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Abstract: Automatically generating executable code has a long history of arguably modest success,
mostly limited to the generation of small programs of up to 200 lines of code, and genetic improvement
of existing code. We present the use of genetic programming (GP) in conjunction with context-
oriented behavioral programming (COBP), the latter being a programming paradigm with unique
characteristics that facilitate automatic coding. COBP models a program as a set of behavioral
threads (b-threads), each aligned to a single behavior or requirement of the system. To evolve
behavioral programs we design viable and effective genetic operators, a genetic representation, and
evaluation methods. The simplicity of the COBP paradigm, its straightforward syntax, the ability
to use verification and formal-method techniques to validate program correctness, and a program
comprising small independent chunks all allow us to effectively generate behavioral programs using
GP. To demonstrate our approach we evolve complete programs from scratch of a highly competent O
player for the game of tic-tac-toe. The evolved programs are well structured, consisting of multiple,
explainable modules that specify the different behavioral aspects of the program and are similar to
our handcrafted program. To validate the correctness of our individuals, we utilize the mathematical
characteristics of COBP to analyze program behavior under all possible execution paths. Our analysis
of an evolved program proved that it plays as expected more than 99% of the times.

Keywords: genetic programming; behavioral programming; code generation

1. Introduction

Search-based software engineering (SBSE) applies search-based techniques to software
engineering tasks, of which an important one is the improvement and generation of
software. This task is difficult to achieve due to several reasons, including the complexity
of modern programming languages, the difficulty in evaluating the generated software,
and the linearity of code—a small change might “break” the entire program’s behavior.
To overcome these difficulties we propose the use of genetic programming (GP) to evolve
behavioral programs.

Context-oriented behavioral programming (COBP) [1] is a software development and
modeling paradigm designed to allow users to program reactive systems in a natural and
intuitive manner that is aligned with how humans perceive the system requirements. A
behavioral program consists of a set of context-dependent scenarios (that state what to do)
and anti-scenarios (that state what not to do), which are interwoven at run-time to generate
a combined reactive system. Each scenario and anti-scenario is specified as a sequential
thread of execution that isolates a specific aspect of the system behavior, preferably an
individual requirement; it is referred to as a b-thread. An application-agnostic execution
mechanism repeatedly collects these scenarios, chooses actions that are consistent with
all the scenarios, executes them, and continuously informs them of each selection. We
elaborate on COBP in Section 3.

A behavioral program has unique characteristics that makes it an excellent candidate
for code evolution:
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• Repetitive structure, which allows for a simple representation of a program as an
abstract syntax tree (AST).

• Small independent components that are easier to change and adjust, since in many
cases breaking one b-thread has little effect on the other b-threads.

• Synthesis, formal reasoning, and verification algorithms can be used to evaluate a
generated program’s performance.

In this paper we demonstrate how COBP programs can be evolved through GP, show-
casing the benefits of COBP by focusing on the game of tic-tac-toe. Specifically, we evolve
from scratch a highly competent O player specified as a set of b-threads. Creating such a
player requires the specification of different behaviors, such as place third “O” when possi-
ble, block “X” from winning, etc. We will show evolution created from scratch a complete
program that consists of different modules that specify these behaviors. Most work on code
evolution focuses on genetic improvements of existing code and code evolution of small
modules, such as methods (elaborated in Section 2). Thus, while tic-tac-toe may be seen as
a toy problem, creating a complete program from scratch is complicated. We are aware of
no attempt at generating from scratch a complete program for tic-tac-toe.

As we will show, our evolved individuals have the repetitive structure of behavioral
programs. Most modules of our best individual are self-explanatory and adhere to a known
strategy for the game.

For evolving COBP programs, we design the following: a domain-independent gram-
mar for behavioral programs, augmented with terminals for tic-tac-toe; type-based, COBP-
oriented genetic operators; and a fitness function that uses a behavioral program’s flow
of events.

The contributions of our work are as follows:

1. We provide a methodology and tools for evolving complete programs from scratch.
2. We design a domain-independent grammar for behavioral programs.
3. We design domain-independent, type-based, COBP-oriented genetic operators.
4. We evolve a highly competent player for tic-tac-toe.
5. Our evolved programs are well structured, consisting of multiple modules that are

explainable and similar to our handcrafted program.

We first present a short survey on the field of SBSE and code-generation in Section 2,
followed by a short primer on behavioral programming in Section 3. We then explain our
method in Section 4 in detail, and present our results in Section 5. Finally, we present
concluding remarks in Section 6.

2. Previous Work

The earliest example of code generation is probably that of [2], who evolved small
multiplication functions using two specially designed languages. Koza notably took this
idea several steps forward [3]. A more recent example is that of Orlov and Sipper [4,5],
who were able to generate Java functions by evolving Java bytecode directly. Despite these
examples and others, automated programming has never managed to achieve a substantial
breakthrough. In fact, Dijkstra stated that automated programming was a contradiction in
terms [6]:

. . . computing science is—–and will always be—–concerned with the interplay
between mechanized and human symbol manipulation, usually referred to as
“computing” and “programming”, respectively. An immediate benefit of this
insight is that it reveals “automatic programming” as a contradiction in terms.

Petke et al. [7] explains that many influential authors regard the challenge of auto-
mated programming to be simply unattainable, and thus more recent research focuses on
automated testing and genetic improvements of software, rather than complete automated
code generation.

Genetic improvement (GI) uses GP and other automated search methods to improve
upon existing programs. The benefit of improving existing code instead of generating it
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from scratch is clear: GI starts with an existing base and as such involves a far more focused
search space. GI touches on a number of different topics such as program transformation,
program synthesis, GP, testing, and SBSE [7].

GI uses the fact that naturally occurring code is very repetitive [8,9], and as such the
practical space of naturally occurring code is much smaller than its theoretical space. We
examined several core GI papers (defined as such by Petke et al. [7]) to understand how
these semi-generated programs can be represented, evaluated, and evolved.

2.1. Representation

There are number of ways to represent programs for GI, such as source code, bytecode,
and the most common way—abstract syntax trees (ASTs). ASTs are a very natural approach
to represent programs for use with GP techniques, since they are already in tree form. ASTs
can also be applied to many different types of languages, including C [10,11], Java [11],
Python [12], and b-programs. When introducing GenProg, a tool for automatic bug repair,
Le Goues et al. [13] represented individuals as patches, a sequence of edit operations for an
AST, a solution that drastically improves space complexity for large programs.

Another viable representation is binary or bytecode representation, examples of which
include Schulte et al. [14], who repaired defects in ARM, x86 assembly, and ELF binaries,
and Orlov and Sipper [4,5], who evolved Java bytecode. This representation offers several
benefits, stated by Schulte et al. [15], including potentially being applicable to many pro-
gramming languages, a small set of instructions, and simple syntax; these benefits also
apply to b-programs.

Evolving b-programs combines the benefits of both approaches: We employ the natural
and convenient representation of ASTs, while still maintaining benefits gained from a binary
representation, since the paradigm has been implemented in many underlying languages,
including Java [16], JavaScript [1], C [17], LSC [18], and more.

Petke et al. [7] noted that a natural question in GI is concerned with translating code
for parallel processing, and cited early work on Paragen [19,20]. It is worth noting that
COBP is inherently parallel—b-threads run internal logic in parallel [16].

2.2. Evaluation

Most GI works use testing as the main fitness criterion, with the simplest way to
calculate fitness based on the number of total tests passed [21,22], or using a weighting
of tests [23]. Arcuri and Yao [24] evaluated fitness using a distance function based on a
formal software specification. They also introduced the process of co-evolving test cases,
and generating unit tests that pass on the original program but fail on the modified ones.

Overall, it is apparent that testing is the most dominant evaluation parameter for
fitness calculation; however, with COBP, formal methods and verification techniques can
also be used to evaluate the correctness of b-programs, due to the mathematical properties
of COBP semantics.

3. A Short Primer on Context-Oriented Behavioral Programming

In context-oriented behavioral programming, requirements are implemented indepen-
dently from each other. Each requirement is encapsulated by a behavioral thread, or b-thread.
A collection of such b-threads forms a b-program. The COBP paradigm has emerged from
the behavioral programming paradigm [16], extending it with context idioms that enable
the definition of context-dependent requirements. In this paper we use a JavaScript im-
plementation of COBP, called COBPjs (https://github.com/bThink-BGU/BPjs-Context,
accessed on 28 January 2022). The code in this paper can be found at https://github.com/
RoyPoli99/BPCodeGenerator, accessed on 28 January 2022.

To render these ideas more concrete we demonstrate the paradigm on the game of
tic-tac-toe. There are several reasons for choosing this game:

https://github.com/bThink-BGU/BPjs-Context
https://github.com/RoyPoli99/BPCodeGenerator
https://github.com/RoyPoli99/BPCodeGenerator
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• While simple to play, a tic-tac-toe strategy is far from simple to evolve. The strategy
for the game has eight different behavioral aspects (elaborated below) and learning all
of them from scratch is a complex task.

• The game rules include scenarios and anti-scenarios that demonstrate the power and
simplicity of the paradigm in specifying reactive systems.

• The number of possible game traces is relatively small, allowing us to formally prove
the quality of our solution.

We begin with a behavioral program for the game that specifies only the requirements
of the game’s rules. The requirements are as follows:

1. A cell can be marked only once.
2. X and O take alternate turns playing, with X starting.
3. The first player to obtain three marks in a line is the winner.
4. If no player wins and all nine squares are marked, a tie is declared.
5. The game ends upon a tie or a win.

We note that the context of Requirement 1 is a cell and the context of Requirement 3
is a line. To define the behavior of these requirements, we first need to define the system
context, as presented in Listing 1. The code begins (lines 1–16) with a definition of the
contextual data as a set of entities, each having a unique identifier (the first parameter of the
ctx.Entity function), a type (second parameter), and data (third parameter). In addition,
the context definition also includes two named functions—Cell.Any and Line.Any (lines
18–28). These functions are used to query the contextual data and return only the relevant
entities. In this example, the queries always return the same answer since the context does
not change throughout the lifetime of the game (e.g., cells and lines are not added/removed
during the game). Nevertheless, COBP also supports dynamic changes to the context. To
support such dynamics, the queries can be defined as functions rather than a predefined
array of entities (see [1] for further information).

Listing 1. The context definition in COBPjs for the game of tic-tac-toe.

1 // Populate context with all cells
2 for (let i = 0; i < 3; i++)
3 for (let j = 0; j < 3; j++)
4 ctx.populate(ctx.Entity('cell('+i+','+j')', 'cell', {at: {i: i, j: j}}))
5
6 // Populate context with all lines
7 for (let i = 0; i < 3; i++) {
8 ctx.populate(ctx.Entity('row('+i+')', 'line',
9 { cells: [{ i: i, j: 0 }, { i: i, j: 1 }, { i: i, j: 2 }] }))

10 ctx.populate(ctx.Entity('col('+i+')', 'line',
11 { cells: [{ i: 0, j: i }, { i: 1, j: i }, { i: 2, j: i }] }))
12 }
13 ctx.populate(ctx.Entity('diag(0)', 'line',
14 { cells: [{ i: 0, j: 0 }, { i: 1, j: 1 }, { i: 2, j: 2 }] }))
15 ctx.populate(ctx.Entity('diag(1)', 'line',
16 { cells: [{ i: 2, j: 0 }, { i: 1, j: 1 }, { i: 0, j: 2 }] }))
17
18 // Register queries on the contextual data
19 ctx.registerQuery("Cell.Any", [
20 ctx.Entity('cell(0,0)', 'cell', {at: {i:0, j:0}}),
21 \dots
22 ctx.Entity('cell(2,2)', 'cell', {at: {i:2, j:2}})
23 ])
24 ctx.registerQuery("Line.Any", [
25 ctx.Entity('line(0)', 'line', {cells: [{i:0,j:0},{i:0,j:1},{i:0,j:2}]}),
26 \dots
27 ctx.Entity('line(7)', 'line', {cells: [{i:0,j:2},{i:1,j:1},{i:2,j:0}]})
28 ]
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Now that we have the context definition, we can define the rule requirements, includ-
ing the context-dependent requirements, as presented in Listing 2. We begin with a syntax
explanation, followed by an an outline of the execution semantics (the full semantics are
defined in [1]).

B-threads in COBP interact through events; thus, we begin with the definition of the
possible events in the game (lines 1–6). X and O are functions that takes a cell entity and
return an event with the name X or O, respectively, and the given cell as the event’s data. A
set of events can be defined using an array of events (e.g., line 14), or using a function that
takes an event and returns true if the event is in the set (i.e., AnyX and AnyO in lines 9–10).
Another way to define event sets is using bp.not(e) and bp.all functions (i.e., lines 39
and 53). The first returns true for events that are not e, and the latter for all events.

Listing 2. Tic-tac-toe rules, specified in COBPjs.

1 // Define events:
2 const X = cell => Event('X',cell)
3 const O = cell => Event('O',cell)
4 const XWin = Event('XWin')
5 const OWin = Event('OWin')
6 const Tie = Event('Tie')
7
8 // Define event sets
9 const AnyX = EventSet('AnyX', event => event.name === 'X')

10 const AnyO = EventSet('AnyO', event => event.name === 'O')
11
12 // Req. 1: A cell can be marked only once.
13 bthread("Do not mark cell twice", "Cell.Any", function(cell) {
14 sync({waitFor: [X(cell.at), O(cell.at)]})
15 sync({ block: [X(cell.at), O(cell.at)]})
16 })
17
18 // Req. 2: X and O play in turns; X starts.
19 bthread("Enforce turns", function () {
20 while (true) {
21 sync({waitFor: AnyX, block: AnyO})
22 sync({waitFor: AnyO, block: AnyX})
23 }
24 })
25
26 // Req. 3: The first player to get three marks in a line is the winner.
27 bthread("Detect X win", "Line.Any", function (l) {
28 sync({waitFor: [X(l.cells[0]),X(l.cells[1]),X(l.cells[2])]})
29 sync({waitFor: [X(l.cells[0]),X(l.cells[1]),X(l.cells[2])]})
30 sync({waitFor: [X(l.cells[0]),X(l.cells[1]),X(l.cells[2])]})
31 sync({request: XWin, block: bp.not(XWin)})
32 });
33
34 // Req. 3: The first player to get three marks in a line is the winner.
35 bthread("Detect O win", "Line.Any", function (l) {
36 sync({waitFor: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]})
37 sync({waitFor: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]})
38 sync({waitFor: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]})
39 sync({request: OWin, block: bp.not(OWin)})
40 })
41
42 // Req. 4: If no player won and all nine squares are marked, declare a tie.
43 bthread("Detect tie", function () {
44 for(let i = 0; i < 9; i++)
45 sync({waitFor: [AnyX, AnyO]})
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46 sync(
47 {request: Tie, waitFor: [XWin, OWin], block: bp.not([XWin, OWin, Tie])})
48 })
49
50 // Req. 5: The game ends upon a tie or a win.
51 bthread("End game", function () {
52 sync({waitFor: [XWin, OWin, Tie]})
53 sync({ block: bp.all()})
54 })

The first b-thread (lines 1–5) specifies the first requirement: a cell can be marked
only once. The context of the requirement is a cell, therefore the b-thread is bound to the
Cell.Any query. As a result, for each answer to this query (i.e., for each cell entity),
the execution mechanism of COBPjs will spawn and execute a live-copy of this behavior
with the specific answer (i.e., cell) given as a parameter. The behavior itself (lines 3–4)
waits for X or O events with this cell and then blocks any attempt to place another X
or O there. The second b-thread (lines 7–13) defines the “turns” requirement, repeatedly
blocking O while X is playing, and vice versa. This b-thread is not bound to any query
since the requirement is not context-dependent. Similarly, the following b-threads handle
winning and tie situations.

We note that the code in Listing 2 only imposes a correct behavior according to the
game rules. When no one requests X or O events the game does not start. To start, we can
create random X and O players by binding an additional b-thread to the Cell.Any query
that has a single line: sync({request: [X(cell), O(cell)]}).

Although b-threads are independent from each other, they still need a way to syn-
chronize with other b-threads. In COBP, whenever b-threads reach a sync statement, they
submit their statement—what they request, waitFor, or block—to an application-agnostic cen-
tral event arbiter, and halt. The arbiter selects an event that was requested but not blocked,
and resumes all b-threads that are waiting for, or requested, the selected event, until the
next synchronization statement. This simple protocol generates a cohesive behavior that
is consistent with all b-threads. Notably, the protocol does not dictate the order in which
actions are performed (e.g., given the random X and O player, the first X may be placed at
any of the nine cells). To create a highly competent player for the game, which does not
lose, and wins when possible, we need additional strategy b-threads that will prioritize the
possible actions.

3.1. Hand-Crafted Strategy B-Threads for Tic-Tac-Toe

In the sections ahead we will use GP for evolving strategy b-threads for tic-tac-toe. Herein,
we present a hand-crafted version for these b-threads, toward which end we begin with a
description of Newell and Simon’s strategy [25], consisting of eight rules with diminishing
priorities, meaning that at each turn the players should play the first available rule:

1. Win: If the player has two tokens in a line, then the player should place the last cell.
2. Block: If the opponent has two tokens in a line, then the player should place the

last cell.
3. Fork: Cause a scenario where the player has two ways to win (two non-blocked lines

with two tokens).
4. Blocking an opponent’s fork: If there is only one possible fork for the opponent, the

player should block it. Otherwise, the player should block all forks in any way that
simultaneously allows them to make two-in-a-row. Otherwise, the player should
make a two-in-a-row to force the opponent into defending, as long as it does not result
in their producing a fork.

5. Center: A player marks the center.
6. Opposite corner: If the opponent is in the corner, the player plays the opposite corner.
7. Empty corner: The player plays in a corner square.
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8. Empty side: The player plays in a middle square on any of the four sides.

Listing 3. Strategy b-threads for an O player.

1 // Strategy 1: Win
2 ctx.bthread("Add third O", "Line.Any", function (l) {
3 sync({waitFor: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]})
4 sync({waitFor: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]})
5 sync({request: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]}, 8)
6 })
7
8 // Strategy 2: Block
9 ctx.bthread("Prevent third X", "Line.Any", function (l) {

10 sync({waitFor: [X(l.cells[0]),X(l.cells[1]),X(l.cells[2])]})
11 sync({waitFor: [X(l.cells[0]),X(l.cells[1]),X(l.cells[2])]})
12 sync({request: [O(l.cells[0]),O(l.cells[1]),O(l.cells[2])]}, 7)
13 })
14
15 // Strategy 3: Create a fork opportunity
16 ctx.bthread("Cause fork", 'Fork.Any', function (f) {
17 sync({ waitFor: [O(f.cells[0]), O(f.cells[1])] })
18 sync({ waitFor: [O(f.cells[0]), O(f.cells[1])] })
19 sync({ request: O(f.cells[2]) }, 6)
20 })
21
22 // Strategy 4: Block fork
23 ctx.bthread("Block fork", 'Fork.Any', function (f) {
24 sync({ waitFor: [X(f.cells[0]), X(f.cells[1])] })
25 sync({ waitFor: [X(f.cells[0]), X(f.cells[1])] })
26 sync({ request: O(f.cells[2]) }, 5)
27 })
28
29 // Strategy 5: Center
30 ctx.bthread("Center", "Cell.Center", function (c) {
31 sync({request: O(c.at)}, 4)
32 })
33
34 // Strategy 6: Opposite corner
35 ctx.bthread("Corner", "Cell.Corner", function (c) {
36 sync({request: O(opposite(c.at))}, 3)
37 })
38
39 // Strategy 7: Empty corner
40 ctx.bthread("Corner", "Cell.Corner", function (c) {
41 sync({request: O(c.at)}, 2)
42 })
43
44 // Strategy 8: Sides
45 ctx.bthread("Sides", "Cell.Sides", function (c) {
46 sync({request: O(c.at)}, 1)
47 })

Listing 3 presents the code for a highly competent O player. The numbers at the
end of the sync statements represent the priority of the events. The selected event will
have the highest priority. Listing 3 also introduces new queries: Fork.Any, Cell.Center,
Cell.Sides, and Cell.Corners. We do not elaborate the definition of these queries, though
evolution will find them, as shown below. In Section 5 we compare the evolved strategy
b-threads to these hand-crafted ones.
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We note that most rules are well defined and their implementation is thus straightfor-
ward. Nevertheless, the two fork rules (3 and 4) are unclear and the implementation is thus
not aligned to them. While in the next section we will evolve the entire strategy b-threads,
we note that in complex domains users may add hand-crafted strategy b-threads to the
base individuals’ programs, and learn others.

3.2. COBP Characteristics

The code in the above listings reveals some of the unique characteristics of behav-
ioral programs.

First, we observe the repetitive structure of many b-threads, with each having roughly
the same body. This structure allows for a simple representation of a program as an abstract
syntax tree (AST).

Second, because each b-thread defines a single aspect of the system’s behavior, the
behavioral programs are self explanatory. As we will show in Section 5, the evolved
programs share this same characteristic, resulting in simple and explainable programs
generated by evolution.

Third, COBP’s execution mechanism is based on the mathematically rigorous nature
of the COBP semantics. These semantics afford the application of formal methods and
verification algorithms to verify the correctness of a program, i.e., that it behaves correctly
for any input. Here, we do not use this property for evaluating the individuals during
evolution, though we will use it for validating the quality of the evolved individuals.

4. Method

In this section we describe our experimental setup for evolving behavioral programs.
Aside from the fitness function and some parameters, the approach is domain-independent
and may be applied to any behavioral program. The algorithm requires baseline b-threads
(here, the entities and the rule b-threads from Listings 1 and 2), a fitness function, and
terminals for the grammar (elaborated below). The algorithm outputs a set of b-threads
that together with the baseline b-thread construct a complete, modular behavioral program.
In our case, we want the algorithm to generate the strategy b-threads that constitute, along
with the baseline b-threads, a program of a highly competent O player.

4.1. Grammar

We use grammar-based GP to evolve the program. The grammar is mostly domain-
independent (except for the terminal set) and utilizes the repetitive nature of a behav-
ioral program.

The structure of a general behavioral program is illustrated in Figure 1. The program
consists of contextual data, represented as a set of entities, queries on these entities, and
context-dependent behaviors, each bound to a single query. For example, in Listing 2, there
are two types of entities—cell and line. The queries are Cell.Any and Line.Any, and
each of the context-dependent b-threads is bound to one of these queries. We recall that for
generating strategy b-threads, additional queries and behaviors are required (Cell.Sides,
Cell.Corners, etc.).

In the following experiments we want evolution to find both the b-threads and all con-
text queries, including Cell.Any and Line.Any. We note that a context query is essentially
defined as a set of entities. For example, Cell.Any is a set of nine sets, each containing
a single cell entity. Similarly, Line.Any is a set of eight sets (three rows, three columns,
and two diagonals), each containing three cell entities in a line. Thus, the queries in our
grammar are parameterized by the size of the internal sets.
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Behavioral Program

Entities Queries

q1

A set of
b-threads that

are bound to q1

. . . qn

A set of
b-threads that

are bound to qn

Figure 1. Structure of a general COBP program.

The grammar is presented in Listing 4; it is divided into two parts: a general grammar
for any COBP programs, and specific terminals for tic-tac-toe. The general grammar can
be generalized even more, e.g., by allowing multiple requests or by allowing waitFor and
request in the same synchronization statement. Nevertheless, this grammar is general
enough for our task and, from our experience with COBP, it is popular in programs as well.
The specific grammar for tic-tac-toe is also general, in the sense that it only defines the
entities and events that were defined by the rule b-threads. In addition, this part of the
grammar configures the maximal possible priority and the maximal number of queries,
behaviors per query, and entities. These values act as estimations that help evolution by
placing boundaries on the size of the individuals.

Listing 4. Grammar for evolving strategy b-threads for tic-tac-toe.

1 // A general grammar for COBP programs:
2 BProgram→ Query1...MaxQueries

3 Query→ i, Entitiesi, Behavior1...MaxBehaviors
i

4 Entitiesi → Entity1...MaxEntities
i

5 Behaviori → Wait0...2
i , Requesti

6 Waiti → "sync({waitFor: [" + Event1...i
i + "]})"

7 Requesti → "sync({request: [" + Event1...i
i + "]}, " + Priority + ")"

8 Priority→ 0 | 1 | · · · | MaxPriority
9

10 // Terminals for tic-tac-toe:
11 MaxQueries = 10
12 MaxBehaviors = 5
13 MaxEntities = 9
14 MaxPriority = 10
15 Entityi → Celli

16 Cell→ Position, Position
17 Position→ 0 | 1 | 2
18 Eventi → XEventi | OEventi
19 XEventi → "X(" + Entitiesi[〈1 . . . i〉] + ")"
20 OEventi → "O(" + Entitiesi[〈1 . . . i〉] + ")"

4.2. Fitness Function

To evaluate an individual program we let it play 100 games as follows:

• A total of 25 games vs. a player that does not lose, where the generated program plays
first.

• A total of 25 games vs. a player that does not lose, where the generated program plays
second.

• A total of 25 games vs. a random player, where the generated program plays first.
• A total of 25 games vs. a random player, where the generated program plays second.
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The player alternated between playing first and playing second in order to prevent
evolution from succumbing to a bias, since the first player has an advantage because it has
the opportunity to make more moves in a single game. Further, we alternated between
players that do not lose and and random players because playing only against the first type
of players did not allow the generated programs to learn how to win games. In addition,
playing only against random players did not allow the generated programs to learn how to
block the opponent from winning.

Given these 100 games, the fitness function was

f = 50 · φ( wins
missed_wins + wins

) + 50 · φ( blocks
missed_blocks + blocks

)− deadlocks

φ(x) =
1− e−x

1− e−1

deadlocks = Number of times the individual did not request any action.

wins/block = Number of wins/blocking opponent from winning.

missed_wins/missed_blocks = Number of times that the individual missed an opportunity
to win/block the opponent from winning.

The first two parts take into account how decisively the generated program won
when given the opportunity, and how decisively it blocked the enemy from winning when
possible. Additionally, to complete the game (i.e., reach a tie or a win), the individual must
request for at least one event that is not blocked, whenever it is the turn of the O player.
To address this, we added a penalty part to the fitness that reduces one point for each
non-completed game. Finally, to push evolution further, we used fitness pressure (denoted
by φ) for each of the two parts. Thus, the fitness values were in the range of [−100, 100].

4.3. Genetic Operators

Our design of the genetic operators is based on two observations. First, generally
speaking, b-threads may be correlated in several ways. For example, the strategy b-threads
in Listing 3 have different priorities, thus defining an order for applying each strategy. As
another example, consider the “turns” b-thread to be missing, in which case the program
will not be able to generate correct game traces.

The second observation relates to the method for selecting the node for performing
crossover or mutation. It makes no sense to perform crossover in the middle of a behavior,
since it is a single logical unit with a high correlation between its different lines. Similarly,
replacing an entire behavior will most likely result in a behavior that does not work well
with the other behaviors. Therefore, uninformed, domain-independent genetic operators
(e.g., single point crossover) yield poor results.

To keep the correlation between the different behaviors, we set the probabilities for
applying mutation and crossover operators to be 70% and 5%, respectively. Thus, evolution
was driven mostly by exploitation, rather then exploration.

For selecting the nodes for the operators, we grouped the nodes into four types, and
defined a different probability for selecting each type, depending on the operator. The
operators first selected a group type, and then uniformly selected a node in the group.
The node types and the probabilities for selecting them are summarized in Table 1. These
probabilities were reached through empirical testing.
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Table 1. The probabilities for selecting nodes for mutation and crossover, grouped by node types.

What to Replace Probability

Entire Query 0.05
Entire Behaviori 0.15

A node under an Entitiesi 0.4
A node under a Behaviori 0.4

After selecting the node, the mutation operator replaces its sub-tree by growing
another sub-tree instead, and the crossover operator replaces the sub-tree with a sub-tree
from the second individual. Since the grammar is strongly typed, the crossover operator
has additional constraints for selecting the node in the second individual.

4.4. “Smart” Test-Driven Genetic Operators

The first genetic operators served as a baseline for future enhancements and for
presenting the capabilities of behavioral programming as a tool for evolving source code. In
our second experiment, we proposed to evaluate tree nodes according to their contribution
to the entire program—whether the contribution was “good” or “bad”. Then, we used
these evaluations for developing smart genetic operators, by selecting the nodes according
to their evaluation values.

Our smart, test-driven mutation and crossover operators are rooted in the field of fault
diagnosis [26]. Fault diagnosis is the process of determining the type, size, location, and
time of detection of a fault. We considered “bad moves” the generated program performed
as faults in the code. We then applied diagnosis techniques to find “faulty” nodes in our
program. Additionally, we used the same strategy to find “good” components in the code.
For each win, win miss, block, and block miss, we noted the last node that was involved,
and calculated each component’s score accordingly—wins and blocks increased the score,
while win misses and block misses decreased the score. For example, if the last event was
OWin, then the win counter will be increased for the following nodes: the Behaviori node that
represents the b-thread that requested the last O event, the Entityi node of the behavior (i.e.,
the context of the b-thread), and the Query node that contains the entity and the behavior.
We also added a small bonus for every move the component was involved in, in order
to discourage “timid” components, which did nothing. The smart operators still selected
the node type using the same probabilities, but the node inside the group was selected
according to the component score, rather than uniformly, with contrastive formulas for
mutation and recombination:

recombination_score(node) = 2 ·wins− 2 ·winv + blocks− blockv + 0.25 · requests

mutation_score(node) = −recombination_score(node)

The reason for this change is that in recombination we provide a higher chance for
exchanging good nodes among individuals, and in mutation we provide a higher chance
for replacing bad nodes. To select the actual node we used the same proportionate-selection
mechanism of roulette wheel. Thus, the node score acts as an estimation for the node
quality, but other nodes still stand a chance of being selected. For the same reason, a score
of zero or less was reset to one.

5. Results

We tested our approach both with the basic operators and with the smart ones—and
compared the results. Further, we also examined the playing capabilities of the evolved
programs. The evolutionary hyperparameters are summarized in Table 2. Notably, on a
computer with an Intel i7 CPU, running 100 random games sequentially takes roughly
three seconds and 500 MB. The memory footprint can be reduced to 4 MB at the expense
of an additional second, by running the garbage collector after each run. Thus, while we
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executed 3 M random games at each generation, complete runs with no parallelization took
less than four hours.

Over several experiments the basic operators managed to achieve an individual with
maximum fitness score of 94 out of 100; the best individuals from these experiments
consistently appeared as early as generation 250. The smart operators managed to generate
a better best-performing individual, with a fitness value of 97.5. It is worth noting that this
specific individual missed a block only seven times, throughout all 100 games, and it did
not miss a single win opportunity. Individuals with fitness above 95 consistently appeared
as early as generation 150, nearly 100 generations faster than the basic mutation operators.

To compare the performance of the operators, we selected the best two individuals at
generations 50, 150, and 300. We then applied the operators 1000 times on these individuals,
cloning the original individuals before applying the operators. Table 3 shows the percentage
each operator improved the fitness of the individual it was performed on, based on these
1000 runs. As results show, the smart operators were far more effective than the basic operators.
The basic mutation performed worse almost always. The smart crossover outperformed the
basic crossover in both parameters, except for generation 150, probably due to the fact that
runs with the smart crossover had already reached a high fitness by this time.

Table 2. Evolutionary hyperparameters.

Representation Grammar-based GP
Mutation Grow sub-tree †

Recombination Exchange of sub-trees †

Mutation probability 0.7
Recombination probability 0.05

Parent selection Tournament with k = 3
Survivor selection Generational replacement

Population size 100
Number of generations 300

† The selection of the node to mutate/exchange is described in Section 4.3.

Table 3. Results: Genetic operators applied 1000 times to best two individuals at generations 50,
150, and 300. %Improved: Percentage of 1000 times the operator improved fitness. %Improvement:
Average improvement of those that were improved by operator, i.e., of %Improved.

Generation %Improved %Improvement

Basic crossover
50 8.2% 0.57%

150 37.0% 0.97%
300 10.7% 0.41%

Basic mutation
50 1.9% 1.98%

150 0.3% 2.45%
300 0.0% 0.00%

Smart crossover
50 25.7% 1.03%

150 28.0% 0.85%
300 38.2% 0.99%

Smart mutation
50 29.4% 1.13%

150 62.8% 1.83%
300 10.7% 0.54%

5.1. Validation of the Evolved Players

To validate the correctness of our (O-playing) individuals, i.e., that they behave
correctly for any opponent X player, we used the verification mechanism of COBPjs. Using
this tool we mapped the state space of a game between two random players, thus generating
all possible states of tic-tac-toe. Next, we traversed the graph and generated all possible
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255,168 game traces (excluding symmetry). The first player wins 131,184 of these, the
second player wins 77,904 traces, and the remaining 46,080 are a tie. To validate our
individuals, we performed the same computation for our evolved players and compared
the generated traces. Table 4 presents the results for our best individual of all runs. This
individual reduces the number of times X wins to less than 1% and the number of missed
possible wins to less than 0.01%. The results were similar no matter who started.

Table 4. Validation of top, evolved individual: Number of times X wins compared to all possible
ways that X may win, and number of times O missed a possible win compared to the number of
possible ways for O to win.

Starting Player Times X Wins Winning Misses

Exhaustive 0.03% 0%
Evolved 0.8% 0.01%

5.2. Individual Representation

Listing 5 presents the context definition and the strategy b-threads of the best indi-
vidual of all runs. The individual is different from the handcrafted strategy b-threads
(Listing 3), both in context and in behaviors; nevertheless, it ultimately exhibits similar
behavior. Upon inspection of the evolved solution we found that part of the code is straight-
forward to understand. For example, the second b-thread, bt_0_1, waits for one X and
then places an O on the same line. The context of this b-thread, ctx1, defines a list of
pairs of cells, each pair consisting of two cells on the same line. This behavior resembles
the behavior of our handcrafted “Prevent third X" b-thread (second b-thread of Listing 3),
which waits for two Xs in a line before placing an O in the third cell. Some behaviors are
covered by more than one behavior. For example, part of the possible forks are covered by
a combination of bt_0_1 and bt_0_0.

Listing 5. Best evolved individual.

1 ctx.registerQuery("ctx0", \dots)
2 ctx.registerQuery("ctx1", [
3 ctx.Entity("ctx1_0", "ctx1", { cells: [{x: 1, y: 0}, {x: 0, y: 0}]}),
4 ctx.Entity("ctx1_1", "ctx1", { cells: [{x: 0, y: 2}, {x: 2, y: 2}]})
5 ctx.Entity("ctx1_2", "ctx1", { cells: [{x: 2, y: 2}, {x: 0, y: 2}]}),
6 ctx.Entity("ctx1_3", "ctx1", { cells: [{x: 1, y: 2}, {x: 1, y: 0}]}),
7 ctx.Entity("ctx1_4", "ctx1", { cells: [{x: 0, y: 2}, {x: 2, y: 0}]}),
8 \dots
9 ])

10 \dots
11 ctx.registerQuery("ctx3", \dots)
12
13 ctx.bthread('bt_0_0', 'ctx0', function (c) {
14 sync({ waitFor: [O(c.cells[0]), X(c.cells[2]), X(c.cells[1])] })
15 sync({ waitFor: [O(c.cells[3]), X(c.cells[4]), X(c.cells[5])] })
16 sync({ request: O(c.cells[6]) }, 2)
17 })
18
19 ctx.bthread('bt_1_0', 'ctx1', function (c) {
20 sync({ waitFor: X(c.cells[0]) })
21 sync({ request: O(c.cells[1]) }, 9)
22 })
23
24 ctx.bthread('bt_2_0', 'ctx2', function (c) {
25 sync({ request: O(c.cells[0]) }, 7)
26 })
27
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28 ctx.bthread('bt_3_0', 'ctx3', function (c) {
29 sync({ request: O(c.cells[1]) }, 10)
30 })
31
32 ctx.bthread('bt_3_1', 'ctx3', function (c) {
33 sync({ waitFor: X(c.cells[2]) })
34 sync({ waitFor: O(c.cells[3]) })
35 sync({ request: O(c.cells[0]) }, 2)
36 })
37
38 ctx.bthread('bt_3_2', 'ctx3', function (c) {
39 sync({ waitFor: [X(c.cells[1]), O(c.cells[1]), X(c.cells[2])] })
40 sync({ request: [O(c.cells[1]), O(c.cells[2])] }, 9)
41 })

6. Concluding Remarks

We presented the use of genetic programming to evolve behavioral programs from
scratch, performing an in-depth analysis, using as a case study the game of tic-tac-toe.
We demonstrated the advantages of context-oriented behavioral programming (COBP)
in general, and in particular as they pertain to amenability to evolution. To this end, we
presented novel, domain-independent, grammar and genetic operators for behavioral
programs. Using these grammar and genetic operators, we evolved highly competent
players for tic-tac-toe.

To validate our findings, we utilized the mathematical characteristics of COBP to
verify the correctness of evolved programs. Compared to all possible ways that a player
can lose or miss an opportunity to win, our best evolved player reduced these cases to less
than one percent.

Another strength of our approach is the ability to understand the generated programs.
Due to the simple and repetitive structure of behavioral programs, we were able to observe
that evolved individuals ultimately exhibited similar behavior to the handcrafted program.

While tic-tac-toe may seem like a toy problem, evolution of this magnitude has not
been performed before for this domain. Evolving a complete program from scratch is a
complex task that was made possible by the unique characteristics of COBP.

Given our study we believe that using GP, and evolution in general, to evolve behav-
ioral programs is a viable research pursuit, well worth undertaking.

During our work, we identified some possible shortfalls of our approach that we wish
to examine in future research:

• Restricted context grammar: The contexts (i.e., cell, line, fork) in tic-tac-toe are constant,
in the sense that they do not change over time—cells are not dynamically added or
removed. Dynamic contexts are important for many domains. In chess, for example,
the “check” context needs to be activated whenever an opponent piece is threatening
the king. While COBP supports dynamic context, the grammar defined here limits
this ability. To support it, we will need to extend the grammar to allow more complex
entities and queries. Relaxing the constraint of static context should be approached
carefully, since it may dramatically increase the search space.

• Evolving more-complex behavior: In terms of computing resources (CPU and RAM), our
approach is very efficient and scalable. Nevertheless, it may be less successful on
larger problems with more-complex behaviors, such as chess or connect-four. For such
problems, we will likely employ a hybrid approach, wherein programmers provide
some behaviors and evolution is set to find others; programmers then refine evolution’s
solutions by adding handcrafted behaviors, after which evolution is launched—and so
on. Such a methodology may constitute a natural relationship between programming
and optimization.
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• Finally, in this research we used game simulations for evaluating our individuals. An-
other interesting direction is to use a data-driven approach for evaluating individuals,
without actually running them. For example, we may learn the rule b-threads, given a
similar grammar and a labeled set of both possible and impossible game traces. The
evaluation can be carried out by checking, on a training set, if the evolved program
does not generate impossible traces and that all possible traces are indeed possible.
This approach presents a complication because the grammar must include the block
idiom as well, which forbids events from happening and may lead most games to
deadlocks.
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