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Abstract: The efficiency of lung cancer screening for reducing mortality is hindered by the high
rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign
cases from the analysis of CT scans. The available amount of data and the fact that benign cases
are a minority, constitutes a main challenge for the successful use of state of the art methods (like
deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an
hybrid approach combining the potential of radiomic features to characterize nodules in CT scans
and the generalization of the feed forward networks. In order to obtain maximal reproducibility with
minimal training data, we propose an embedding of nodules based on the statistical significance of
radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics
of the diagnostic power of the whole system. Results of the best model on an independent set of
patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.

Keywords: lung cancer; early diagnosis; screening; neural networks; image embedding; architecture
optimization

1. Introduction

Lung cancer is both the most frequently diagnosed cancer and cause of cancer death [1].
The National Lung Screening Trial (NLST) (Study performed in United States) [2] and Dutch-
Belgian Randomized Lung Cancer Screening Trial (NELSON) [3] have shown that lung
cancer screening (LCS) with computed tomography of low dose (CTLD) reduces mortality
by 20–25%. However, the average of false positive rate of the radiological diagnosis
obtained by visual inspection of scans was 23% of the nodules detected. This inaccuracy
meant long follow-up of patients with repetitive CT or performing an invasive procedure
like a biopsy or surgery, which accounted to be futile in 73% of the cases. A reduction of
false positives would increase the efficiency of screening for early detection of lung cancer.

The largest screening program in Europe, the NELSON study, introduced volumetry
of the nodules in consecutive CT, which meant a significant reduction of the average of false
positive rate to 13%. This suggests that the application of radiomics [4] (a recent discipline
that extracts a large number of image features correlating to treatment outcome), could
represent a critical shift in the reduction of the false positive rate and an improvement of
early diagnosis of lung cancer.

In this sense, in a pilot study [2] the authors retrospectively extracted 150 quantitative
image features and performed a random forest classification, which finally obtained a
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significantly better predictive value than volumetry alone (AUC = 0.87 vs. 0.74). More
recently, Peikert et al. [5] built a radiomic classifier based upon eight quantitative radiologic
features selected by the least absolute shrinkage and selection operator (LASSO) method
from 726 indeterminate nodules of the LCST. These eight features include variables captur-
ing location, size, shape descriptors and texture analysis. In this retrospective study, the
optimism-corrected AUC for these eight features was 0.939 with a sensitivity and specificity
of, respectively, 90% and 85%.

An alternative to classic radiomics is the use of machine learning methods that extract
image features using well known methods such as, Gabor, Local Binary Patterns (LBP),
or SIFT descriptor to represent a nodule. Then machine learning technics (e.g., Support
Vector Machine (SVM) and Random Forest) are used to define a classification of nodules in
this representation space according to their diagnosis [6,7]. This methods achieve better
diagnostic power than radiomic methods with AUC equal to 0.97, sensitivity equal to 96%
with 95% of specificity for [6].

Recently, deep CNN (CNN stands for Convolutional Neural Network) have achieved
great success in various computer vision tasks, such as image classification, segmentation,
and enhancement. Researchers are therefore inspired to classify nodules by using CNNs.
Existing works based on CNNs can be classified according to some key points: input data
(2D or 3D), level of the input image (volume, slice, nodule), CNN architecture, resources
needed and obtained performance.

The early work of Shen et al. proposed to use a multi-crop CNN [8] to make the model
robust to scales of nodules while keeping 2D input images. Results showed an overall
accuracy (including malign and benign cases) of 87%. However, the authors did not report
sensitivity for malignancy detection and specificity for discarding benign nodules and,
thus, its true clinical value is uncertain.

Since nodules are 3D structures, recent works have addressed the problem using 3D
CNNs. Yan et al. [9] explored 3D CNNs for pulmonary nodule classification in comparison
to a slice-level 2D CNN and a nodule-level 2D CNN analysis. The 3D approach was
the best performer with a 87% of overall accuracy and similar specificity and sensitivity
at the cost of a significantly higher demand of computational resources and annotated
data. Zhu et al. [10] used 3D deep dual path networks (DPNs) a 3D Faster Regions with
Convolutional Neural Net (R-CNN) designed for nodule detection with 3D dual path blocks
and a U-net-like encoder-decoder structure to effectively learn nodule features. Despite
the complex architecture used, this approach could only achieve a 81% of sensitivity
and specificity was not reported. Jiang et al. [11] sequentially deployed a contextual
attention module and a spatial attention module to 3D DPN to increase the representation
ability. A main novelty of this work is that it ensembles different model variants to
improve the prediction robustness. Results show an increase of sensitivity to 90% while
keeping a specificity similar to [9]. A main concern is the huge amount of parameters that
require extensive data and computational resources for training. In an attempt to minimize
computational and data costs, the very recent [12] uses automatic Neural Architecture
Search (NAS) technique [13] to design optimal 3D network architectures including attention
modules. Results on a subset of the LIDC-IDRI database [14] show a specificity of 95% at
the cost of a drop in sensitivity to 85%.

A main challenge in the application of deep learning to biomedical problems is the
limited amount of good quality data with annotations, which is a must for training new
models with complex architectures. Besides, in the case of benign nodule screening, this is
aggravated with the fact that the problem is highly unbalanced with benign cases being
the minority class. Under such experimental settings, models are often over-fitted [15]
results are non-reproducible [15,16] and most times [9–12] do not outperform conventional
machine learning approaches [6]. Another pitfall, especially for deep methods is models
should also be easily interpreted from a clinical point of view to allow the analysis of the
clinical factors that have an impact on the clinical decision [17].
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The output of a classic CNN are features that have no meaning from radiological point
of view. In this way, introducing classic radiomic features in the models will be helpful
for radiologist in the interpretability of the results by means of most correlated features
to malignancy of tumours. It is worth to mention that radiomic features can describe
tumour heterogeneity [18], which is a parameter related to malignancy and well known
from radiologist. To address the above challenges, we propose to embed 2D slices into a
low dimensional radiomic space defined by the classic radiomic features that significantly
correlate to malignancy. These features are the input to a fully connected network with
an architecture optimized in order to ensure maximum clinical outcome. To do so, novel
specific criteria and metrics measuring diagnostic power are presented. Models were
optimized in a set of 51 nodules coming from an own collected data base. Results on an
independent set of patients from the same data base and LIDC-IDRI database show that our
approach outperforms deep approaches with only requiring 290 parameters (in contrast to
the thousands required by deep methods).

2. Materials and Methods

This work complies with the fundamental ethical principles of research (Declaration
of Helsinki—Fortaleza/Brazil, 2013). In each case, informed consent is requested, and both
the images with clinical data are treated anonymously, safeguarding the confidentiality of
the patient. This study was approved by the ethics committee of the HUGTiP prior to the
start of recruitment (CEIC H. Germans Trias i Pujol: PI-19-169).

2.1. Dataset Description

The patients were recruited at the Germans Trias i Pujol University Hospital (HUGTiP),
Barcelona, Spain, from which images and clinical/demographic data were collected be-
tween December 2019 and September 2020. The 60 recruited patients have CT-chest and
pulmonary nodule (PN) tributary of surgery, and meet the following inclusion and ex-
clusion criteria. The inclusion criteria includes: have a single PN, diameter from 8 to
30 mm, final diagnosis of non-small cell lung carcinoma and non-malignant tumor. And
the exclusion criteria includes: have been previously diagnosed with lung cancer, diagnosis
of uncured extra-pulmonary cancer (except non-melanoma skin cancer), pregnancy, have
received chemotherapy or cytotoxic drugs in the last 6 months and decline to sign the
consent. The PNs have been classified in every case by means of a biopsy.

Scans were acquired with GE Medical Systems and Philips CT scan. For both devices,
acquisition parameters in all cases were 120 kv, 100–350 mA (dose modulation range), soft
tissue reconstructions, high frequency algorithms and 512 × 512 matrix. These parameters
are the gold standard used to ensure enough scan resolution and quality to radiologically
evaluate malignancy [19,20]. Table 1 report the acquisition setting for each manufacturer,
as well as the number of benign and malign nodules.

Table 1. Details of the acquisition parameters by scanner manufacturer.

Description\Manufacturer GE Medical Systems Philips

Model Name
LightSpeed VCT

BrightSpeed Optima
CT540 Discovery ST

GeminiGXL 16 Brilliance
16 TruFlight Select

Convoluton Kernel SOFT STANDARD LUNG B YA YB YC
Pixel XY size 0.56–0.87 0.36–0.72

Slice Thickness 0.63–1.25 1–2
Benign Nodules 3 6

Malignant Nodules 21 30

A respiratory medicine physician with seven years of experience annotated the Region
of Interest (ROI) of each nodule with 3D-Slicer (version 4.11.20200930), which is a free,
open source and multi-platform software package widely used for medical, biomedical,



Appl. Sci. 2022, 12, 1568 4 of 14

and related imaging research. The physician was asked to define ROIs fitting the minimal
nodule space as possible. The coordinates of the bounding box defining the ROI were
stored in csv format for its further use in the method pre-processing step described in
Section 2.3. A ROI per patient was annotated, since the cases conforming our database have
one nodule per patient. The Table 2 shows detailed information about our database. We
report demographic information, as well as, the minimum, maximum and every number of
slices for each nodule type and sex.

Table 2. Details of our database.

Description Male Female Total

Demographic
population

Patients
Age avg ± std

Benign PNs
Malign PNs

36
70.67 ± 6.87

5
31

24
63.96 ± 12.35

4
20

60
67.98 ± 9.92

9
51

Nodule
characterization

Benign Slices
min/max/avg
Malign Slices

min/max/avg

6/111/48
8/152/45

28/39/32
12/82/45

6/111/41
8/152/43

2.2. Methodology Description

Our methodology aggregates, for each nodule, the classification at slice level to obtain a
prediction of nodule malignancy. The classification of 2D slices bases on radiomic 2D textural
features computed on a mask of the nodule to implicitly account for (2D) shape. Texture
descriptors are the input to a feedforward neural network with optimized architecture.

Figure 1 shows a general overview of our workflow, which consists in 3 main phases:
extraction of nodules from CT scans, embedding of nodules into a space representing ma-
lignancy and nodule diagnosis with optimized network architecture. In the extraction step,
the nodule is segmented in the ROI volumes using Otsu thresholding and morphological
operations. In the embedding phase, PyRadiomics [21] GLCM descriptors are computed in
2D slices of masked volumes and a t-test is used to select those features that significantly
correlate to malignancy. In the diagnosis phase, the selected features are the input to an
optimized feedforward network trained and the most frequent classification among each
nodule 2D slices determines the final diagnosis. The architecture and hyperparameters of
the diagnostic networks are optimized according to an own-defined metrics measuring the
clinical performance of the system.

2.3. Nodule Extraction

In the preprocessing phase we used the anonymized CT-chest DICOMs and the
annotated nodule ROIs. A nodule ROI always includes the intranodule region (inside
nodule region), but depending on the nodule shape, the perinodular region (around nodule
region) is included in greater or lesser extent. Since, in [22,23], it is reported that the
importance of using perinodular region in the classification of benign and malignant
nodules, the size of ROIs was enlarged 15% of its original size. The volume ROI extracted
using the coordinates of the annotated bounding box is the input to the whole workflow.
This is the only manual annotation required.

In order to segment the nodule, we applied Otsu thresholding to the ROI volume. Since
the segmentation of peripheral nodules can include non-pulmonary tissue, the binarized
volumes were masked with a segmentation of lungs. The final nodule segmentation was
the largest connected component of the masked volumes. The segmentation of lungs was
computed using thresholding and morphological operations [24]. Specifically, CT lungs
were selected as the larger connected component of the voxels with intensity between 950
to −300 Hounsfield Units, followed by a closing with a structuring element of size 5.
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Figure 1. Overall workflow of the proposed work.

2.4. Nodule Embedding

To extract radiomics features we used PyRadiomics [21] (version 3.01), an open-source
python package for the extraction of radiomic features from medical imaging volumes.
PyRadiomics features include shape features, first order features, and textural features
(Gray Level Co-ocurrence Matrix (GLCM), Gray Level Size Zone (GLSZM), Gray Level Run
Length Matrix (GLRLM) and Gray Level Dependency Matrix (GLDM)) describing several
aspects of the lesion. In this study, we used GLCM texture features [25] by its proven
efficiency for cancer diagnosis in a wide range of medical imaging modalities [26–30].

GLCM textural features are probabilistic descriptors computed from a gray level
co-ocurrence matrix. This matrix encodes textural patterns in a neighbourhood of each
pixel based on different contrasts. To do so, intensity gray values are first discretized using
the histogram of the original volume intensity. The width of the histogram bins sets the
granularity that GLCM features describe, since neighbouring pixels with a difference in
gray level below such parameter are filtered. Bin width, namely ∆, is given by:

∆ =
max(Pixel_value)−min(Pixel_value)

Nbins
(1)

for Pixel_value the intensities of the volume and Nbins the number of histogram bins.
In [29,30], the authors showed the importance of, both, intensity ranges and number of

bins. It is reported that a fixed bin count between 30 and 130 bins has good reproducibility
and performance. In order to allow for different ranges of intensity in ROIs, while still
keeping the texture features informative and comparable inter lesion [26], we first normalize
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the CT Hounsfield Units (HU) to a common intensity range. Hounsfield Units are related
to intensity values with the following linear transformation:

HU = Pixel_value ∗ Slope + Intercept (2)

for Slope and Intercept are acquisition parameters of the CT scan.
HU were mapped to a common intensity range [0, MaxIntensity] using the follow-

ing formula:

Pixel_value =
(HU − Intercept)/Slope
max(HU)−min(HU)

∗MaxIntensity (3)

=
(HU − Intercept)/Slope

4000
∗MaxIntensity (4)

where max(HU) = 2976 was computed as the maximum of the training set volumes HU
and min(HU) = −1024 is the HU value for air. The intensity range MaxIntensity and
number of bins, Nbins ∈ [30, 130], are hyper-parameters that were set using grid-search.
The optimal values were MaxIntensity = 24 and Nbins = 128.

The GLCM features (extracted on 2D slices) are selected according to their correla-
tion to lesion malignancy. It is expected that the most discriminant features have values
significantly different for slices containing malign and benign nodules. Such differences
are detected, for each GLCM feature, with a Student t-test comparing average values for
malign and benign slices. In order to account for unbalancing between malignant and
benign cases, a k-fold subsampling of malignant slices was performed and max-voting
aggregation of significance was used to select the most discriminative features. Sample size
was large enough to guarantee normality.

The concatenation of the GLCM features with a p-value under 0.01 are selected to be
the input to the classification network. Given that the performance of neural networks
is not bias in case of correlated features (unlike other classifiers like logistic regression),
no further selection to discard correlations is needed. The most statistically significant
19 GLCM textural features that were selected are shown in Table 3.

2.5. Nodule Diagnosis

The extracted radiomic features are used to feed a feedforward neural network that
makes a slice by slice classification. We have defined 4 feedforward neural network
architectures composed by a sequence of linear layers with ReLU activation function
between them.

Table 4 shows the architectural configurations and the equations to obtain the amount
of trainable parameters of each configuration. Each layer of the architecture is described by a
tuple (Ni

input, Ni
output) where Ni

input represents the number of inputs and Ni
output represents

the number of outputs of the i-th layer. For the first layer, N1
input is the dimensionality,

denoted by Ni, of the input features. For the hidden layers, Ni
input = Ni−1

output and, for the last

layer, Nlast
output = 2 is the network’s output for a binary classification problem with classes

equal to benign and malignant (label 1). In our case, Ni
output is a function of the number of

outputs of the first layer, N1
output = Nh. The last column in Table 4 also reports the number

of trainable parameters. The number of trainable parameters for a layer is the number of
inputs multiplied the number of outputs plus the number of neuron’s bias (which is equal
to the number of the outputs). Thus, for the i-th layer, the number of parameters is equal to
Ni

input ∗ Ni
output + Ni

output. Its accumulation is the total amount of trainable parameters of
the network that is shown in the last column.
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Table 3. GLCM Features Selected with the t-test. The first column lists the 24 GLCM textural features.
The second one indicates the 19 GLCM features selected by the t-student test with a X.

GLCM Textural Features t-Test Selection

Autocorrelation X
Cluster Prominence X

Cluster Shade X
Cluster Tendency X

Contrast ×
Correlation X

Difference Average ×
Difference Entropy X
Difference Variance ×
Inverse Difference X

Inverse Difference Moment X
Inverse Difference Moment Normalized ×
Informational Measure of Correlation 1 X
Informational Measure of Correlation 2 X

Inverse Difference Normalized ×
Inverse Variance X

Joint Average X
Joint Energy X
Joint Entropy X

Maximum Probability X
Maximal Correlation Coefficient X

Sum Average X
Sum Entropy X
Sum Squares X

Table 4. Neural network architectures.

Num. Architecture # Trainable Parameters

1 [(Ni, Nh), (Nh, Nh), (Nh, 2)] Nh(Ni + Nh + 4) + 2

2 [(Ni, Nh), (Nh, Nh), (Nh,
⌊

Nh
2

⌋
), (
⌊

Nh
2

⌋
, 2)]

Nh(Ni + Nh +
⌊

Nh
2

⌋
+ 2)

+3
⌊

Nh
2

⌋
+ 2

3 [(Ni, Nh), (Nh, Nh), (Nh, Nh), (Nh,
⌊

Nh
2

⌋
), (
⌊

Nh
2

⌋
, 2)] Nh(Ni +

5
2 Nh +

7
2 ) + 2

4 [(Ni, Nh − 1), (Nh − 1, Nh − 2), (Nh − 2, Nh − 3),
(Nh − 3, Nh − 4), (Nh − 4, Nh − 5), (Nh − 5, 2)]

(Nh − 1)(Ni + (Nh − 2))+
(Nh − 3)(Nh − 6)+
(Nh − 5)(Nh − 1)+

4Nh − 8

In order to account for unbalancing in training data, the loss function is a weighted
cross entropy given by:

loss =
∑N

i=1 weight[class[i]]loss(i, class[i])

∑N
i=1 weight[class[i]]

(5)

where loss(i, class[i]) is the cross-entropy loss for the i-th class computed from the classifier
prediction x and the true class as:

loss(x, class) = − log

(
exp(x[class])

∑N
j=1 exp(x[j])

)
(6)

and the weight weight[class[i]] is given by the inverse of the class frequency.
The final diagnosis of a nodule is computed from the classification of all the slices of

the ROI by an aggregation operation. In our case, the aggregation is given by a max voting
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of the classifications of 2D slices, so that the most frequent slice classification yields the
nodule final diagnosis. That is, if half of the 2D slices are classified as malign, the diagnosis
is malign, benign otherwise. In case of tie, a malignant diagnosis is given.

2.6. Network Optimization

In order to select the optimal architectures for malignancy diagnosis, we have defined
a criteria for selection of best models that uses 3 metrics assessing the diagnostic capability of
the system at nodule and slice levels. Taking the malignant nodules as the positive cases,
the metrics used to validate the clinical diagnostic accuracy are:

1. Diagnostic Sensitivity. This measures the percentage of correctly diagnosed ma-
lign nodules:

SensDiagnosis := 100
TPNodules

TPNodules + FNNodules
(7)

for TPNodules, FNNodules denoting, respectively, true positives and false negatives for
malignancy detection at nodule level.

2. Diagnostic Specificity. This measures the percentage of correctly diagnosed benign
nodules:

SpecDiagnosis := 100
TNNodules

TNNodules + FPNodules
(8)

for TNNodules, FPNodules denoting, respectively, true negatives and false positives for
benign detection at nodule level.

3. Slice Diagnostic Index. This index is an adaptation of the well-known F1-score to
measure the percentage of correctly diagnosed slices:

FNodule :=
SensNoduleSpecNodule

SensNodule + SpecNodule
(9)

being SensNodule and SpecNodule, the average sensitivity and specificity for the classifi-
cation of 2D slices at nodule level. Sensitivity is given by:

SensNodule :=
1

NMalign
∑

i

TPi
Slice

NSlicei (10)

for NMalign the number of malign nodules, TPi
Slice the true positives for the i-th malign

nodule and NSlicei its number of slices. Specificity is given by:

SpecNodule :=
1

NBenign
∑

i

TNi
Slice

NSlicei (11)

for NBenign the number of benign nodules, TNi
Slice the true positives for the i-th benign

nodule and NSlicei its number of slices.
The FNodule score measures the trade-off between benign and malign accuracy at
nodule level.

Our criteria for selection of best models is applied in the next cascade sequence: (1) select
the models with highest Diagnostic Sensitivity. If there is only one model, then it is
selected. Otherwise, (2) select the models with the highest Diagnostic Specificity. If there
is only one model, then it is selected. Otherwise, (3) select the model with highest Slice
Diagnostic Index.
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3. Results

Two different experiments were carried out:

1. Model Optimization. A training and selection of models, which consists in a leave-
one-out validation on a training set of patients to select the best model for the benign
and malignant classification. In order to assess the benefits of our embedding (labelled
t-test), models were also trained using all 24 GLCM features (labelled None) and the
selection based on reproducibility (labelled Reproducibility) reported in [31] excluding
the shape class (see Table 5).

2. Model Verification. A testing and assessment of models reproducibility, which is
a validation of the best model on an independent set of test patients to assess the
reproducibility of results. To assess the advantages of the proposed strategy, the best
model selected in the first experiment was compared to state of the art methods.

Table 5. Features from the study [31].

Class Feature

Fist Order
Entropy

TotalEnergy
Uniformity

GLCM

Inverse Difference
Inverse Difference Moment

Joint Energy
Joint Entropy

Maximum Probability

GLDM
Dependence Non Uniformity Normalized

Dependence Variance
Large Dependence Emphasis

GLRLM
Run Length Non Uniformity Normalized

Run Percentage
Short Run Emphasis

3.1. Model Optimization

For this experiment, 51 (85%) patients of the dataset described in Section 2.1 were
randomly selected for the optimization of models. This training set had 8 benign and
43 malignant nodules.

The search space for optimizing network architectures given in Table 4 together with
their hyperparameters was the following: (1) Nh ∈ [6, 7, . . . , 16, 17]; (2) optimizer: SGD,
Adam, RMSprop; (3) learning rate: 0.01, 0.001, 0.0001; (4) weight initialization: Normal,
Xavier, Kaiming, Orthogonal; (5) epochs: 500, 1000, 1500. For each embedding (None,
Ni = 24, Reproducibility, Ni = 14 and t-test, Ni = 19), we use a grid search to optimize net-
works and the best configuration was selected according to the criteria given in Section 2.6.
Table 6 shows the selected architectures and Table 7 shows the best hyperparameters.

Table 8 reports the diagnostic metrics defined in Section 2.6 with top performance
highlighted in boldface. For all architectures, the proposed embedding (corresponding
to Models 3, 6, 9 and 12) is the one that achieves better metrics with 100% of diagnostic
sensitivity and specificity. Among them, the one with highest Slice Diagnostic Index is
Model3, which is the one with the simplest architecture.
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Table 6. Architecture of best models.

Model Radiomic
Embedding

Arch.
Num.

Arch.
Setting
Ni, Nh

Architecture # Param.

Model 1 None 1 24, 6 [(24,6),(6,6),(6,2)] 206
Model 2 Reproducibility 1 14, 8 [(14,8),(8,8),(8,2)] 210
Model 3 t-test 1 19, 9 [(19,9),(9,9),(9,2)] 290

Model 4 None 2 24, 9 [(24,9),(9,9),(9,4),(9,2)] 365
Model 5 Reproducibility 2 14, 9 [(14,9),(9,9),(9,4),(9,2)] 275
Model 6 t-test 2 19, 9 [(19,9),(9,9),(9,4),(9,2)] 320

Model 7 None 3 24, 8 [(24,8),(8,8),(8,8),(8,4),(4,2)] 382
Model 8 Reproducibility 3 14, 9 [(14,9),(9,9,(9,9),(9,4),(4,2)] 362
Model 9 t-test 3 19, 9 [(19,9),(9,9),(9,9),(9,4),(4,2)] 407

Model 10 None 4 24, 8 [(24,8),(8,7)(7,6)(6,5),(5,4),(4,2)] 305

Model 11 Reproducibility 4 14, 14 [(14,14),(14,13),(13,12),(12,11),
(11,10),(10,2)] 745

Model 12 t-test 4 19, 8 [(19,8),(8,7),(7,6),(6,5),(5,4),(4,2)] 270

Table 7. Hyperparameters of best models.

Model Radiomic
Embedding

Weight
Init. Optimizer Learning

Rate Epochs

Model 1 None Kaiming RMSProp 0.001 1500
Model 2 Reproducibility Orthogonal Adam 0.001 1500
Model 3 t-test Xavier SGD 0.001 1500

Model 4 None Orthogonal Adam 0.001 1000
Model 5 Reproducibility Xavier Adam 0.01 1000
Model 6 t-test Xavier Adam 0.001 1000

Model 7 None Orthogonal Adam 0.001 1000
Model 8 Reproducibility Orthogonal Adam 0.001 1000
Model 9 t-test Kaiming Adam 0.001 1000

Model 10 None Kaiming Adam 0.001 1000
Model 11 Reproducibility Xavier Adam 0.001 1000
Model 12 t-test Orthogonal Adam 0.001 1000

Table 8. Diagnosis scores of best models.

Model SensDiagnosis SpecDiagnosis FNodule

Model 1 100 100 0.856
Model 2 93.02 75 0.683
Model 3 100 100 0.903

Model 4 100 87.5 0.846
Model 5 97.67 37.5 0.595
Model 6 100 100 0.839

Model 7 100 100 0.804
Model 8 100 37.5 0.619
Model 9 100 100 0.834

Model 10 100 87.5 0.840
Model 11 100 37.5 0.617
Model 12 100 100 0.831
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3.2. Model Verification

In order to statistically evaluate the reproducibility our system, we have conformed
an independent set of test patients from our database and the LIDC-IDRI public database.
From our database we used one benign and eight malignant nodules. Regarding the
LIDC-IDRI database, since it was not collected to evaluate malignancy, scans are, in general,
of a too low quality to assess malignancy. Following [19,20], we selected cases fulfilling
the minimum acquisition requirements that allow radiological assessment of malignancy,
which are slice thickness <= 2.5, resolution <= 0.71, except in case thickness is <= 1.5,
that resolution can be <= 0.86 and only taking in consideration those nodules that have
been diagnosed through a biopsy as benign or malign. After this filtering, 18 cases with
diagnosis (five benign and 13 malign) were selected. In this way, the independent set of
test patients is conformed by a total amount of 27 nodules with 6 benign and 21 malign.

We have compared Model3 with state of the art methods which include the three
type of approaches: radiomics [5], machine learning [6] and deep CNN [8–12]. In order
to compare to the results reported for each of them, we have computed the following
metrics from true positive, TP, true negative, TN, false negative, FN, and false positive,
FP diagnosis at nodule level:

Sensitivity = 100 · TP
TP + FN

(12)

Sensitivity measures the percentage of correctly diagnosed malignant nodules:

Specificity = 100 · TN
TN + FP

(13)

Specificity measures the percentage of benign nodules correctly identified:

Accuracy = 100 · TP + TN
Number o f Nodules

(14)

for Number of Nodules denoting the total amount of nodules. The accuracy measures the
percentage of correctly diagnosed nodules (both malign and benign nodules) among the
total number of nodules in the dataset:

F1 Score = 100 · 2 · Prec · Rec
Prec + Rec

(15)

for Rec, Prec denoting, respectively, the precision and recall at diagnosis level:

Rec = 100 · TP
TP + FN

Prec = 100 · TP
TP + FP

(16)

The metric (15) measures the trade-off between recall and precision, and in general,
a higher F1-score means a better performance. We also computed the receiver operating
characteristic (ROC) curves and the area under the curve (AUC).

Table 9 shows the metrics for state of the art methods grouped according to the type
of approach (Radiomics, Machine Learning, Deep CNN) and our method. As in Table 8,
best performances are in boldface. Table 9 reports the metrics obtained by Model3 in our
test set together with the results reported by each state of art method using their datasets.
We also report the number of parameters of each method as indicator of its complexity and
computational and data cost for training. Our method outperforms in Accuracy, Sensitivity
and F1 Score. In computer-aided diagnose, sensitivity is significant because correctly
finding out patients with malignant nodules is crucial. Besides, the highest F1 Score implies
that our method achieves the best trade-off between precision and recall. Our method has a
splendid compromise between the performance of the system and the number of trainable
parameters. A remarkable point compared to Deep CNN approaches, is that, our method
needs strongly less samples to train the model, which is a must in medical imaging.
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Table 9. Results of our method compared to the state of the art with malignant nodules as posi-
tive cases.

Approaches Accuracy Sensitivity Specificity F1
Score AUC Param.

(M)

Radiomics
Peikert et al. [5] – 90.40 85.50 – 0.939 <0.29

Machine Learning
Zhang et al. [6] 96.09 96.84 95.34 – 0.979 <0.29

Deep CNN
Multicrop [8] 87.14 77.00 93.00 – 0.930 –

Nodule-level 2D [9] 87.30 88.50 86.00 87.23 0.937 –
Vanilla 3D [9] 87.40 89.40 85.20 87.25 0.947 –

DeepLung [10] 90.44 81.42 – – – 141.57
AE-DPN [11] 90.24 92.04 88.94 90.45 0.933 678.69

NASLung [12] 90.77 85.37 95.04 89.04 – 16.84

Hybrid
model3 (Our) 96.30 100 83.33 97.67 0.940 0.29

4. Discussion

Intelligent artificial methods applied to medical imaging have to face two key draw-
backs. The available small amount of labelled data and the obligation that methods must
ensure good rates avoiding false positives. In order to overcome with these two main
challenges, we have proposed an hybrid method that combines an embedded radiomic
texture features to characterize nodules and an optimized feedforward network for nod-
ule diagnosis. The nodule embedding step is based on selecting those radiomic features
that significantly correlate to malignancy ensuring reproducibility with minimal training
data. The fully connected network architecture and hyperparameters are optimized using
own-defined metrics of the diagnostic power to ensure maximum clinical outcome.

Results demonstrate the power of the two main contributions. Table 8 results demon-
strate the power of using t-test analysis for statistical significance and nodule embedding,
as best results are achieved on those models (3, 6, 9, 12). Table 9 confirms that the whole
hybrid strategy outperforms in Accuracy (96.30), Sensitivity (100) and F1 Score (97.67) the
state of the art methods. Notice that in computer-aided diagnose, sensitivity is significant
because correctly finding out patients with malignant nodules is crucial. A remarkable
outcome is that our approach outperforms deep approaches with only requiring 290 pa-
rameters (in contrast to the thousands required by deep methods). This has a direct impact
with the small training data needed.

Our work could be improved in the following aspects. Nodule embedding bases on a
combination of simple t-tests as a first approach to a statistical selection of features, which
disregards correlations across GLCM features. Future work will explore the use of other
statistics (like regression models) taking into account multiple comparisons across features.
In addition, it is planed to increase the database and introduce our own-defined metrics
as the loss function of the fully connected network to guide training to ensure maximum
clinical outcome.
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