
����������
�������

Citation: Gualdi, B.; Binet-Stéphan,

E.; Bahabi, A.; Marchal, R.;

Moncoulon, D. Modelling Fire Risk

Exposure for France Using Machine

Learning. Appl. Sci. 2022, 12, 1635.

https://doi.org/10.3390/app12031635

Academic Editor: Jason K. Levy

Received: 7 January 2022

Accepted: 1 February 2022

Published: 4 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Modelling Fire Risk Exposure for France Using
Machine Learning
Baptiste Gualdi 1, Emma Binet-Stéphan 1, André Bahabi 1, Roxane Marchal 2,* and David Moncoulon 2

1 EURIA EURo Institut d’Actuariat Brest, 29200 Brest, France;
baptiste0310015361u.gualdi@etudiant.univ-brest.fr (B.G.); emma.binetste@gmail.com (E.B.-S.);
andre.bah@outlook.com (A.B.)

2 Caisse Centrale de Réassurance, Department R&D Cat and Agriculture Modelling, 75008 Paris, France;
dmoncoulon@ccr.fr

* Correspondence: rmarchal@ccr.fr; Tel.: +33-1-44-35-31-00

Abstract: Wildfires generating damage to assets are extremely rare in France. The peril is not covered
by the French natural catastrophes insurance scheme (law of 13 July 1982). In the context of the
changing climate, Caisse Centrale de Réassurance—the French state-owned reinsurance company
involved in the Nat Cat insurance scheme—decided to develop its knowledge on the national
exposure of France to wildfire risks. Current and future forest fires events have to be anticipated
in case one of the events threatens buildings. The present work introduces the development of
a catastrophe loss risk model (Cat model) for forest fires for the French metropolitan area. Cat
models are the tools used by the (re)insurance sector to assess their portfolios’ exposure to natural
disasters. The open-source national Promethée database focusing on the South of France for the
period 1973–2019 was used as training data for the development of the hazard unit using machine
learning-based methods. As a result, we observed an extension of the exposure to wildfire in
northern areas, namely Landes, Pays-de-la-Loire, and Bretagne, under the RCP 4.5 scenario. The
work highlighted the need to understand the multi-peril exposure of the French country and the
related economic damage. This is the first study of this kind performed by a reinsurance company in
collaboration with a scholarly institute, in this case EURIA Brest.
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1. Introduction

In the world, large forest fire events are generating significant damage to natural
ecosystems, human lives, and critical infrastructures [1]. In the last few years, large
events occurred especially in the United States and in Australia [2]. In 2017 and 2018, in
California, wildfire events were estimated, respectively, to have caused $12 bn in damages
for the Tubbs Fire and the CampFire. It has been estimated that wildfire caused $150 bn
damage globally, with $27.7 bn for direct losses to buildings and houses, or 20% of the
total [3–5]. Between 2011 and 2020, the average annual loss for the USA was $4.7 bn for
forest fires [3]. More recently, we had in mind last year’s Black Summer in Australia,
with the sad images of koalas and kangaroos burnt by the flames; in addition to the
10,000 people displaced, 25 people died, 5.5 million ha were destroyed, and 2448 homes
were destroyed [6]. Those wildfires generated colossal economic losses. Periods of long
and intense droughts elevated fire risk prediction, which is especially the case in Canada
and the Western USA [7]. Nowadays, in early July 2021, the world watches, helplessly, the
heat wave hitting Lytton (Canada), which recorded temperatures of 49.6 ◦C, with flames
destroying the city [8], as well as the large events in Greece and Turkey due to the greatest
heat wave in thirty four years [9].

Modelling wildfire is a complex task, as several parameters have to be defined (fire
propagation, fuel, wind speed, terrain type, smoke, prevention actions and building sus-
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ceptibility). This leads to the development of detailed models to assess the fire propaga-
tion, ignition and dynamic, as exemplified by the well-known models of the literature
(FlamMap, FSPro, FARSITe, FIRETACTIC, FEPS, HYPSLIT, PHOENIX, and Minimum
Travel Time) [1,4,10–14]. The insurance sector also developed models at the asset level,
modelling the roofs, walls, and windows which were the most susceptible to burning with
destruction functions [3,11,15–17]. In comparison to the US or Australia, southern Europe
records less burnt surface, such as the 7.4 million ha burnt between 2000 and 2018 [18].
For France, from 1982 to 2017, 12 events were recorded for a total of 350,000 ha burnt
in the Mediterranean area (EM-DAT data 2021, https://public.emdat.be/, (accessed on
2 August 2021)). Then, comparing these elements to the Promethée database (Promethée
data, https://www.promethee.com/, (accessed on 12 October 2020)), France records an
accumulation of small events (approximately 2000 events per year) with small-to-medium
surfaces, with strong spatial and temporal fluctuations (approximately 7.3 ha burnt per
year). At the end of August 2021, the South of France recorded a large wildfire event
of 8100 ha in the natural park Plaine des Maures. The event was extreme in terms of
its propagation speed of up to 8 km/h, destroying a dozen houses in Val de Gilly Gri-
maud. It is the worst wildfire event occurring in France since 2–3 September 2003, when
flames destroyed—in the same location—20,000 ha of forest, with three lives lost. It was
demonstrated that the 1994 fire protection was successful [19]. On the contrary, for other
countries, as explained by [20], there is a lack of international coordinated safety procedure
for wildfires.

Nevertheless, considering climate change, it is important to anticipate the future
exposure. Indeed, France is the fourth European country in terms of forest cover, with
17 million ha of forest, which means an increase of exposure in the next few years. Climate
change affects the frequency of wildfires due to anomalous maximum temperatures, lower
humidity, higher maximum wind speed, and fewer rainy days [5,21–23]. A study projected
the fire danger due to climate change in Southern France [24]. In 2019, a lot of kermes oak
trees died due to the heatwave, as the lethal temperature was reached with temperatures
of more than 60 ◦C measured (French Ministry of Ecology, 2021, https://www.ecologie.
gouv.fr/prevention-des-feux-foret, (accessed on 7 September 2021)). There is a clear need
to develop a model to identify the exposed areas, and to protect them from significant
losses (to the ecosystem and to the economy). Then, taking into account those elements,
CCR experts in natural disaster modelling covered by the Nat Cat scheme raised interest in
forest fires. In collaboration with EURIA Brest, we developed a Cat model from scratch
within seven months, from data collection and hazard modelling through machine learning
to exposure and damage estimates. A Cat model is the tool of the (re)insurance sector
to estimate the consequences of natural disasters on their portfolios. It is composed of
three submodules: hazard, vulnerability and damage units (Figure 1). We aimed to test
the ability of machine learning-based methods to model the fire hazard, namely burnt
surface and occurrence [25]. The hazards themselves, such as fire smoke and earth imagery,
were not the target of this study. The outputs of the hazard and vulnerability units are
combined into the damage unit in order to provide estimates of the amount of loss due to
the natural events. A special interest was taken in the wildland–urban interface in order
to consider the increasing number of houses in the French littoral at-risk areas [26]. Due
to data availability, the RCP 4.5 IPCC scenario was used [27]. The model was developed
using the R programming language. We combined meteorological data from spatially
synchronized Safran daily weather data, building location BD TOPO IGN®, and insured
values at the department scale.

https://public.emdat.be/
https://www.promethee.com/
https://www.ecologie.gouv.fr/prevention-des-feux-foret
https://www.ecologie.gouv.fr/prevention-des-feux-foret
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of France. The aim is to estimate whether the probability of fire occurrence and burnt sur-
face per DFCI (DFCI, https://www.geonov.fr/smartdata/carroyage/, (accessed on 12th Oc-
tober 2020)) mesh according to the Safran data meteorological conditions of the mesh. This 
study was designed to demonstrate learning for residential exposure. 

The paper is structured as follows. Section 2 relates the data collection process and 
the implemented machine learning methods for Cat model development. Section 3 pre-
sents the results of the Cat models from current to future exposure with potential losses. 
The paper ends with the discussions and conclusion. 

 
Figure 1. Cat model structure used by the (re)insurance sector to estimate the amount of loss due to 
natural disasters, in this case wildfire events. For the study, machine learning-based methods were 
integrated into the model, namely into the hazard unit. The latest was based on the use of machine-
learning methods to define the number of fire events and the burnt surface. Once the best model for 
each of the variables was defined, the outputs were combined with the damage unit. The vulnera-
bility unit gathers all of the information about the insured portfolios with building locations and 
insured values. Then, the damage unit (risk assessment), allows the loss estimation for a wildfire 
event. 

2. Materials and Methods 
2.1. Fire and Meteorological Data as the Input Data for a Machine Learning-Based Hazard Unit 

The historical patterns of wildfires in Southern France were based on the Promethée 
dataset from 1973 to 2019. The database contains, for each DFCI mesh, several metrics 
(Table 1). 

Table 1. Metrics of the Promethée database used for the study. 

Metrics Details 
Date Date of occurrence of the wildfire 

Number Id of the fire 
Type of fire Unfilled variable 
Department Localization of the fire 

INSEE ID French ID for community 
Community Name of the community 
DFCI mesh Id of the DFCI mesh 

Alert The data and hour of the first fire alert 
Origin of the alert Policemen, population, aerial etc. 

Burnt surface In m2 
Max_burnt_surf Maximal burnt surface for each DFCI mesh 

Figure 1. Cat model structure used by the (re)insurance sector to estimate the amount of loss due
to natural disasters, in this case wildfire events. For the study, machine learning-based methods
were integrated into the model, namely into the hazard unit. The latest was based on the use of
machine-learning methods to define the number of fire events and the burnt surface. Once the
best model for each of the variables was defined, the outputs were combined with the damage
unit. The vulnerability unit gathers all of the information about the insured portfolios with building
locations and insured values. Then, the damage unit (risk assessment), allows the loss estimation for
a wildfire event.

Cat modelling allows a probabilistic assessment of wildfire risk, examining key lo-
cations in order to determine the potential property losses; the model calculates risk by
looking at a range of factors, in this case simplistic factors, in order to define the first
exposure of France. The aim is to estimate whether the probability of fire occurrence and
burnt surface per DFCI (DFCI, https://www.geonov.fr/smartdata/carroyage/, (accessed
on 12 October 2020)) mesh according to the Safran data meteorological conditions of the
mesh. This study was designed to demonstrate learning for residential exposure.

The paper is structured as follows. Section 2 relates the data collection process and the
implemented machine learning methods for Cat model development. Section 3 presents
the results of the Cat models from current to future exposure with potential losses. The
paper ends with the discussions and conclusion.

2. Materials and Methods
2.1. Fire and Meteorological Data as the Input Data for a Machine Learning-Based Hazard Unit

The historical patterns of wildfires in Southern France were based on the Promethée
dataset from 1973 to 2019. The database contains, for each DFCI mesh, several metrics
(Table 1).

The DFCI geographical mesh system is used in France by actors for fire prevention
from the 100-km to the 2-km resolution (Figure 2).

https://www.geonov.fr/smartdata/carroyage/
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Table 1. Metrics of the Promethée database used for the study.

Metrics Details

Date Date of occurrence of the wildfire
Number Id of the fire

Type of fire Unfilled variable
Department Localization of the fire

INSEE ID French ID for community
Community Name of the community
DFCI mesh Id of the DFCI mesh

Alert The data and hour of the first fire alert
Origin of the alert Policemen, population, aerial etc.

Burnt surface In m2

Max_burnt_surf Maximal burnt surface for each DFCI mesh
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Figure 2. DFCI mesh, from the national to the local scale (https://www.data.gouv.fr/fr/datasets/car-
royage-dfci-2-km/, (accessed on 12th October 2020)). The mesh has a value of 100 km with a letter 
code, exemplified with “LD”. Then, for the 20 km resolution, two figures are added—e.g., “LD26”—
and for the 2 km a letter and a figure are added—e.g., “LD26G2”—providing a unique code for each 
mesh. 
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as a trustable indicator for the study of climate change effects in fire exposure [29]. The 
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erence: 1959–2007. The FWI data was downloaded from Drias’s Météo-France platform 
and for the period 1973–2007. The FWI is only available on a seasonal average from March 
to November. The higher the FWI is, the greater the probability of wildfire is. The winter 
season is not studied in this article. 

The Safran data provide information about the temperature, humidity, wind and pre-
cipitation. The data were downloaded from the Drias’s Météo-France platform. The reso-
lution is 8 km × 8 km; for different RCP scenarios, a total of 8602 points cover France. The 
evolution of the critical meteorological parameters was calculated for 1973–2005, and for 
the horizon 2050 RCP 4.5 seasonality of the parameters and a 20 × 20 km2 analysis. The 
study focuses on a seasonal timescale in order to highlight the variation of the meteoro-
logical metrics. Climsec Météo-France data are available as a seasonal average for the en-
tire year. We assume that the fire event within a DFCI mesh is uniquely determined by 
the mesh’s meteorological conditions. 

EURO-CORDEX (Coordinated Downscaling Experiment) data are available daily by 
Safran point. The data were reanalyzed in order to obtain them for the same seasonality 
as the FWI and Climsec data (Table 2). 

Table 2. EURO-CORDEX and Climsec data. 
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Figure 2. DFCI mesh, from the national to the local scale (https://www.data.gouv.fr/fr/datasets/
carroyage-dfci-2-km/, (accessed on 12 October 2020)). The mesh has a value of 100 km with a
letter code, exemplified with “LD”. Then, for the 20 km resolution, two figures are added—e.g.,
“LD26”—and for the 2 km a letter and a figure are added—e.g., “LD26G2”—providing a unique code
for each mesh.

The Fire Weather Index (FWI) system was developed by the Canadian Forest Fire
Danger Rating System (CFFDRS) in the seventies [28]. This indicator is used worldwide
as a trustable indicator for the study of climate change effects in fire exposure [29]. The
indicator is available on the EFFIS Copernicus website throughout Europe. The FWI is
calculated daily by Météo-France for France via Arpège-Climat 4.6 over the period of
reference: 1959–2007. The FWI data was downloaded from Drias’s Météo-France platform
and for the period 1973–2007. The FWI is only available on a seasonal average from March
to November. The higher the FWI is, the greater the probability of wildfire is. The winter
season is not studied in this article.

The Safran data provide information about the temperature, humidity, wind and
precipitation. The data were downloaded from the Drias’s Météo-France platform. The
resolution is 8 km × 8 km; for different RCP scenarios, a total of 8602 points cover France.
The evolution of the critical meteorological parameters was calculated for 1973–2005, and
for the horizon 2050 RCP 4.5 seasonality of the parameters and a 20 × 20 km2 analysis. The
study focuses on a seasonal timescale in order to highlight the variation of the meteorologi-
cal metrics. Climsec Météo-France data are available as a seasonal average for the entire
year. We assume that the fire event within a DFCI mesh is uniquely determined by the
mesh’s meteorological conditions.

EURO-CORDEX (Coordinated Downscaling Experiment) data are available daily by
Safran point. The data were reanalyzed in order to obtain them for the same seasonality as
the FWI and Climsec data (Table 2).

https://www.data.gouv.fr/fr/datasets/carroyage-dfci-2-km/
https://www.data.gouv.fr/fr/datasets/carroyage-dfci-2-km/
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Table 2. EURO-CORDEX and Climsec data.

Metrics Details

TASMIN Daily minimal temperature at 2 m (altitude)
TASMAX Daily maximal temperature at 2 m

TAS Daily averaged temperature at 2 m
PR Daily precipitations (mm)

SFCWIND Wind speed at 10 m (altitude) (m/s)
SPI Meteorological drought for 3 months

SSWI Soil wetness index for 3 months

The meteorological Safran data were overlaid with the DFCI mesh. The resolution is
20 km × 20 km. The meteorological database is thus based on 1467 meshes (Appendix A).

2.2. Machine Learning-Based Methods for the Development of the Hazard Unit

Artificial intelligence and machine learning methods have been used in wildfire science
since the 1990s. Within the sets of available tools suggested in Jain et al. [30], we focused
only on the following: (i) decision trees, (ii) support vector machines, and (iii) artificial
neural networks.

We used machine learning-based methods for the development of the hazard unit
from the historical data collected in the Prométhée database. We focused only on the
definition of the burnt surface and the occurrence of fire events. The meteorological data
were integrated as indicators in order to assess their consequences on the area covered by
the fire, and on the occurrence.

2.2.1. Burnt Surface

The first approach was to predict the burnt surface in each DFCI mesh, and to validate
it for the real historical data. The training data were the total burnt surfaces and the
maximal burnt surface. In order to solve the issue of extreme events and fires with low
intensity, we focused only on the fires of 1 ha and 100 ha. The first tested method was
the adjustment according to a law. Indeed, this makes it possible to study the data as a
drawing of a random variable X, the law of which was known but the parameters of which
were not. In order to do this, we must choose a known law of X that seems to be close to
the distribution of our data. Then, by a method of optimization of the parameters of this
law, we find the parameters that maximize the likelihood between the data and the density
of this law. We can predict future data by randomly drawing this law as many times as
necessary in a statistical approach. Linear regression establishes a linear relation between
an explained variable and one or more explicative variables. The model was defined as
follows, with Y being the explained variable, Xp being the p explicative variable, and the
error and β being the parameters of the model.

We focused on the least-squares method, which minimizes the square deviation and
the estimated regression. The the R packages used were fitdistr, MASS and fitdistrplus.
After different tests, the most appropriate law was Burr’s law.

The second process was to test the neural network. A neural network is composed of
neurons distributed in several layers: input neurons, neurons in different hidden layers,
and output neurons. The input data and our hidden layers will modulate these data by
different weights and biases which provide output neurons and a value [31–33]. Then, the
square error of the prediction was calculated by comparing the differences between the
data and the predicted value. The neural network was then modified in order to minimize
this error. Thus, by repeating this operation the neural network obtains accurate predictions
while avoiding overlearning. The package used was nnet. The network length was 10, with
40 iterations.
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2.2.2. Fire Occurrence

The objective was to predict the probability of a DFCI mesh being affected by a fire
event, and to validate it with the real historical data. The training data were the number of
fires recoded as a Boolean variable, in order to predict the occurrence of at least one fire
event for the summer period. Three machine learning-based methods were tested, and are
detailed below. In addition to the machine learning models developed with R, we tested
the ArcGis® GIS-based machine learning hot-spot analysis.

A decision tree is a decision support tool that takes the form of a tree. At each node,
a decision is taken according to a parameter, and we descend in the tree to a new node
until we arrive at a leaf [34]. In a decision tree, in the case of a classification tree, the leaves
contain qualitative variables (labels); in the case of a regression tree, the leaves contain
quantitative variables. The package used was rpart. The maximal length of the trees was 3,
with at least 50 individuals per terminal node. Between 1973 and 2005, during the summer
season, 64% of the meshes recorded at least one fire; thus, the learning database will gather
50% of the database.

In a Random Forest, the main advantage of decision trees is their readability and
speed of execution [35]. The package used was randomForest; 500 trees were chosen, with
a height of five, and with at least 10 individuals per terminal node.

A Support Vector Machine (SVM) is a supervised learning technique. If the points
(target values) are linearly separable in the space of explanatory variables, the SVM will
search for the hyperplane boundary (the decision boundary) [36]. However, the points may
be not separated by a hyperplane, and it is then possible to reconsider the problem in a
higher dimensional space [37]. In order to deform the original space, we apply a kernel
function; in this new space, it is then likely that there is a linear separation. The package
used was e1017, and the duration of the calculation was a few minutes.

The space–time path is useful to visualize and understand the relationship between
time and geography data. The geographical data are represented along the x and y axis,
and the cube’s height represents the time on the z axis [38]. The Promethée dataset fits
perfectly with the ArcGis® geovisualization tool, as there is information on the location
and on the time series.

In order to perform the analysis, the Space Time Cube tool (ArcGIS Pro 2.8 online
support: https://pro.arcgis.com/fr/pro-app/latest/tool-reference/space-time-pattern-
mining/learnmorecreatecube.htm, (accessed on 10 March 2021)) was used based on Promethée
data, in order to define the hot spots whilst considering their evolution over the timeline.
The point data per year and community were integrated within the tool, and were aggre-
gated considering space and time. The fire events were recapitulated within a hexagonal
grid at yearly time steps, and then the spatial model provided the evolution in the time un-
der a NetCDF format. We did not define the interval distance between the points, because
they are the centroid of the community. Then, the Emerging Hot Spot Analysis tool was
used to read the NetCDF file. It analyzes the area in which the fire events are statistically
emergent or reduced in the area. The temporal interval is defined as a year.

2.3. Vulnerability and Damage Modelling

For the development of the vulnerability unit, information about the portfolio exposure
is required. First, the land-use type is needed; we used the Theia data at a 100-m resolution.
Theia defined 23 land-use types; the data was re-categorized into 4 categories (Table 3). We
assume the land use to be constant for the horizon 2050, as well as the number of buildings.
The land-use data were overlaid with the DFCI meshes.

https://pro.arcgis.com/fr/pro-app/latest/tool-reference/space-time-pattern-mining/learnmorecreatecube.htm
https://pro.arcgis.com/fr/pro-app/latest/tool-reference/space-time-pattern-mining/learnmorecreatecube.htm
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Table 3. New classification of the THEIA land-use data.

New Classification THEIA Land Use Types

Urban Dense buildings; diffuse buildings; industrial and commercial
areas; roads

Agriculture Colza; cereals; protein crops; soybeans; sunflowers; maize; rice;
tubers/roots; grasslands; orchards; vineyards;

Forest Wilderness deciduous forest; coniferous forest; grasslands;
woody moors;

Other surfaces Mineral; beaches; dunes; glaciers/snow; water;

Secondly, building location data were obtained from the vector building dataset BD
TOPO IGN®. In this study, we only focused on the individual residential building, for
which we have more detailed insurance data. For the damage model, we assume that when
a fire crosses three departments with different building densities and insured values, that
the three are proportionally damaged (Figure 3).
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Figure 3. When a fire (in red) touches, proportionally, the department within the DFCI mesh, the
density of the houses is applied, and we obtain the number of houses burnt and the damage costs.

In terms of insured damages, wildfires may have important consequences for the
buildings. They can totally damage the infrastructure. Nevertheless, wildfire damage
is not covered within the Nat Cat scheme, and events destroying residential assets are
extremely rare in France. In French newspapers, there is information about the costs for
firemen, but not for the insured losses. Thus, the wildfire-related insured damages are not
available. In order to bridge the gap, we used confidential CCR portfolio data aggregated
at the department scale. The leaflet R package was used to map the data. We consider,
in the model, that if the fire touches a house it is totally destroyed within the damage
function. As there are no data on fire-related claims, we considered the insured values
as the claims. This is contrary to Australia or the USA, where buildings are destroyed
and the destruction functions are then calibrated [11]. The price of a m2 of building
per department was downloaded (https://www.meilleursagents.com/prix-immobilier/
(accessed on 1 December 2021)). The fictive model applies the maximal historical burnt
surface of each DFCI mesh since 1973 to the existing urban areas. Then, we count the
number of damaged assets, ihouse, to which we apply the costs of a square meter of house
per department, P€M2, and the insured values of the house and furniture at the department
scale, P€fur.

Forihouse = ∑ P€M2 + P€ f ur

Third, the Wildland–Urban Interface (WUI), developed by the USA, describes areas
where wildfires and urban areas interact, generating a potential loss of properties and
life [10,39]. The WUI types intermix, and interface areas were applied to the entire French
scale at the DFCI mesh of 20 × 20 km.

https://www.meilleursagents.com/prix-immobilier/


Appl. Sci. 2022, 12, 1635 8 of 17

Concerning the damage model, we assume the application of the maximal surface of
burnt areas of each DFCI mesh on the urban surface of the same mesh; then, by using the
departmental insured values, we are able to calculate the potential damages.

3. Results
3.1. Statistical Analysis

The statistical analysis of the data highlights the variations of the total burnt areas and
fire occurrence per season per year in the Promethée area. The seasonal variability is very
important; it is correlated to the fact that if a lot of areas are burnt during the year n − 1,
the probability of fire is decreased for the year 0 or year +1 (Figure 4).
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A large majority of the DFCI mesh has no or only two fire departures. On the contrary,
some of the mesh has more than 100 fire departures over the entire studied period and over
the years (Figure 5).
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For a daily analysis, the link between a high FWI and fire occurrence is important;
nevertheless, when considering the average value of the FWI over three months, the link
is not insured. The variability of the data poses an issue of extreme values, and adds
complexity for the implementation of machine learning-based methods (see Section 3.2).
In order to cope with the issue, the correlation matrix allows us to better understand the
relationships and interdependence between the metrics. The number of fires is positively
correlated with the FWI (0.31), the number of days without precipitation (0.21) and the
mean temperature (0.29). The number of fires is, on the contrary, negatively correlated
with the precipitation; in particular, the negative values are between −0.09 and −0.17. This
matrix also highlights that the SPI and SSWI indexes are not correlated with other variables,
and especially with the targeted variables NBFEUX and SURFTOT (values equal to 0). On
the contrary, the variables representing the same data have an important coefficient of
relation; for example, the variable for temperature TASQ50 and TASQ90 with a correlation
of 0.96 (Figure 6).
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the number of fires (0.21).

3.2. Hazard Unit

The results below show the comparison of the estimates from the machine learning-
based methods between the real and modelled scenarios in order to predict the burnt
surface and the probability of fire. We also integrated the projections at horizon 2050 under
the RCP 4.5 IPCC Scenario.

3.2.1. Burnt Surface

For this purpose, we started with the statistical approach based on Burr’s law. We
obtained a similar distribution for the majority of the low-intensity fires, and for some of
the extreme events. The quality of the simulation was determined using a quantile–quantile
diagram. Figure 5 shows a soft Burr’s law overestimating the area of the burnt surface
according to the seasons. The average error was 0.7. The densities are coherent with a very
high probability of low fire intensity and a very low probability of extreme fire. The higher
the fire, is the lower the probability is (Figure 7). It is a soft Burr’s law. We assumed an
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interesting simulation, and we simulated with this law several thousand numbers in order
to calculate the average burnt surface.
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Figure 7. Burnt surface simulated with Burr’s law (a), and compared to the observed data from the
Prométhée database (b).

In a second analysis, the neural network was tested for the estimation of the burnt
surface. Figure 8 highlights the average absolute difference between our predicted values
and the real ones. The average error on the learning base is in blue, and the error on the
test base is given in red. The error on the test base is 15.6 ha. The use of the neural network
highlights the need to focus on the prediction of the occurrence or absence of fire events.
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Figure 8. Comparison of the squared deviation for the neutral network based on the Prométhée
database from 1973 to 2005 concerning the burnt surface.

Regarding the training data available and the machine learning outputs, we assume
that Burr’s Law provides better results that the neural network concerning the estimation
of the burnt surface.

3.2.2. Fire Occurrence

In order to model the fire occurrence, we tested three machine learning-based methods
and one GIS-based approach.
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First, we tried the decision tree. At the least, the learning base will contain 50% of
the lines. We still obtained a high number of false negatives and badly classified results
compared to the other machine learning methods (Figure 9). We could use a deeper tree,
but the result wouldn’t change much, and the tree would have too many leaves to be
interpretable. The main variables are practically always the same, no matter which sample
we take. The confusion matrix associated to the tree based on the learning base reveals
22.03% badly classified results; 40.01% false positives and 12.38% false negatives. The
results are similar for the validation base, with 24.50% being badly classified, 43.56% false
positives and 13.48% false negatives. Based on this method, the false negatives are too
important and the results are insufficient.

Appl. Sci. 2022, 12, 1635 11 of 17 
 

the result wouldn’t change much, and the tree would have too many leaves to be inter-
pretable. The main variables are practically always the same, no matter which sample we 
take. The confusion matrix associated to the tree based on the learning base reveals 22.03% 
badly classified results; 40.01% false positives and 12.38% false negatives. The results are 
similar for the validation base, with 24.50% being badly classified, 43.56% false positives 
and 13.48% false negatives. Based on this method, the false negatives are too important 
and the results are insufficient. 

 
Figure 9. Extract of the decision tree developed for the study. 

Next, we tested the Support Vector Machine (SVM). The objective was to split line-
arly the true and false results within the space of meteorological indexes (of dimension 
14). The function svm of the package e1071 allows the realization of SVM by choosing 
among four nodal functions: linear, polynomial, radial or sigmoid. After different tests, 
the radial nodal function provides better results. Figure x provides the error rate on the 
learning base, and tests for a variation of the γ parameter. Among the three presented 
methods and related results, the three are similar in terms of performance. The more in-
teresting rates to consider in the context of fire occurrence are the false negative and badly 
classified results, at around 14% (i.e., the number of fires that the model has not predicted). 
We assume that the models have good performance (Figure 10). 

 
Figure 10. Error rates according to the parameter y for a radial nodal. 

Figure 9. Extract of the decision tree developed for the study.

Next, we tested the Support Vector Machine (SVM). The objective was to split linearly
the true and false results within the space of meteorological indexes (of dimension 14). The
function svm of the package e1071 allows the realization of SVM by choosing among four
nodal functions: linear, polynomial, radial or sigmoid. After different tests, the radial nodal
function provides better results. Figure 10 provides the error rate on the learning base, and
tests for a variation of the γ parameter. Among the three presented methods and related
results, the three are similar in terms of performance. The more interesting rates to consider
in the context of fire occurrence are the false negative and badly classified results, at around
14% (i.e., the number of fires that the model has not predicted). We assume that the models
have good performance (Figure 10).
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Then, in the continuity of the tests, we tested the random forest method. The im-
plementation of the random forest of the learning base does not highlight false negatives
and positives from phenomena of overlearning. Nevertheless, the random forest provides
similar results from a dozen trees; the rate of bad classification was around 25% for a
random forest predicting the occurrence of fires larger than 10 ha, the FWI, and the Q50 of
the daily minimal temperature.

We also tried to estimate the prediction of a burnt area of more than 10 ha; the best
model was a random forest (Figure 11). The results are coherent and applicable to the
historical datasets and for the 2050 future climate.
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Figure 11. The figure compares (a) the modelled prediction of fires of 10 ha for the summer of 2005
using a random forest, and observations from the same year (b).

We observe that the results of the projection are different according to the method of
projection, as the models are calibrated on the Promethée area, and are projected to the
entire country (Figure 12). Each model has at least 20% badly classified results and 40%
false positives.
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Figure 12. Comparison of the results from the three machine learning tools rgarding the probability
of at least one fire within the 2 km DFCI mesh during summer 2050 RCP 4.5. (a) The decision tree
projection is the more moderated model; we observed the exposure of Landes, Rhône valley and
Vosges. (b) The random forest’s projection highlights the Mediterranean and Corse areas’ exposure,
with an increasing exposure of the Rhône valley, Landes, Bretagne, Nord-Pas-de-Calais and Pays-de-
Loire; this model seems to be the more coherent one. (c) SVM’s projection is the more pessimistic
model, generating fire events in the large majority of the territory; the results are more related to the
RCP 8.5 pessimistic scenario.
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The results are highly coherent for the Mediterranean area. We observe some sim-
ilarities, especially for increasing exposure of Bretagne, Pays de la Loire, Centre Val de
Loire, and the Atlantic coast (Landes forested areas), and an increasing exposure of the
mediterranean area (Occitanie and Provence Alpes Côte d’Azur) [40].

Finally, the statistically significant hotspots and cold spots are represented on the map.
The red areas indicate that, throughout the time, there is an aggregation of a high number
of forest fires. The blue areas highlight a smaller number of fire events. Each hexagon is
classified according to the timescale. The geographical analysis underlines the exposure of
the areas nearby Béziers and Perpignan, which are areas of oscillating hot spots. The rest
of the Mediterranean area is exposed in the same manner without a strong evolution in
time (oscillating cold spots). For North Corse, at least 90% of the temporal intervals were
statistically significant hotspots (Figure 13).
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3.3. Damage Model

The R code provides, for each year, a table with the potential costs of a fire for the
DFCI. Within this model, we assume that the burnt surface is entirely inhabited. Under
the hypothesis of the RCP 4.5 at horizon 2050 using a random forest model predicting
the occurrence or not of fire greater than 10 ha, we estimate that the damage will be, in
2050, around 35 M€ on average for residential insured areas only. The evolution of the
insured values is not considered, nor are the land-use changes. The spatial repartition of
the future areas exposed to wildfire events further north in France highlights the increase
of the economic exposure (Figure 10). This evolution can be compared to the results of
Moncoulon et al. [26] on geotechnical drought and shrinking swelling clay (SSC), in that
they reveal an increasing exposure of the southern communities, as well as those is the
Atlantic area.

4. Discussion

Despite the many limitations associated with simulation modelling and machine
learning-based methods in these experiments discussed above, the outputs from this work
provide useful information on the exposure of France to wildfires. This work introduced
the foundation of the Cat model for the assessment of forest fire exposure and projection to
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horizon 2050. We acknowledge the limitations in the use of the model for the prediction
of building exposure considering the spatial resolution chosen. First and foremost, our
predictions were only applied to the RCP 4.5 scenarios. This study focused on wildfire
disasters from an asset context, and we recognize that wildfires also threaten human lives
and ecosystems, as well as cascading impacts on floods, landslides and potable water after
severe fire events. Furthermore, the model could consider not only the physical damage
but also the business interruption or critical infrastructure issues (highways, secondary
roads, etc.). Furthermore, we did not consider the currently implemented fire prevention
programs. We considered the exposure to be constant in the 2050 horizon. As the issue of
population growth in littoral areas will be higher in the future, it will increase the exposure
to fire events and greatly influence the WUI [26,41,42]. Regarding the damage model’s
development, wildfire-related claims data could support the determination of the damage
functions; nonetheless, based on our knowledge, that kind of data is not available in France.
Downscaling the model could also make the results and damage estimates more precise.

Although climate change is considered in the optimistic scenario RCP 4.5, the results
of the future exposure are significant to start to raise and develop a risk culture in the
future exposed areas (Bretagne, Alsace, etc.), and for the maintenance of the currently
well-structured prevention processes in Southern France. There have been numerous
studies that focused on the asset level and considered the fire conditions, landscape and
properties’ structures. Here, in order to obtain a global vision of the exposure of the entire
area of France, we used simplistic models. Obtaining new data is challenging, as it requires
waiting for future wildfires and potentially generating large losses, and ensuring that data
of sufficient quality are collected. The relatively small number of fire events in terms of
number or burned acres, and the very low number of burnt assets in France means that
the applicability of the model developed overestimates the number, and the surface is not
easily calibrated on the training data. Nevertheless, it offers a new visibility of France’s
exposure to that kind of natural disaster for the next few years. It provides elements for
discussion on the issue of the underwriting of fire risk within the Nat Cat scheme.

5. Conclusions

This model synthesizes information for the French insurance sector, and contributes to
understanding and reducing wildfire losses. CCR and Euria Brest developed a first-of-its-
kind France Cat model projecting changes to wildfire potential under the RCP4.5 scenario
at a granularity of about 20 × 20 km. Finally, the best model for burnt-surface prediction is
Burr’s law, and the random forest for the fire occurrence.

In the future, this model could be combined with GIS analysis (within distance to
vegetation, slopes, and fuel type) and with satellite imagery analysis in order to make the
exposure analysis more precise.

New machine learning and remote sensing data could be used to develop specific
damage curves for household buildings for the vulnerability models, such as those created
for hurricane damage. This is the first time, as far as we know, that a reinsurance company
developed, with an institute, a prototype model that links machine learning and insurance
data, and applied these models to the estimation of the expected financial loss from wildfires.
Likewise, the model could be applied to other countries, as well as the pessimistic scenario
RCP 8.5. The different improvements will open the door to explore a wide range of exposure
management in order to reduce the climate change impact, and to support the community
for preventive measures. Strong decisions have to be taken in order to avoid making 2021
the last coolest year of the rest of our lives.

This paper offers new visibility for the improvement of the preparedness in future
potentially affected areas. We hope that this work will support future potentially exposed
areas to integrate the analysis within their disaster risk prevention and resilience plans.
Robust cat models can improve the accuracy of the predictions of the locations of the
greatest risks to assets, and could provide an indication of the implementation of preven-
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tive measures. The proposed methodology could serve as a reference for wildfire risk
assessment, and can be replicated elsewhere.
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Appendix A

Table A1. Developed metrics from the overall database to be integrated within the machine learning tools.

Metrics Details

NBFEUX Number of fire departures
NBFEUX0_5HA Number of fire >0.5 ha

NBFEUX1HA Number of fire >1 ha
NBFEUX10HA Number of fire >10 ha
NBFEUX100HA Number of fire >100 ha

SURFQ50 Quantile 50 of the fire surface (ha)
SURFQ90 Quantile 90 of the fire surface (ha)

SURFMAX Maximal surface of the fire (ha)
SURFTOT Total burnt area (ha)
INBFEUX Binear code: fire/no fire; whatever the burnt surface

INBFEUX0_5HA Binear code: fire/no fire; burnt surface >0.5 ha
INBFEUX1HA Binear code: fire/no fire; burnt surface >1 ha
INBFEUX10HA Binear code: fire/no fire; burnt surface >10 ha

INBFEUX100HA Binear code: fire/no fire; burnt surface >100 ha
TASMINQ50 Quantile 50 over 3 months of the minimal temperature
TASMINQ90 Quantile 90 over 3 months of the minimal temperature
TASMAXQ50 Quantile 50 over 3 months of the maximal temperature
TASMAXQ90 Quantile 90 over 3 months of the maximal temperature

TASQ50 Quantile 50 over 3 months of the mean temperature
TASQ90 Quantile 90 over 3 months of the mean temperature
PRQ50 Quantile 50 over 3 months of the daily precipitation
PRQ90 Quantile 90 over 3 months of the daily precipitation

PRCUMUL Total precipitation over 3 months
PRNBSS Number of days without precipitation

SFCWINQ50 Quantile 50 over 3 months of the wind speed
SFCWINQ90 Quantile 90 over 3 months of the wind speed

SPI Meteorological drought for 3 months
SSWI Soil wetness index for 3 months
FWI Seasonal average from March to November
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