prestress force (recovery force), even though it is a
bonded prestressed concrete in which the Fe-SMA rebar and the concrete work integrally.
To verify this, a reactivation experiment of Fe-SMA rebar was performed on the SL-3R
specimen. This test was performed by repeating the following steps four times. (1) The
Fe-SMA rebar of the specimen was activated in the same way as described in Section 2.3.
(2) The specimen was loaded up to 70% of the ultimate load of the activated specimen
(however, the last (fourth) loading was carried out until the specimen was destroyed).
Finally (3), the load applied to the specimen was reduced to 0 for about 1 min.

Figure 13 shows the time–upward displacement relationship in the middle of the
specimen during Fe-SMA activation and reactivation. A camber of 0.314 mm occurred
during the first activation of the SL-3R specimen without preloading. In the SL-3R, which
was loaded up to a load corresponding to 70% of its ultimate load, a camber of 1.08 mm,
0.954 mm, and 0.987 mm was generated during the second, third, and fourth activations,
respectively. These values were 344%, 304%, and 314% larger than the camber generated
in the first activation, respectively. The camber was larger in the second, third, and fourth
activations than in the first activation because the flexural stiffness of the cross section was
greatly reduced due to the cracks generated in the specimen as a result of the pre-loading.
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Figure 14 shows a comparison of the load–displacement relationship between the SL-
3R, where the Fe-SMA rebar was activated four times, and the SL-3A. As shown in Figure 13,
in the SL-3R specimen, where a load of 70% of the ultimate load was applied, residual
deflection occurred even when the load was removed, and a portion of the deflection was
recovered by the activation of the Fe-SMA. After the fourth Fe-SMA rebar’s activation was
completed, the specimen was loaded until it was destroyed. As can be seen from Figure 14,
the load–displacement relationship of SL-3R was similar to that of specimen SL-3A, which
was activated once, regardless of the number of activations. The ultimate load of SL-3R,
which had undergone four activations, was only 1.8% different from that of the SL-3A.
Therefore, it can be concluded that the effect of the number of activations on the flexural
behavior of the member is very insignificant.
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It is considered that the prestress force of the concrete reinforced with Fe-SMA rebar
can be recovered through reactivation even if the prestress force is reduced due to various
reasons, such as drying shrinkage and relaxation, unlike conventional bonded prestressed
concrete. Therefore, it is judged that the self-prestressing method through Fe-SMA rebar
can solve the disadvantages of the low strength problem of unbonded prestressed concrete
and the difficulty of retensioning bonded prestressed concrete.

4. Conclusions

In this paper, an experimental study was conducted to evaluate the flexural behav-
ior of self-prestressed concrete slabs with Fe-SMA rebar, and the following conclusions
were drawn:

1. Activation of the Fe-SMA rebar caused camber in the concrete member by applying an
eccentric compressive force due to the recovery stress on the cross-section. This camber
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increased by an average of 0.096 mm when the amount of Fe-SMA reinforcement
increased by 100 mm2.

2. The initial cracking load of the specimen with the activated Fe-SMA rebar was
40~101% greater than that of the non-activated specimen due to the action of the
eccentric compressive load.

3. The theoretically calculated initial crack load was 23% larger on average compared
with the experimental value. This was considered to be due to the reduction of the
recovery stress resulting from the thermal expansion at the Fe-SMA and concrete
interface and the concrete hydration heat. Therefore, future studies are needed to
quantitatively evaluate the effect of thermal expansion and hydration heat of concrete
on the recovery stress of Fe-SMA rebar.

4. The effect of the Fe-SMA rebar activation on the ultimate load of the concrete member
was negligible. Therefore, it was confirmed that the introduction of prestress by
activation of the Fe-SMA rebar, like traditional prestressed concrete, mainly increased
the usability of the concrete member.

5. The load–displacement relationship of the specimen with Fe-SMA rebars activated
four times was similar to that of the specimen with Fe-SMA rebars activated once.
Therefore, it was considered that the prestress force of the concrete reinforced with
Fe-SMA rebar could be recovered through reactivation even if the prestress force was
reduced due to various reasons, such as drying shrinkage and relaxation, unlike the
conventional bonded prestressed concrete.

6. Through this study, it was confirmed that the concrete prestressing method using the
Fe-SMA rebar could solve several disadvantages of conventional prestressed concrete.
Therefore, the self-prestressing method using Fe-SMA was expected to have high
potential in the field of prestressed concrete for new construction.
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