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Abstract: Dental implantation is a surgical procedure in oral and maxillofacial surgery. Detecting
missing tooth regions is essential for planning dental implant placement. This study proposes
an automated method that detects regions of missing teeth in panoramic radiographic images.
Tooth instance segmentation is required to accurately detect a missing tooth region in panoramic
radiographic images containing obstacles, such as dental appliances or restoration. Therefore, we
constructed a dataset that contains 455 panoramic radiographic images and annotations for tooth
instance segmentation and missing tooth region detection. First, the segmentation model segments
teeth into the panoramic radiographic image and generates teeth masks. Second, a detection model
uses the teeth masks as input to predict regions of missing teeth. Finally, the detection model identifies
the position and number of missing teeth in the panoramic radiographic image. We achieved 92.14%
mean Average Precision (mAP) for tooth instance segmentation and 59.09% mAP for missing tooth
regions detection. As a result, this method assists diagnosis by clinicians to detect missing teeth
regions for implant placement.

Keywords: missing tooth regions detection; tooth instance segmentation; dental implant placement;
dental implant; panoramic radiographic image

1. Introduction

Dental implants are a common surgical procedure in oral and maxillofacial surgery [1].
Prior to implant placement surgery, it is essential to establish a surgical plan [2–4]. Generally,
an implant placement plan is created using a patient’s panoramic radiographic image or
cone beam computed tomography (CBCT) image [5–7]. Implant placement is performed by
finding missing tooth regions and determining a suitable implant product for the missing
tooth regions [8,9]. Therefore, missing tooth region detection precedes implant placement.
Furthermore, automatic detection of missing tooth regions is essential for developing an
automatic implant placement plan.

A panoramic X-ray is one of the most commonly used diagnostic tools in modern
dentistry along with CBCT due to its advantages of being more cost and time efficient than
CBCT [10–17]. Furthermore, only a panoramic radiographic image is used for diagnosis
instead of CBCT because of the cost of the device and imaging of CBCT in some cases [18].
As a result, we used a panoramic radiographic image in this study to reduce the amount
of computation.

Due to the lack of automated technologies, clinicians had to plan dental implant
placement manually. As a result, the diagnostic fatigue and burden on clinicians have
steadily increased. Therefore, several studies have attempted to automatically detect
missing tooth regions in order to generate an implant placement plan [8,9]. One study uses
deep learning to detect missing teeth in CBCT images for implant placement planning.
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Because the missing tooth regions are predicted using surrounding information such as
the location, tilt, and placement of adjacent teeth, the prediction may be inaccurate when
teeth are lost consecutively [8]. A deep neural network is used to detect the missing left
first molar in panoramic radiographic images, and the position and axis of the implant are
generated in 3D simulation [9]. However, the previous two studies using deep learning
can only detect the missing region of the specific tooth and have limitations in detecting
multiple missing tooth regions simultaneously [8,9]. In actual clinical practice, multiple
implants are frequently performed at the same time. Therefore, the detection of multiple
missing tooth regions is necessary to establish multiple implant placement plans.

Deep learning is a type of computing method that focuses on learning successive layers
of increasingly meaningful representations from data [19]. Therefore, a deep learning model
can extract meaningful representations from not only linear data but also complex data. As a
result, deep learning is applied to data classification, segmentation, and detection in various
domains, such as images and signals [20–26]. In particular, deep learning demonstrates high
performance in medical imaging [27–30]. Deep learning is also used to assist with various
tasks, including caries detection and third molar extraction, in dentistry [14,15,31,32].

In this work, we propose a deep learning method to detect missing tooth regions
through panoramic images as a process for dental implant planning. This method consists
of tooth instance segmentation, which segments all teeth except third molars by instance
in panoramic radiographic images, and missing tooth regions detection, which identifies
areas of multiple missing teeth. Previously, there were no datasets for both tooth instance
segmentation and missing tooth region detection at the same time. Therefore, we built a
dataset for tooth instance segmentation and missing tooth region detection. Furthermore,
this study can be used for the production of dental implant surgical guides, diagnostic
assistance for clinicians, and the education of unskilled apprentices.

The goal of this work is to detect missing tooth regions as a process of automated
dental implant placement. We propose a deep-learning-based method for the detection of
missing tooth regions and tooth instance segmentation in panoramic radiographic images.
The main contributions of this study are summarized as follows:

• We proposed a method of simultaneously detecting missing tooth regions for dental
implant placement planning using a panoramic radiographic image.

• We constructed datasets for tooth instance segmentation and missing tooth region
detection at the same time.

• By using a dataset composed of various panoramic radiographic images, we ensure
consistent performance for our method.

2. Materials and Methods
2.1. Dataset

This study was approved by the Institutional Review Board (IRB) of the Chosun
University Dental Hospital (CUDHIRB 2005008) and the Gwangju Institute of Science and
Technology (20210217-HR-59-01-02). We used both a public dataset and acquired data
in the dataset. There are 386 panoramic radiographic X-ray images in the public dataset,
including images with missing teeth and teeth with restoration and dental applications [33].
In addition, the dataset we acquired contains 69 panoramic radiographic X-ray images of
patients from Chosun University Dental Hospital. The dataset used in the study excluded
the patient’s personal information and are obtained from various panorama devices and
settings. Of the 455 panoramic radiographic images, 348 images have ground truth for tooth
instance segmentation, while 107 images have both the ground truth for tooth instance
segmentation and missing tooth region detection. Therefore, 348 images were used to
train, whereas 107 images were used to evaluate the performance of the model. As a
result, the dataset is randomly split into 77.5% for training, 7.5% for validating, and 15%
for testing.
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2.1.1. Tooth Instance Segmentation Dataset

This dataset was used to train and evaluate models for segmenting teeth in the
panoramic radiographic image on an instance-by-instance basis. The dataset contains
panoramic radiographic images from various cases in which a number of teeth have been
lost or include dental appliances and restoration. Figure 1 shows panoramic radiographic
images including dental appliances and restoration. The panoramic radiographic image
and valid teeth label are required to train the tooth instance segmentation model. Therefore,
the dataset was constructed by labeling each tooth with a polygon and tagging the tooth
number. Labeling was performed on 28 teeth, excluding third molars, and tooth numbers
were assigned based on Federation Dentaire Internationale (FDI).

Figure 1. Examples of panoramic radiographic images. (a) image with 28 teeth, (b) image with
restoration, and (c) image with dental appliance.

2.1.2. Missing Tooth Regions Detection Dataset

The performance of the deep learning model depends on the amount of training data.
Therefore, we constructed a dataset for the missing tooth regions detection through syn-
thetic data generation. The synthetic dataset was constructed using teeth masks generated
through tooth instance segmentation from 170 patients, as seen in Figure 2. The teeth
masks assigned pixel values according to each tooth number. Synthetic teeth masks are
generated by randomly removing up to 10 teeth from a tooth mask with all 28 teeth except
the third molars. The ground truths for missing tooth regions are constructed in the form
of a bounding box using the position information in the image of the excluded teeth. As a
result, our dataset contains 37,323 synthetic images generated from 170 teeth masks.

Figure 2. Generation of synthetic data for missing tooth region detection. (a) Panoramic radiographic
image that contains 28 teeth. (b) Teeth mask generated through tooth instance segmentation except
third molars. (c) Synthetic data generated by randomly removing teeth from a tooth mask.

2.2. Tooth Instance Segmentation Model

The tooth instance segmentation model segments 28 teeth, excluding the third molars,
in the panoramic radiographic image. For tooth instance segmentation, we used Mask
R-CNN, which exhibited high performance in the image segmentation task [34]. ResNet-
101 is used for the backbone of the segmentation model [35]. ResNet-101 is a deep neural
network architecture commonly used to extract feature maps for image-based tasks, such
as segmentation or object detection. In particular, ResNet-101 consists of 101 layers and
contains a residual block that solves the degradation problem by reducing the difference
between input and output. Figure 3 shows the schematic of the network architecture
of ResNet-101. Furthermore, Figure 4 shows the results of the segmentation of teeth by
instance in the panoramic radiographic image. As a result, the tooth mask generated by the
tooth instance segmentation model is utilized as the input data for the missing tooth region
detection model.
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For data augmentation, brightness, contrast, and saturation augmentation is applied
to images randomly. The segmentation model was trained by using an SGD optimizer with
a learning rate of 1 × 10−2, a batch size of 4, and the Smooth L1 loss function. The segmen-
tation model was trained for 100,000 iterations and evaluated every 500 iterations, and the
number of parameters of the model is 60.6 M.

Figure 3. Schematic of the network architecture of ResNet-101. The network is implemented by
repeating the block of three convolutional layers 3, 4, 23, and 3 times, respectively. 3 × 3 pool means
pooling layer with 3 × 3 filters. Furthermore, K and C are the mean size of kernel and the number of
channels of convolutional layer, respectively.

Figure 4. Entire process for missing tooth region detection. Tooth instance segmentation model
segments 28 teeth, excluding the third molars, in the (a) panoramic radiographic image. (b) shows
result of the tooth instance segmentation model. Furthermore, then, (c) is generated from results of
the segmentation model. The missing tooth region detection model detects the regions of missing
teeth from the generated teeth mask. Furthermore, the result of the detection model is shown in (d).

2.3. Missing Tooth Region Detection Model

Missing tooth region detection is required for implant placement in the panoramic
radiographic image. Through this model, missing tooth regions, except the third molars,
are detected simultaneously. Missing tooth regions are detected in the form of bounding
boxes and assigned numbers (#11∼#47). For missing tooth region detection, we used
Faster R-CNN, which exhibits high performance in object detection. The detection model’s
backbone is ResNet-101. The model was trained via the synthetic data, and real data were
used for evaluation. To improve the training efficiency, the input image of the model
was resized to 600 × 300. Figure 4 shows the entire process for detecting missing tooth
regions from the panoramic radiographic image. The detection model was trained using
an SGD optimizer with a learning rate of 1 × 10−2, a batch size of 32, and the Smooth L1
loss function. The detection model was trained for 100,000 iterations and evaluated every
500 iterations, and the number of parameters of model is 63.3 M.



Appl. Sci. 2022, 12, 1595 5 of 10

2.4. Evaluation Metrics

The evaluation of the two modules is connected because the missing tooth region
detection model takes segmented masks from the segmentation model as input. The mean
Average Precision (mAP) was used to evaluate both the segmentation and detection mod-
els. mAP is the average of each class’s AP values, with AP being the value obtained by
calculating the area under the Precision–Recall curve. When the Intersection over Union
(IoU) between ground truth and prediction is larger than the threshold, we considered it a
correct prediction. mAP (0.5) is calculated by predicting the correct answer when IoU is
>0.5, and mAP (0.5:0.95) is calculated by averaging the performance of IoUs within 0.5–0.95
in 0.05 steps.

3. Results

In this section, the performances of the tooth instance segmentation model and missing
tooth region detection model are evaluated. mAP (0.5) and mAP (0.5:0.95) are used for
evaluating the performance of both models.

3.1. Tooth Instance Segmentation Model

The performance of the segmentation model is evaluated using panoramic radio-
graphic images. In Table 1, the segmentation model achieves 92.14% for mAP (0.5) and
76.78% for mAP (0.5:0.95). Furthermore, Table 2 shows the performance by each tooth
number (#11∼#47), where #N indicates tooth number in this table. The segmentation
performance of the second molars is less than the other teeth. Because the third molar’s ap-
pearance and location is similar to the second molar, the segmentation model confuses the
third molar with the second molar. Figure 5 describes the visualization of the segmentation
model result.

3.2. Missing Tooth Regions Detection Model

We also evaluate the missing tooth region detection model using panoramic radio-
graphic images. The detection model uses the teeth masks obtained from the tooth instance
segmentation model. Table 3 shows the performance of the model. The model achieves
59.09% for mAP (0.5) and 20.40% for mAP (0.5:0.95). In addition, Table 4 exhibits the per-
formance by each tooth number (#11∼#47) where #N indicates tooth number. Because the
actual patient’s data was used as a test set, there is no result value for the tooth number that
is not in the dataset in Table 4. In addition, the performance of the model for the second
molars is lower than the other teeth. Due to the location of the second molars at the end of
the tooth arrangement, there are often no adjacent teeth to guide the detection. Figure 6
illustrates the visualization of the missing tooth regions detection model results.

Table 1. Performance of tooth instance segmentation model.

Model AP (0.5) AP (0.5:0.95)

Mask R-CNN 92.14% 76.78%

Table 2. Performance of tooth instance segmentation model by tooth number.

#N AP (0.5) #N AP (0.5) #N AP (0.5) #N AP (0.5)

#11 99.67% #21 98.01% #31 94.99% #41 96.76%
#12 99.64% #22 100.0% #32 94.72% #42 95.33%
#13 99.35% #23 99.08% #33 94.44% #43 92.71%
#14 95.14% #24 92.79% #34 95.60% #44 87.51%
#15 93.21% #25 87.15% #35 92.97% #45 93.70%
#16 91.08% #26 91.70% #36 77.49% #46 82.81%
#17 94.60% #27 86.58% #37 78.70% #47 76.58%
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Figure 5. Visualization of tooth instance segmentation model result.

Figure 6. Visualization of missing tooth regions detection model result.
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Table 3. Performance of missing tooth regions detection model.

Model AP (0.5) AP (0.5:0.95)

Faster R-CNN 59.09% 20.40%

Table 4. Performance of missing teeth region detection model by tooth number.

#N AP (0.5) #N AP (0.5) #N AP (0.5) #N AP (0.5)
#11 50.95% #21 50.49% #31 - #41 -
#12 - #22 50% #32 - #42 -
#13 100% #23 66.99% #33 - #43 -
#14 46.73% #24 63.99% #34 100% #44 0%
#15 67.82% #25 70.26% #35 73.88% #45 82.26%
#16 38.5% #26 74.32% #36 91.11% #46 89.74%
#17 32.53% #27 26.51% #37 27.50% #47 37.77%

4. Discussion

Recently, deep learning has been widely applied in the medical field [27–30]. In partic-
ular, deep learning demonstrates high performance in image classification, segmentation,
and detection. Therefore, deep learning is used to diagnose diseases, such as specific
diseases and abnormal signs in X-ray, CT, and MRI images [36–39]. In addition, previous
studies demonstrate that deep learning exhibits a reliable performance in the diagnosis of
dental disease [40–43].

Deep learning is a data-driven method of training. However, there are no studies
and datasets for the detection of missing tooth regions for implant planning in panoramic
radiographic images. Therefore, we constructed a dataset for a missing tooth region
detection model and a tooth instance segmentation model.

Several studies have applied deep learning to detect missing tooth regions and segment
various anatomical structures for implant planning [8,9]. Bayrakdar et al. developed an
AI system that detects canal, sinus, fossa, and missing teeth in CBCT images for implant
planning [8]. Liu Yun et al. proposed a deep learning method for implant planning of the
mandibular left first molar. Previous studies have established implant placement plans
using CBCT images [8,9]. However, CBCT requires a higher cost when compared to a
panoramic radiographic X-ray. Additionally, previous studies have not fully automated
methods and can only detect specific missing tooth regions. Therefore, there is a limit to
detecting multiple missing tooth regions simultaneously [8,9].

In clinical practice, implant placement is frequently performed on several teeth at the
same time. Thus, we developed a detection model for identifying multiple missing tooth
regions simultaneously for implant placement using panoramic radiographic images. Tooth
instance segmentation was conducted to improve the performance of missing teeth region
detection by only segmenting the teeth in the panoramic radiographic images. As a result,
we achieved that the performance of tooth instance segmentation is 92.14% for mAP (0.5)
and 76.78% for mAP (0.5:0.95), while the performance of missing tooth regions detection
is 59.09% for mAP (0.5) and 20.40% for mAP (0.5:0.95). Since the oral structure and tooth
size vary depending on the person, there was a limit to the detection performance of the
missing tooth regions.

A sufficient amount of data is required to achieve high-performance deep neural
network, yet it is labor-intensive and expensive. Therefore, various previous studies
have improved performance by using synthetic data when sufficient amounts of data are
unavailable [44–49]. Thus, we generated 37,323 synthetic datasets and used them to achieve
high performance. However, the synthetic dataset was created from only 170 teeth masks.
Thus, the synthetic dataset has limitations in diversity. Therefore, if more real data are
accumulated, we expect the detection performance of the missing tooth regions to improve.

For automatic dental implant placement planning, future work is required to develop
a method that creates the position, axis, and size of the implant for the missing tooth regions
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in the panoramic radiographic image. Using a panoramic radiographic image for a deep
learning model can reduce the computational cost more than using CBCT images. However,
using CBCT is essential to planning the dental implant placement. As a result, future work
is required to generate dental implant placement plans using a deep learning model from a
2D image and then convert the results into CBCT image. Through this methodology, we
expect it to support clinicians in diagnosing quicker and providing patients with more
transparency in their treatment. As a result, this work investigates a previous process in
the generation of the implant placement plan that estimates the position, axis, and size of
the implant in the panoramic radiographic image.

5. Conclusions

Detection of missing tooth regions is an essential part of implant placement planning.
Therefore, this study proposes a method for detecting missing tooth regions through
panoramic radiographic images. The results of this study demonstrate that a deep learning
model can provide a great contribution to the automation of implant placement. This
study also constructed a dataset for tooth instance segmentation and missing tooth region
detection in panoramic radiographic images. In the future, the use of more data and an
improved algorithm will be more helpful in automating implant placement.
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