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Abstract: This paper presents an inventory control problem in a private pharmaceutical distribution
company from the Republic of Serbia. The company realizes that distribution within nine neigh-
bouring countries and inventory control in the pharmaceutical supply chain is centralized. In order
to constitute a conceptual model of the problem, we propose the modern control theory concept.
The conceptual model is based on the specific practical assumptions and constraints of the supply
chain. Thereafter, a dynamic discrete mathematical model of inventory control is formulated to reflect
elements of the system and their relations. The model considers multiple pharmaceutical products,
variable lead time, realized stochastics and deterministic demand, and different ordering policies
(Lot for Lot and Fixed Order Quantity). Deterministic demand is represented as a sales forecast
for each product per month, while stochastic demand is generated as a random variation of sales
forecast in a range of ±20%. Two objective functions are defined as the maximization of the difference
between planned average inventory level and realized average inventory level, and the minimization
of stock-out situations. We develop a procedure for the determination of reorder points and the
number of deliveries to achieve proposed objective functions. The model overcomes shortages of
theoretically-based distribution requirements planning models and offers solutions to the limitations
in inventory control practice. Real-life data, collected over two years, are used for the validation of
the proposed model and the solution procedure. Numerical examples illustrate the model application
and behaviour.

Keywords: distribution; inventory model; fixed order quantity; lot for lot order policy; pharmaceutical
company

1. Introduction

The importance of the pharmaceutical industry is directly associated with the fact that
it deals with human life. Since the quality and security of pharmaceutical products must
be constantly maintained, inventory management of the industry is quite a challenging
job. According to [1], pharmaceutical companies handle approximately 500–600 types of
products, and are responsible for a large quantity of unprocessed materials movement,
packaging, secondary packaging of finished goods, and delivery to the customer. Inventory
management of pharmaceutical products has become challenging for companies from
health care industries, given that they continuously attempt to reduce costs and improve
their customer service levels in a progressively competitive business environment [2].
Distribution management should ensure the delivery of required pharmaceuticals and in-
ventory maintenance for facilities where they are needed, while costs of distribution should
be the lowest. Distribution costs relate to storage, transport, customs and analysis, etc. The
development of a model that enables effective control of storing and distribution of phar-
maceuticals and medical supplies is important, but it is not a simple task. Pharmaceutical
distribution effectiveness depends on the quality of control system design [3].
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The topic of inventory control has been studied for many decades, within different
business and scientific areas. Regardless of the implementation area, inventory control
models are usually oriented toward cost reduction and maintaining appropriate inventory
levels that satisfy customer demands and improve customer satisfaction [4]. Service
level improvement is directly related to efficient management of the inventory level for
each participant within the supply chain [5]. The importance of inventory holding and
distribution in production and sale systems and their high associated costs are considered
within numerous studies, aimed at examination and analysis of various models of inventory
and distribution management [6–9].

Pharmaceutical supply chain (PSC) models are usually aimed at the optimization of
specific unit operations, but according to [10], the implementation of theoretical approaches
is often impossible due to complex dynamics of supply, distribution, and delivery systems.
When it comes to mathematical models of PSC, papers are often oriented more on solving
techniques than modelling itself (for example, [11]). Mathematical programming-type
models of PSC are usually developed in order to optimize some figure of merit, for example
in production-delivery system planning [12], strategic game-theoretic models of supply
chain networks [13], and statistical frontier analysis models for supply chain manage-
ment [14]. Although related to different categories, these types of models are based on a
similar constrained optimization intent. PSC mathematical models should reflect current
and alternative states of the modelled system (structural and behavioural characteristics)
and enable their analytical evaluation, considering circumstances related to changes in
market demands and resource availability [10]. A conceptual model of the modelled system
should enable an overview of relevant facts for a mathematical model and actions that
should be recognized as the identified solution. Furthermore, it is necessary to discuss the
implementation of the models in real-world settings and the possible implications of such.

In order to overcome the described problems, we propose an integrated system ap-
proach, including problem conceptualization and the definition of boundaries, design,
mathematical model formulation and solution, as well as the real-world implementation of
identified solutions. A system of defining considers a combination of interacting discrete
elements, which are organized in a manner that enables the achievement of the model
purpose, which will be described within the paper.

The authors investigated a real-life inventory control problem in a private pharma-
ceutical distribution company, within a period of two years. The first, preliminary results
were published in [15]. The final study, presented in this paper, extends the previous
work in terms of methodology, mathematical model complexity, objective function, and
practical applicability.

Aimed at the recognition of relevant elements that constitute the structure of the
pharmaceutical distribution system in the real-world company, the authors of this paper
propose the modern control theory concept for a conceptual model defining. Based on
the defined conceptual model, a dynamic discrete mathematical model is formulated.
The model implementation is realized in a spreadsheet, while practical evaluation is
performed in the private pharmaceutical distribution company from the Republic of Serbia.
The resulting dynamic discrete inventory control model is evaluated in the company
Pharma 4U DOO, Serbia [16]. Some of the main characteristics of the proposed approach,
compared to the related research analysed within the paper, are presented in Table 1. Under
the term approach, we consider a real-life problem conceptualization, the corresponding
mathematical modelling, the model implementation in real-world settings, and the software
solution choice. The related research comprised of papers dealing with the pharmaceutical
supply chain and inventory management and related topics. Comparison criteria are
chosen in accordance with the previously mentioned lack of PSC studies and requests
defined by the company for which the inventory management solution was created.
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Table 1. Comparison of the proposed approach characteristics and related research.

Reference Real-Life Problem
Settings

Conceptual
Model

Mathematical
Model

Real-World Settings
Implementation/

Practical Validation

Software
Solution

[1] No No
Inventory

management
simulation model.

No Arena simulation
software

[2] No No

Inventory model
that integrates

continuous review
with production
and distribution

for a supply chain
involving a

pharmaceutical
company and a
hospital supply

chain.

No MATLAB

[13] No

Graphical
representation of
the supply chain

network topology
with outsourcing.

A supply chain
network game

theory model with
product

differentiation,
outsourcing of
production and

distribution, and
price and quality

competition.

No Not mentioned

[17]

The authors
analysed data from

a large urban
hospital in order to
model the patient
demand process
for Meropenem
and proposed a
nonstationary

model for
managing the

drug.

No

A two-stage
(multi-echelon)

perishable
inventory model

The model
evaluation based on

data from a large
urban hospital that

has over 350
inpatient beds and
more than 14,000

adult admissions per
year

Not mentioned

[18]

The study
addresses the

liquid
pharmaceutical

preparations
inventory problem

of a hospital.

No

A stochastic lead
time inventory

model for
deteriorating

drugs with fixed
demand.

The authors used
relevant data from a
hospital in order to
obtain the optimal

reordering point, the
optimal ordering lot

sizes and optimal
ordering cycle in

weighting the shelf
life of drugs and

service level.

Not mentioned
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Table 1. Cont.

Reference Real-Life Problem
Settings

Conceptual
Model

Mathematical
Model

Real-World Settings
Implementation/

Practical Validation

Software
Solution

[19]

Optimization of
the sustainable
humanitarian

supply chain of
blood products in

Tehran.

A five-echelon
blood supply chain

network is
presented that

includes donors,
mobile, fixed and

regional blood
collection centres,

and hospitals.

A robust
multi-echelon

multi-objective
mixed integer

linear
programming
optimization

model.

The application of
the proposed model
is investigated in a

case problem in
Tehran, where real
data is utilized to

design a network for
emergency supply of

blood during
potential disasters.

The model is
coded in GAMS
and solved by
CPLEX solver.

[20]

No, but the
proposed

sustainable
distribution

network model in
pharmaceutical
supply chain is

customized for a
real case study in

Iran.

No

A multi-objective
model

fordesigning of a
pharmaceutical

distribution
network according

to the main
concepts of

sustainability i.e.,
economic,

environmental and
social.

The model is
validated in the
pharmaceutical

distribution
company in Iran,

Darupakhsh
Distribution
Company.

Not mentioned

[21]

A systems thinking
and modelling

methodology was
used to explore the
functioning of the
reverse logistics
process in the

Indian
pharmaceutical

industry, at a
strategic level.

Based on System
Dynamics. No

Data collection was
confined to

stakeholders
belonging to a PSC
in the South Indian
state of Kerala. The

application of
systems thinking

and modelling was
limited to the

qualitative phases of
the methodology.

Not mentioned

[22]

The considered
case study is based

on a
comprehensive

empirical study of
nine different

North European
pharmaceutical

companies.

A fully-specified
case study research

underpins the
formulation of a

mathematical
model of the PSC.

A two-stage
stochastic MILP

model for
addressing market
launch planning in
the pharmaceutical

industry.

The model is applied
to a case based on an

empirical study.
Only the market data
has been generated

through random
sampling based on

literature data.

OPL Studio 6.0
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Table 1. Cont.

Reference Real-Life Problem
Settings

Conceptual
Model

Mathematical
Model

Real-World Settings
Implementation/

Practical Validation

Software
Solution

Current study

A real-life
inventory control

problem in a
private

pharmaceutical
distribution

company from the
Republic of Serbia.

The modern
control theory,

System Dynamics
and feedback

control concepts
based.

Dynamic discrete
multi-echelon
multi-product

inventory control
model.

Real-life data,
collected over two
years, are used for

the validation of the
proposed model and

the solution
procedure. The

applicability of the
model has been

proven by its usage
for procurement
planning in the

company within the
period of two years.

The created plan
comprised more

than 50 products per
country for several

countries from
Eastern-Central

Europe.

The model is
implemented in a

spreadsheet
environment, and

procedures are
automated

through Visual
Basic for

Application. It is
affordable, but
dynamic and

flexible software
solution, relatively
easy to implement

and use.

Starting from this point, the paper is organized as follows. Section 2 presents an
overview of related research, concerning multi-echelon pharmaceutical supply chain man-
agement, centralized or decentralized network design, distribution planning and control
systems, with emphasis on the distribution requirements planning approach (DRP), fixed
order quantity (FOQ) and lot for lot (LFL) lot-sizing rules. Additionally, this section tackles
the novelty of the study against the existing literature in the field. Section 3 outlines the
problem description, while the methodology including modern control theory concept used
for the conceptual model definition, system dynamics modelling and discrete-time system
control, is addressed in Section 4. The mathematical model, assumptions and notation are
presented in Section 5. Section 6 refers to the model implementation and Section 5 to the
sensitivity analysis and numerical results. Finally, the last section relates to the conclusions,
a summary of all the above-mentioned content, and future work directions.

2. An Overview of Related Research

In this paper, we develop a centralized multi-echelon inventory control model for
purchasing pharmaceutical products from a manufacturer and distributing them among
multiple foreign markets under deterministic and stochastic demand. In the context of
supply chain management, the echelon represents the physical location where the products
are located [17]. A multi-echelon system is characterized by the connection of inventory
decisions from downstream locations and upstream locations, such as, different markets
and central warehouses or manufacturers [23], for example.

Multi-echelon inventory problems have been extensively studied for different ap-
plications. Nevertheless, most of the existing inventory models are not appropriate for
pharmaceutical products. Pharmaceutical products are often more expensive than other
products to purchase and distribute, while shortages cause a high cost related to wasted
resources and preventable illness. Thus, inventory control of pharmaceutical products has
to ensure high product availability, at the right time, at the right cost. Inadequate inventory
management strategies in the pharmaceutical industry may have a significant impact on
financial losses and people’s health. Consequently, inventory management of pharmaceuti-
cal products is more critical than for other products [2]. Based on the above-mentioned, a
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specific inventory model that reflects real-life problems is necessary for the control of phar-
maceutical products, in order to maintain patients’ health and reduce unnecessary costs.
Depending on the country, the procurement and distribution of pharmaceutical products
can be organized regionally or in commercial supply systems, existing parallel with public
systems. According to [3], considering national and regional levels, private distribution
companies offer cost-effective alternatives for delivering and storing medicines.

From a supply chain network design point of view, a system can be either centralized
or decentralized. The centralized system implies that all local warehouses deliver their
demand information, like a forecasted demand, to a central warehouse or manufacturer.
Aggregated demand, based on the received demand information, is used for the defining
of the inventory control parameters in the central warehouse. When it comes to the
decentralized system, local warehouses define inventory decisions independently. Schmitt
et al. [24] suggest the centralization approach for deterministic supply and stochastic
demand. In this case, the centralization results in a lower expected cost without affecting
the variance of the cost compared to a decentralization approach. Enns and Suwanruji [25]
state that centralized planning and control, characteristic for DRP, is beneficial under
realistic situations of time-varying demand and replenishment time uncertainty. They
examined performances of two common distribution planning and control systems, DRP
and Order Point replenishment, within networks involving manufacturing, distribution
and retail facilities. Results indicate that a centralized system performs best when demands
vary through time and when there is significant uncertainty with respect to demand and
replenishment times. The high performance is related to the ability of DRP to anticipate
changes, based on forecast information, in demand along the supply chain and release time-
phased orders in anticipation of future requirements. DRP and Order Point replenishment
strategies require very different information. According to [25], complex and extensive
software information systems are necessary for DRP systems. This is explained by the
various nodes in the supply chain or distribution network that must communicate with
the central planning function. Additionally, this constraint is important when the network
nodes are controlled by independent enterprises. Intelligent information sharing in supply
networks is analysed in [26]. Order Point systems require less coordination of information.
The system implementation is much easier if it uses only inventory and order information
local to the upstream replenishment loop.

Since this paper deals with the inventory control problem in the private pharma-
ceutical distribution company characterized by the transparency of information within
the distribution network, we will review the DRP approach. According to [25], DRP is a
time-phased replenishment approach, with inventory level monitoring and periodically
realized delivery plans. In order to foresee requirements, companies use forecasting. Or-
ders are realized, in accordance with inventory status and lead times, in a manner that
minimizes inventory cost and, at the same time, prevents unnecessary shortages. The DRP
system implies planned lead times and defined lot sizes. The fixed order quantity (FOQ)
and lot-for-lot (LFL) lot-sizing rules, considered in this paper, are often used because they
apply to each of the planning and control systems. FOQ and LFL ordering policy systems
belong to a group of classical static inventory models. Some of the main assumptions of
the model indicate the known total deterministic demand and order quantity that should
be determined in a manner that minimizes stock-outs and the average level of inventories.
As can be seen in [4,27–32], these classical inventory control models and their variations
represent a starting point for understanding inventory dynamics, even in new books related
to inventory control.

The mentioned DRP logic can be analogous with material requirements planning
(MRP) logic, where forecasts are made based on customer demand (often a retail eche-
lon). Planning of the orders in this manner is similar to order realizing for independent
demand items in accordance with an MRP concept. A detailed comparison of MRP and
production and inventory control theory, including their similarities and differences, is
described in [33]. According to [33], unlike MRP logic, the inventory control approach in-
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cludes forecasting and up-to-date re-planning based on system state changes. MRP reflects
real-world planning, but decision-making procedure becomes difficult after incorporation
of real-life constraints, while inventory control systems incorporate the presumption of
real-life decision-making. Production inventory systems are often characterized by the
uncertainty of external demand. MRP is applicable when future demands are known,
on the contrary of production inventory control model defined by known inputs, previ-
ous actions and rescheduling. Grubbström et al. [33] proposed the integration of MRP,
production, and inventory control logic in order to overcome their main disadvantages.
Similarly, the authors of this paper propose the inter-linking of DRP and the modern control
theory concepts aimed at the constitution of dynamic discrete inventory control models
of the pharmaceutical distribution system in the real-world company. Some of the main
disadvantages of the dynamic DRP model, which imply its improvement in order to solve
the inventory control problem considered in this paper, can be defined as [25]:

• DRP does not determine the lot size or safety stock. These decisions represent inputs
to the process;

• DRP does not explicitly consider any costs. These costs are still relevant because a user
must evaluate costs of delivery;

• DRP systems cannot recalculate forecast if demand is changed in real-time (stochastic demand).

Inventory management of pharmaceutical products represents a ubiquitous topic in
theory and practice. Consequently, there are numerous overview papers of high quality
dealing with the subject. For example, [10,34,35] and many others. However, despite vari-
ous studies, inventory control is still a daily burning issue for pharmaceutical companies.
The implementation of different optimization models is often impossible in real-world
settings. A possible solution implies a conceptual model of a system that enables an
overview of relevant facts for a mathematical model and actions that should be recognized
as the identified solution [10]. The aim of this paper is not the comparison of and with
different approaches to pharmaceutical inventory control, and thus we will not further
analyse related papers. This paper represents a real-life inventory control problem in a
private pharmaceutical distribution company. The authors studied the problem within two
years and noticed specific practical assumptions and constraints of the supply chain in the
company. Another important request, defined by the company, was a software solution
that is affordable, but dynamic, flexible, and relatively easy to implement and use. To the
best of the authors’ knowledge, there is no research in the literature that has developed
an inventory control solution appropriate to the identified characteristics of the problem,
specific practical assumptions, constraints, and the company’s requests. This comprises:

• a centralized multi-echelon multi-product inventory control system with transparency
of information within the distribution network, but without the necessary software
information systems;

• nine regional pharmaceutical markets should be managed by a centralized inventory
control model in PSC;

• the products should be distributed directly from the manufacturer to the customers
because the distribution company does not store items in the main branch;

• a different FOQ or LFL order quantity should be considered for each product;
• a lead time (LT) is variable (approximately five months) and different for each product;
• an inventory plan is based on a monthly sales forecast for three months after the lead

time period expiration and realized stochastic demand;
• shortages are allowed but not backlogged;
• two objective functions should be considered, the maximization of the difference

between the planned average inventory level and the realized average inventory level
and the minimization of the stock-out situations;

• the software solution should be affordable, but dynamic, flexible, and relatively easy
to implement and use.
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Additionally, we propose the conceptual model, which reflects the specificities of the
system that are necessary for the mathematical model’s development. The conceptual
model is in accordance with the modern control theory; consequently, the system is based
on feedback control. The modern control theory concept and its implementation are
described further in the paper, as is a discrete-time system control used for the system
dynamics modelling.

3. Problem Description

4U Pharma GMBH is a Swiss company that produces and sells the highest quality
natural pharmaceutical products, mainly for newborns, infants, and children [16]. The
company production is grounded on the expertise and the knowledge of medical and herbal
sciences of world-recognized scientists who are taking part in the creation and development
of products. The company uses advanced and innovative technologies, combined with
ingredients of the highest quality. Testing of the products is realized during every phase
through clinical studies in order to confirm their efficacy in preventing and treating diseases.
The head office of 4U Pharma is located in Switzerland. It is responsible for financial
investments, technical, technological, and medical developments of products, and control of
the financial operations of the company. There are registered subsidiaries in some markets,
which are owned by the Swiss company, and in other markets 4U Pharma conducts its
business operations through its partners or distributors. The products of 4U Pharma are
registered and sold in twelve countries in Europe. In all counties in which it operates,
the company is a credible partner of the national pediatric associations and neonatology
associations. 4U Pharma products are recommended in all countries by local authorities
and relevant government bodies, such as the ministry of health. Furthermore, in most
countries, the products have become part of the national recommendations of neonatology
associations, pediatric associations, ministries of health, as well as expert groups.

A branch in Serbia is the company Pharma 4U DOO [16], established for pharmaceu-
tical distribution in the Balkan and neighbouring countries. The distribution company
supplies wholesalers and pharmacies from Bulgaria, Rumania, Serbia, Croatia, Macedonia,
Montenegro, Slovenia, Bosnia and Herzegovina, and Albania. Inventory management is
very important for the company and represents its core activity. The inventory control
problem, analysed in this paper, is related to the determination of order quantities and
reorder points and the improvement of overall ordering policy concerning stock-outs, the
average level of inventories, the number of orders, and costs. The specifics of the inventory
problem solution, required by the company, consider the assumptions listed at the end of
the previous section.

Based on the forecast and personal experience, the logistics manager of the company
defines a sales plan for the next year at the end of the current year. The forecast refers
to historical data from previous years. During a year, the manager receives stock reports
from all customers within the region at the beginning of each month. The supplier, i.e.,
production plant, defines the fixed order quantity for each product. The FOQ is used
for the calculation of order quantities and periods in which the ordering will be realized.
The FOQ is not unique for each product, and, consequently, the unit price is different
for different order quantities. Product sales forecasts for all countries represent a base
for the determination of order quantities. The defined order quantity should meet the
demand per product for all countries. The company Pharma 4U DOO does not have
warehouses in the Republic of Serbia. Products are distributed to customers directly, after
customs and analysis. The process specificity is reflected through the long lead time of
approximately five months (118–148 days). The total lead time consists of the production
lead time (90–120 days), transportation lead time (up to 7 days), and custom and analysis
(up to 21 days).

The ordering problem is defined for two instances related to FOQ and LFL ordering
policy, respectively. Both instances imply maximization of the difference between the
planned and the realized average inventory level, as well as minimization of the number
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of stock-out situations. In the case of FOQ ordering policy, the reorder quantities and
reordering periods should be determined for each product for all countries, in a manner
that provides enough inventories to satisfy the cumulative monthly sales forecast. LFL
ordering policy refers to a moving horizon situation. The reorder quantities and reordering
periods should provide enough inventories to cover the cumulative monthly sales forecast
calculated for three months occurring after the lead time period expiration.

4. Methodology

The study presented in this paper considers a real-life inventory control problem
detected in a private pharmaceutical distribution company. The study is realized over two
years, from 2017–2019. As previously mentioned, the authors of the paper proposed a
conceptual model based on the modern control theory concept and in accordance with the
specific practical assumptions and constraints of the supply chain noticed in the company.
Thereafter, a dynamic discrete mathematical model of inventory control is formulated
in order to reflect elements of the system and their relations. Aimed at satisfying the
company’s request, related to the affordable but dynamic and flexible software solution
that is relatively easy to implement and use, the model is implemented in a spreadsheet
environment, and procedures are automated through Visual Basic for Application (VBA).
In order to evaluate the model’s performance, sensitivity analysis is performed for two
instances related to the FOQ and LFL ordering policy. Validation of the proposed model
and the solution procedure is realized in the company, for a few consecutive years, and
based on real-world data.

The remainder of this chapter describes the mentioned concepts and approaches that
were applied in order to solve the inventory control problem identified in the company
Pharma 4U DOO.

4.1. Modern Control Theory

A large number of natural laws, features, and capabilities of flora and fauna are
used in the design of technical solutions. One of the main features of living systems and
processes is self-regulation and feedback. For example, when the body’s temperature rises,
the body begins to sweat in order to lower the body temperature. This reaction happens
automatically and is enabled by the feedback of a self-regulation system. The concept of
self-regulation and feedback could be used in the control of organizational systems. For
example, a feedback control could be applied to developing a decision model for inventory
control. According to [36], “The modern control theory (MCT) is a discipline dealing with
formal foundations of analysis and design of computer control and management systems.
The basic scope of MCT includes problems and methods of control algorithms design. The
control algorithms are understood as formal prescriptions (formulas, procedures, programs)
for the determination of control decisions. The control decisions may be executed by
technical devices related to information processing and decision-making”. The importance
of this area of application is indisputable. Contemporary business development, closely
related to information systems and technology development, influences the expansion of
MCT application areas. As stated in [36], automation of the control includes automation
of manipulation operations, control of executing mechanisms, intelligent tools and robots,
and inner control of devices and systems. Modern control science has developed in line
with new needs related to the control of numerous technical processes in factories, but
it also includes project management and computer systems control and management.
Consequently, the scope of modern control science is much wider than the traditional
control theory. The development directions of MCT comprise methods that improve the
design and the usage of computer tools in the decision support systems. Control and
management systems represent one of the largest classes of such systems [36]. A control
system design typically implies many steps, described in [37].

One of the most common concepts related to control systems is a feedback loop. The
system output represents the signal that should be controlled. Comparing this signal
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and the desired reference signal results in a gap used for computing corrective control
action [38]. In accordance with [38], the most elementary feedback control system has four
elements (Figure 1):

– A system or plant (the object to be controlled);
– A sensor (used for measuring the system’s output);
– A comparator (used for comparison of the input or reference signal and the output

signal converted by the sensor);
– A controller (an element that generates the system’s input–control action).
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Figure 1. Concept of the feedback loop, reproduced with permission from InstrumentationTools.com,
2021 [38].

The reference or planned value represents an external input of a system. As can be seen
in Figure 1, a controller influences the inputs of a system in order to achieve the planned
output value of a system. One of the main objectives of control theory is the determination
of corrective action in the controller in order to obtain system stability. The focus of the
feedback loop concept is to control the dynamic behaviour of the system over time. The
error signal used in a controller is calculated by subtraction of the sensor value from the
reference value. The sensor converts output of a system into a readable output, which can
be compared with the reference value [38]. The measured output provides information to
the control system related to the value under control, which should be regulated within
some “set point” range. As explained in [39], the closed control loop refers to a situation in
which the controller output corrects measured deviations from the set point.

Feedback represents a ubiquitous concept in various areas of activity. A feedback
process is characterized by the state of the system or its output, which determines the
manner in which the control has to be computed at any time instant [40]. Feedback systems
are typical for both natural and engineered systems. The meaning of the control term
depends on the application area. For the purpose of this paper, control is defined as the
usage of algorithms and feedback in engineered systems [41]. The applicability of MCT for
inventory control is presented in many papers [37,42–44].

As mentioned earlier, the inventory control problem modelling is based on the feed-
back loop principle. Elements of the feedback loop for the inventory control model are
presented in Figure 2. A detailed explanation of the model elements is shown in [15] and in
the following of the paper.
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4.2. Discrete-Time System Control—System Dynamics Modelling

System dynamics (SD) is a modelling approach widely used in logistics and supply
chain management [45]. System dynamics (SD) relates the modelling of processes over
time. SD is often considered a modelling technique based on continuous time [46]. In
this paper, we consider SD modelling also for the discrete concept of time. Finite changes
over time mode means dealing with changes over time in a manner that resembles our
everyday experience. It is based on a simple principle: “In order to notify some change,
some time has to pass by” [46]. Changes are related to time intervals, whereas the state of a
variable is specified for specific points of time. The distinction between time-points and
time-intervals yields two distinct types of data: data related to time-points and data related
to time-intervals. The data relating to time-points will be named stocks and the data related
to time-intervals flows. If the stocks are considered as state variables for time-points and
the flows as changes of the stocks for certain time-intervals, the relation between the stocks
and the flows is trivial arithmetic. For a given time interval (t0, t1) and given flows for that
time interval we can calculate the “new” value of the stock at the end of the time interval
according to the following equation [46]:

stock(t1) = stock(t0) + inflows(t0, t1) − outflows(t0, t1)

A stock accumulates its flows. According to the stock-flow principle [46], the new
stock(t) is defined through the initial stock(t0) plus all inflow(s) subtracted by all the out-
flow(s) between the time t0 and time t. The core idea of SD modelling is the accumulation
of flows over finite time intervals of duration discrete time periods, t. On the stock-flow
diagram, there are two main types of elements: flow regulators (actions) and stock as state
variable (accumulations) [47].

The control model of the problem defined in this paper implies two flows (Figure 3),
the information flow of the planned inventory state and the material flow of the actual state
of inventory. Each flow has three phases, one phase of accumulation and two phases of
action. The action phases represent input and output flow regulators, respectively. The
accumulation, representing inventory level, for each flow, is calculated with the quantity of
the inventory from the end of the previous time period and is increased by the planned
or realized quantity for delivery over the observed period of time, and it is reduced by
the planned or realized sales over the period of time. For example, Figure 3 shows the
stock-flow diagram for one item (one stock keeping unit–SKU, t = 1 . . . 24 months). In order
to define a discrete-time mathematical model of the problem, a notation will be defined per
type of element of the system and from the position of the element on stock-flow diagram
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(from top to bottom, and from left to right). For the stock-flow diagram presented by
Figure 3, the following notations will be used:

• X1
t —State variable. Planned stock level of a product on hand at the end of period t.

• X2
t —State variable. Realized stock level of a product on hand at the end of period t.

• Y1
t —Inflow regulator variable (left upper). Planned stock input of a product at the

beginning of period t.
• Y2

t —Inflow regulator variable (left lower). Realized stock input of a product at the
beginning of period t.

• Y3
t —Outflow regulator variable (right upper). Forecasted sales plan for a product for

period t.
• Y4

t —Outflow regulator variable (right lower). Realized sales of a product at period t.
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The regulator variables have the same notation Y, because of the same nature of
the flow, but have different superscripts suitable for the writing of equations describing
the system. Defined notation is used for the formulation of the control system model,
for example:

X1
t = X1

t−1 + Y1
t − Y3

t , t = 1, 24
X2

t = X2
t−1 + Y2

t − Y4
t , t = 1, 24

Or summarized as follows:

Xi
t = Xi

t−1 + Yi
t − Yi+2

t , t = 1, 24, i = 1, 2

In the following of the paper, the notation of variables is defined in the described
manner, for two distinctive flows, the planned flow of stock and the realized flow of stock,
for each SKU. Each flow implies the same elements: two regulators, and one state variable.

According to [47] a discrete-time system control, used for the system modelling, rep-
resents a natural manner for describing inventory dynamics. Many papers describe the
usage of the discrete-time system control for dynamic deterministic inventory problems.
Frequently, they consider lot-sizing problems, beginning with [48,49]. Solving proposals for
dynamic lot-sizing problems include dynamic programming algorithms [50] and different
special heuristics and metaheuristics [51,52]. The dynamic discrete-time system modelling
approach is used for the inventory control system in this paper due to its wide applica-
bility and many benefits. These models enable relatively simple and not time-consuming
modifications in accordance with newly discovered facts about an observed problem by
changing some of the discrete control object elements. For example, adjusted elements
related to the objective function allow model variations or even the setting of a new model,
without modifications of other model elements, such as the law of behaviour for state
variables, flow regulators, and the control space. Definitions and implementation guidance
for dynamic discrete inventory control models can be found in [47,53]. According to [47],
relations of the law of dynamics and control domain determine a discrete controlled object.
These relations also represent the simulation model of the controlled object. System state
changes are observed at the end of the discrete period t (day, month, year, etc.) of a time
horizon. Decisions made in one period of time influence states and, consequently, new
decisions in future periods. The success of the control is measured for each period by a
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defined objective function. The performance criterion is an objective function that adds
values throughout the time horizon [47].

5. Mathematical Formulation, Assumptions and Notation

The considered problem is represented as a dynamic discrete multiproduct inventory
control model. This section represents the mathematical formulation of the model, along
with notation and assumptions.

5.1. Assumptions

In addition to the assumptions described within the problem description, the inventory
replenishment problem is modelled in accordance with the following assumptions:

• Lead time (LT) includes the time necessary for the delivery of goods from the manufac-
turer to the distributor. Delivery time includes time periods from ordering to receiving
the goods.

• Shortages are allowed but not backlogged, i.e., stock-out situations should be minimized.
• The initial inventory level is known.
• Order quantity depends on the observed instance:

# Fixed, i.e., the manufacturer defines the fixed order quantity per each product,
but periods between orders are not fixed.

# Lot-for-lot, i.e., cumulative monthly sales forecast for three months, in a moving
horizon situation, after the lead time period is expired, but periods between
orders are not fixed.

• The sales forecast is known and forecasted for two years.

5.2. Notation

In order to explain the model, the following notations are used:

– m–Total number of products (i = 1, 2, . . . , m).
– T–Finite time horizon T = 24 months (t = 1, 2, . . . , T).
– LT–Delivery lead time.
– Xi1

t –Planned stock level of product i on hand at the end of period t. This phase of
accumulation represents the total amount of product i remaining on the stock at the
end of period t on the flow of the planned state of inventory

(
t = 1, 24, i = 1, m

)
.

– Xi2
t –Realized stock level of product i on hand at the end of period t. This phase of

accumulation represents the total amount of product i remaining in the stock at the
end of period t, on the flow of the realized state of inventory

(
t = 1, 24, i = 1, m

)
.

– Yi1
t –Planned stock input of product i at the beginning of period t. This inflow regulator

represents the amount of product i expected to be delivered after the lead time at the
beginning of period t. It is the regulator of the flow of the planned inventory state(
t = 1, 24, i = 1, m

)
.

– Yi2
t –Realized stock input of product i at the beginning of period t. The inflow regulator

represents the input variable that relates to the inventory fulfilment at the beginning
of the month. This flow regulator represents the amount of product i delivered to the
warehouse after the lead time expiry. It pertains to the flow of the realized state of
inventory. The variable value is confirmed in the company’s software when order
quantity arrives in the stock

(
t = 1, 24, i = 1, m

)
.

– Yi3
t –Forecasted sales plan for product i for period t. This outflow regulator represents

the amount of product i planned for withdrawing from the accumulation of the
planned inventory state continuously per month. The sales manager forecasts the
sales plan for 24 months

(
t = 1, 24, i = 1, m

)
.

– Yi4
t –Realized sales of product i at period t. This outflow regulator represents the

amount of product i actually withdrawn from the accumulation of the realized state
of inventory continuously per month

(
t = 1, 24, i = 1, m

)
.

– minQi
t–FOQ for the product i in period t, defined by manufacturer

(
t = 1, 24, i = 1, m

)
.
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– LQi
t–LFL order quantity for each product i

(
t = 1, 24, i = 1, m

)
.

– Si
t–The auxiliary variable representing value from a stock level report for product i at

the beginning of period t
(
t = 1, 24, i = 1, m

)
, and representing value obtained from

stock level report, which is provided each month from a warehouse of a distributor.
This variable presents an exact level of inventory for product i.

– Ai
t–The auxiliary variable indicates if the planned stock level on hand Xi1

t is greater
than security stock SSi

t for product i in period t
(
t = 1, 24, i = 1, m

)
.

– Qi
t–The planned re-order quantity for product i in period t

(
t = 1, 24, i = 1, m

)
.

– SSi
t–The security stock for product i in period t of time horizon T (t = 1, 24, i = 1, m).

– ASi
t–The planned average level of stock for product i in period t of time horizon T

(t = 1, 24, i = 1, m).
– ∆ti–The auxiliary variable for calculation of the LQi

t in the case of a lot-for-lot ordering
policy (i = 1, m).

5.3. Mathematical Formulation of the Inventory Control Problem

The problem described in the above sections is considered as a time-continuous
multiproduct inventory control problem. For each product i the total deterministic de-
mand should be satisfied within a finite time horizon T = 2 years (24 months) in the
following manner:

• The same or variable amount Qi
t of product i, depending on the ordering policy, is

ordered with no constant time ti between the two orders.
• The ordered amount Qi

t arrives on the stock simultaneously and immediately after
LT, while products are withdrawn from the stock continuously by the rate of the
sales plan.

The problem is modelled as the corresponding discrete-time system control process.
Rather than continuous time periods for products ordering, the entire time horizon [0, T] is
divided into n periods t with the same length T/n, where t = 1, . . . , n. For example, if T is
a year then t is a month. Ordering of any product can be realized only at the beginning of
a period t. During this period of length T/n the products are withdrawn from the stock
continuously in accordance with the sales plan Yi3

t .
The decision variable Qi

t is generated in the model for all time periods. The inventory
state of the product i changes during the entire period of time. The inventory system
can be formally represented as a discrete-time system control process with the following
elements: Xi1

t , Xi2
t , Yi1

t , Yi2
t , Yi3

t and Yi4
t . If we consider Xi1

t and Xi2
t as the state of a process

at the end of each period t, then Equations (1)–(3) describe the low of behaviour of the
discrete-time process, defined as follows. At the beginning of the time horizon, the initial
inventory level is known and has to be a non-negative value (≥0).

Xi1
0 = known, Xi2

0 = known, i = 1, 2, ..., m (1)

Inventory dynamics of accumulation Xi1
t are described by Equation (2) and appoint

that the planned stock level of product i on hand at the end of period t depends on the
stock level of product i at the end of the previous time period t − 1, increased by all inputs
and decreased by all outputs during the time period t.

Xi1
t =


{

0, Xi1
t−1 + Yi1

t − Yi3
t < 0

Xi1
t−1 + Yi1

t − Yi3
t , otherwise

}
Si

t − Yi3
t , otherwise

, Si
t = 0

, t = 1, 24, i = 1, m (2)
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A similar Equation (3) is developed for the realized stock level of product i on hand at
the end of period t.

Xi2
t =


{

0, Xi2
t−1 + Yi2

t − Yi4
t < 0

Xi2
t−1 + Yi2

t − Yi4
t , otherwise

}
Si

t − Yi4
t , otherwise

, Si
t = 0

, t = 1, 24, i = 1, m (3)

The value of the planned input of stock (Yi1
t ) depends on the planned re-order quantity

(Qi
t) and variable realized input of stock (Yi2

t ). This variable can be formally expressed as:

Yi1
t =

{
Yi2

t , Yi2
t > 0

Qi
t, otherwise

}
, t = 1, 24, i = 1, m (4)

The sales forecast plan (Yi3
t ) represents the amount of product planned for withdraw-

ing from the stock continuously per month, and this flow regulator is planned by sales
management for two years.

Yi3
t = known, t = 1, 24, i = 1, m (5)

Flow regulator Yi2
t represents the realized input of stock when the inventory is physi-

cally delivered to the distributor warehouse at the beginning of time period t and can be
formally described as:

Yi2
t = known, t = 1, 24, i = 1, m (6)

Realized sales (Yi4
t ) represents the amount of product physically withdrawn from the

realized stock level on hand continuously per month. This flow regulator is known at the
end of the current time period t (at the end of each month). In the case of deterministic
demand, the flow regulator is described as:

Yi4
t = Yi3

t = known, t = 1, 24, i = 1, m (7)

However, in the case of stochastic demand (i.e., time-varying demand), the flow
regulator is presented as the variable sales forecast Yi3

t , which is changed randomly in the
range of ±20% for each period of time horizon T. More formally:

Yi4
t =

{
0, Si

t = 0
Y3

t ∗ (100 ∗ (20 − RAND() ∗ 40)/100), otherwise

}
, t = 1, 24, i = 1, m (8)

where function RAND() generates random numbers, evenly distributed.
According to [15], the process described by Equations (1)–(8) represents a typical

discrete-time system control process, where the current state in period t depends on both
the previous state in period t-1 and the chosen value of Qi

t.
The auxiliary variable Si

t represents the inventory level in the stock level report of
product i. It is obtained from a customer warehouse at the beginning of each month, and it
represents a real level of inventory for a product i. The quantity received at the beginning of
a month Yi2

t increases the level of inventory in the stock level report of product i, generated
at the beginning of each month.

Si
t = known, t = 1, 24, i = 1, m (9)

The security stock represents the maximum amount of all monthly values in the sales
forecast plan (Yi3

t ) in time horizon T and covers demand for one month. It is expressed as:

SSi
t = max(Yi3

t ), t = 1, 24, i = 1, m (10)

The planned average level of stock ASi
t in time horizon T is an auxiliary variable

calculated as a product of the amount of safety stock (SSi
t) and half of a lead time period
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(LT/2). The amount of average stock corresponds to the average sale for at least half of a
lead time period. It is expressed as:

ASi
t = SSi

t ∗
LT
2

, t = 1, 24, i = 1, m (11)

The planned re-order quantity Qi
t realizes at the beginning of a period t only in the

case when the stored quantity of product i remaining at the end of the previous time period
t − 1 is not greater than the average stock on hand in time horizon T. This decision variable
is generated by relation (12) and depends on the ordering policy. For FOQ policy, quantity
of product i is defined by the manufacturer (minQi

t), and for LFL policy it is LQi
t quantity.

LFL order quantity LQi
t is based on a moving horizon for each product i. It is calculated in

accordance with the precisely needed order quantity for three months of sales that occur
after the expiry of a defined lead time. The decision variable planned re-order quantity Qi

t
for period t can be expressed as:

Qi
t =



{

minQi
t
(
or LQi

t
)
, Xi1

t < ASi
t − SSi

t
0, otherwise

}
, ∏t+LT

t Ai
t = 1

minQi
t
(
or LQi

t
)
, otherwise

, Xi1
t+LT < ASi

t

0, otherwise

, t = 1, 24, i = 1, m (12)

The stock level alarm Ai
t is an auxiliary variable representing the signal indicating if

the planned stock level on hand Xi1
t is greater than security stock SSi

t for product i. This
binary variable takes the value of 1 if the described condition is satisfied and 0 otherwise.
The Ai

t value is calculated as:

Ai
t =

{
1, Xi1

t > SSi
t

0, otherwise

}
, t = 1, 24, i = 1, m (13)

The control domain of the model includes two constraints. These constraints secure
that the inventory level in the accumulation cannot be negative. Inequality (14) shows
that the planned stock level on hand (Xi1

t ) and realized stock level on hand (Xi2
t ) cannot be

negative, and these rules are included in relation (2) and (3) of the model.

Xi1
t−1 + Yi1

t − Yi3
t ≥ 0 t = 1, 24, i = 1, m

Xi2
t−1 + Yi2

t − Yi4
t ≥ 0

(14)

Let us determine the performance criterion function for the inventory system described
by (1)–(8). Performances of the model can be observed through two objective functions:

- (max) J1–The maximization of the difference between the planned average level of
inventory and the realized average level of inventory.

- (min) J2–The minimization of the number of stock-out situations.

Relations (15) and (16) describe the objective functions.

(max) J1 =
∑T

t=1 Xi1
t

T
− ASi, t = 1, 24, i = 1, m (15)

(min) J2 = ∑T
t=1(1, Xi1

t < 0), t = 1, 24, i = 1, m (16)

For the second instance, referring to LFL ordering policy, the order quantity LQi
t of

product i is calculated in accordance with the forecasted sale for three months that occurs
after the expiry of a defined lead time LT. The auxiliary variable ∆ti represents the number
of time periods in a moving average horizon after the expiry of a lead time for which
demand is summarized. Additionally, due to the fact that the moving horizon does not
cover t > T periods, this factor is multiplied by the amount of security stock

(
SSi

t
)

in order
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to obtain the demand (e.g., demand for three months at the end of the time horizon) in the
case of LFL policy. The discrete controlled object model, with the previously described
law of dynamics, control domain, performance criterion, and all discrete equations and
inequalities, remains the same as the model of the first instance, but the minQi for FOQ
policy will be changed with the LFL order quantity LQi

t. The new decision variable LQi
t for

period t can be defined as:

∆ti = known, i = 1, m

LQi
t =

{
∆ti·SSi

t, Yi3
t+LT+∆ti = 0

∑t+LT+∆ti

t+LT Yi3
t , otherwise

}
, t = 1, 24, i = 1, m

(17)

6. The Inventory Control Model Implementation

The discrete simulation control model is implemented in a spreadsheet environment,
and procedures are automated through Visual Basic for Application (VBA) for all products
i = 1, . . . , m. Input elements for the model are the sales forecast, the FOQ, the stock level
report, the realized input of stock, and the realized sales (Figure 4). In the case of LFL
ordering policy, the ordering quantity is not the FOQ. LFL quantity, represented by variable
LQi

t, is calculated in accordance with Equation (17). In addition, the level of inventory in a
column planned stock level on hand (Figure 4) must be calculated. Customers send the
inventory level report at the beginning of each month, and it corresponds to the actual
inventory level at the end of the previous month. Values from these reports are presented
in the column stock level report (Figure 4). The planned stock level on hand for a current
month is calculated as a sum of the stock level quantity at the end of the previous month
and the planned input of stock, reduced for the forecasted sale in a current month. The
model refers to all periods within 2 years, even future months. In this manner, we define
the sensor function of the feedback model, which prepares data for comparison in the
comparator.
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An unusually long lead time (LT) indicates that the reorder point and reorder quantity
have to be calculated based on the inventory level and sales forecast for all months between
the current period (t) and the delivery period (t + LT). The column planned order quantity
(Figure 4) represents the variable defined as the difference between the necessary inventory
level for observed months and the actual stock level. Calculated differences are used for
the determination of order quantities that will be distributed to each customer and the time
periods when orderings have to be realized, i.e., reorder periods. This variable represents
the comparator and controller function of the control model.

The column realized input of stock (Figure 4) relates to the situations when an order ar-
rives earlier or later than expected. This is not a common case because t = 1 month or approx-
imately 30 days, and delay in the delivery is notated only in cases exceeding t = 1 month.
In these cases, the entire spreadsheet simulation model is recalculated automatically.

According to the comparison algorithm presented in Figure 5, stock levels are com-
pared with average inventory levels and security stock. The average inventory levels and
security stock provide demand satisfaction. Based on these differences, the order quantity
and reorder periods are calculated and presented by the variable planned order quantity
(Figure 5). However, if the delivery of articles ordered in January is realized with a 2-month
delay, the ordering plan has to be updated.
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Figure 5. Pseudocode for planned order quantity.

After approval of the quantities, the order is sent to supplier 4U Pharma GMBH. These
actions affect inventories and demand for all domestic clients, wholesalers, and pharmacies
from different countries. Additionally, when the order quantity and delivery are confirmed
by the production plant, the entire ordered quantity is assigned to the countries and clients.
In this manner, the logistics manager controls the distribution of ordered quantities, which
provides inventory to satisfy all customer requirements.

7. Sensitivity Analysis and Numerical Results

Sensitivity analysis is realized for a single product in order to evaluate the model
performances. Consequently, because i = 1, the variables’ exponents declared for “i” will
be omitted in further text. Sensitivity analysis and numerical results will be presented for
two instances. Instance 1 is related to the FOQ ordering policy and Instance 2 refers to the
LFL ordering policy.

7.1. Instance 1: FOQ Ordering Policy

The following assumptions are considered for Instance 1:

• The initial level of inventory for products is zero in the case of launching a new product
into the market. In this case, the first order will be launched at the beginning of January
and delivered at the beginning of June (LT = 5 months).

• Based on historical data from previous years and experience, the manager forecasts
monthly sales at the beginning of the first year for the next 2 years.

• The supplier defines the FOQ for each product. Since the FOQ is not unique for each
product, the unit price depends on the ordered quantity.

• At the beginning of every month, customers from all countries send stock level reports
to the company’s logistics manager. This report represents the prescribed form and
format in an Excel spreadsheet.

• The delivery lead time is five months. The quantity ordered at the beginning of
February is in stock at the beginning of July.

• At the beginning of the first year, there are no realized inputs of stock for launched
orders from the previous periods.

Instance 1 is analysed for two separate cases. Case 1 considers FOQ policy with
deterministic demand, where the forecasted sale is equal to the realized sale. Case 2 reflects
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FOQ policy with stochastic demand, when the realized sale is the forecasted sale changed
randomly in range ±20%.

In Case 1, regulators Y3
t = Y4

t = Sales f orecast = known, t = 1, 24. From the beginning
of June there are no stock-out situations, with exception of the first 5 months when the
system waits for the delivery of the initial inventory (Figure 6).
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In addition, except for the first five months, the value of the objective function defined
by Equation (16) is 0, without stock-out situations (Figure 7).
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According to Case 2 (Figure 8), the variable Realized sales is presented as the variable
Sales forecast, which is changed randomly in the range of ±20% for each period of time
horizon T, as it is presented by Equation (8).
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For Case 2, the total number of planned orders and received deliveries is the same as
for Case 1. From the company manager’s point of view, forecasted sales never deviate more
than ±20%. This stochastic demand generates very similar values of the objective functions
J1 and J2 as for Case 1, concerning the average level of inventories and stock-outs (Figure 9).
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The numerical results of Case 1 and Case 2 for Instance 1 are presented in Table 2.

Table 2. Numerical results of Case 1 and Case 2 for Instance 1.

No. Instance 1:
FOQ Ordering Policy

Case 1: Deterministic
Demand

Case 2:
Stochastic
Demand

1 Lead time (month) 5 5
2 Planned average level of stock (unit) 63,000.00 63,000.00
3 Security stock (unit) 25,200.00 25,200.00
4 Max level of stock T = 24 months (unit) 70,400.00 70,472.00
5 Average level of stock T = 24 months (unit) 45,595.00 45,646.00
6 Total number of stock outs 5 5
7 Total number of launched orders 14 14
8 Total number of received orders 11 11
9 max (J1) = (2)–(5) 17,405.00 17,354.00
10 min (J2) = (6) 5 5

The total number of planned orders is 14, and the total number of received deliveries is
11. As shown in Figures 6 and 8 and Table 2, at the beginning of the first year, the columns
Stock level report, Realized input of stock and Realized sales are empty because there are
no launched orders from the previous year for delivery in the first five months of time
horizon T. For Case 1, the model shows that the planned average level of inventory for the
product in the warehouse (63,000 units) is greater than the realized average level of stock
in time horizon T = 24 months (45,595 units) for 17,405 units, according to the objective
function (15). In addition, except for the first five months, the value of the objective function
(16) is zero, without stock-out situations.

If we compare the numerical results of Case 1 and Case 2 for FOQ ordering policy
(Table 2), it can be appointed that the differences between the values of the objective
functions are small, even in Case 2, when the realized sales are randomly changed in the
range of ±20%. An insignificant deviation of the objective functions results for Cases 1
and 2 confirms that the model is sensitive and stable. One of the main questions related to
future research, also significant from a company perspective, can be: “What will happen
with the Total number of orders, Stock-outs, and Costs, if the business environment is
unstable and uncertainty is higher, e.g., if realized sales vary more than ±30% or ±50%?”.

7.2. Instance 2: LFL Ordering Policy

In the case of LFL ordering policy, the order quantity is calculated in accordance with
the moving horizon, i.e., the forecasted sales for three months which occurs after the expiry
of the defined lead time. The variable LQi

t (Equation (17)) represents the order quantity for
the LFL model. General assumptions for Instance 2 are the same as for Instance 1. Instance
2 is analysed for two separate cases, as well as Instance 1. Case 1 considers LFL ordering
policy with deterministic demand, where the forecasted sale is equal to the realized sale.
Case 2 reflects LFL ordering policy with stochastic demand, where the realized sales are
the forecasted sales changed randomly in the range ±20%. For Case 1, shown in Figure 10,
regulators Y3

t = Y4
t = Sales f orecast = known, t = 1, 24.

As mentioned, Case 2 considers LFL ordering policy with stochastic demand. The
variable realized sales is described by Equation (8). Except for the values of this variable,
elements of the spreadsheet model for Case 2 are the same as for Case 1. Since the dynamic
of accumulation for both cases of Instance 2 is pretty similar as for Instance 1, there was
no need for graphic representation. For Case 2 of Instance 2, the total number of planned
orders and received deliveries is the same as for Case 1 of Instance 2. The numerical results
of Case 1 and Case 2, for Instance 2, are presented in Table 3.
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Table 3. Numerical results of Case 1 and Case 2 for Instance 2.

No. Instance 2:
LFL Ordering Policy

Case 1:
Deterministic Demand

Case 2:
Stochastic Demand

1 Lead time (month) 5 5
2 Planned average level of stock (unit) 63,000.00 63,000.00
3 Security stock (unit) 25,200.00 25,200.00
4 Max level of stock T = 24 months (unit) 94,600.00 94,599.00
5 Average level of stock T = 24 months (unit) 59,979.00 59,967.00
6 Total number of stock outs 5 5
7 Total number of launched orders 10 10
8 Total number of received orders 7 7
9 max (J1) = (2)–(5) 3021.00 3033.00
10 min (J2) = (6) 5 5

If we compare the numerical results of Case 1 and Case 2 for LFL ordering policy
(Table 3), it can be noted that the differences between the values of the objective functions
are small, even in Case 2, when the realized sales are randomly changed in the range
of ±20%. An insignificant deviation of the objective functions results for Cases 1 and 2
confirms that the model is sensitive and stable.

7.3. Comparison of Numerical Results for Instance 1 and Instance 2

A comparative review of results for Instances 1 and 2 in the situation of deterministic
demand is shown in Table 4. The value of the objective function J1 is decreased for
14,384 units, i.e., to the amount of 3021 units for the LFL ordering policy. The average
level of inventories is increased by 14,384 units, which is a consequence of the decreased
number of launched and received orders. The number of planned and realized deliveries
is decreased by four, which significantly impacts delivery costs, but the average order
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quantity is also increased from 32,000 units (Figure 6) to 48,338 units (Figure 10). The
decreased number of deliveries drives the increase of the average inventory level. Except
for the first five months, the criterion function J2 is zero, i.e., without stock-out situations.

Table 4. Comparison of numerical results for Instance 1 and Instance 2 in Case 1.

No. Parameters

Instance 1: FOQ
Ordering Policy

Case 1:
Deterministic

Demand

Instance 2:
LFL Ordering Policy

Case 1:
Deterministic

Demand

∆

(Instance 1–Instance 2)

1 Lead time (month) 5 5 0
2 Planned average level of stock (unit) 63,000.00 63,000.00 0
3 Security stock (unit) 25,200.00 25,200.00 0
4 Max level of stock T = 24 months (unit) 70,400.00 94,600.00 24,200.00
5 Average level of stock T = 24 months (unit) 45,595.00 59,979.00 14,384.00
6 Total number of stock outs 5 5 0
7 Total number of launched orders 14 10 −4
8 Total number of received orders 11 7 −4
9 max (J1) = (2)–(5) 17,405.00 3021.00 −14,384.00
10 min (J2) = (6) 5 5 0

However, if we compare the numerical results of Case 2 for Instance 1 and Case 2 for
Instance 2 (Table 5), the number of orders and consequently delivery costs are decreased.
Therefore, based on previously declared assumptions of this control model, taking into
account the defined objective functions (15) and (16), the performed numerical experiments
show that the FOQ gives better results than the LFL policy.

Table 5. Comparison of numerical results for Instance 1 and Instance 2 in Case 2.

No. Parameters

Instance 1: FOQ
Ordering Policy

Case 2: Stochastic
Demand

Instance 2: LFL
Ordering Policy

Case 2: Stochastic
Demand

∆

(Instance 1–Instance 2)

1 Lead time (month) 5 5 0
2 Planned average level of stock (unit) 63,000.00 63,000.00 0
3 Security stock (unit) 25,200.00 25,200.00 0
4 Max level of stock T = 24 months (unit) 70,472.00 94,599.00 24,127.00
5 Average level of stock T = 24 months (unit) 45,646.00 59,967.00 14,321.00
6 Total number of stock outs 5 5 0
7 Total number of launched orders 14 10 −4
8 Total number of received orders 11 7 −4
9 max (J1) = (2)–(5) 17,354.00 3033.00 −14,321.00
10 min (J2) = (6) 5 5 0

The FOQ ordering policy will decrease the average amount of inventories and increase
the stability in the supplier production process, i.e., the production series will be based on
FOQ quantity. Nevertheless, considering the delivery costs, which are not assumptions
of this model, the LFL policy could obtain better results than the FOQ policy due to the
impact of the decreased number of deliveries.

Moreover, for the LFL ordering policy (Table 5), the total number of launched and
received orders is decreased for four orders. Bearing in mind that the average lead time of
delivery is five months, the waiting time for deliveries is decreased by 20 months, and the
risk of undelivered orders is much lower.
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8. Conclusions

This paper describes a multiproduct inventory control problem in a pharmaceutical
distribution company, modelled as a corresponding dynamic discrete-time system control
process. The actuality of the topic elaborated in the paper is consistent with the importance
of the pharmaceutical inventory and distribution management. The improvement of the
mentioned processes management in pharmaceutical companies implies cost reduction
and customer service level improvements.

The paper is aimed at the development of an inventory control model for a phar-
maceutical distribution company, with an emphasis on reorder quantities and reorder
periods, and the satisfaction of specific constraints. The mathematical model is based on
the proposed conceptual model, developed in accordance with the modern control theory
concept and specific practical assumptions and constraints of the supply chain, as noticed
in the company. The authors proposed two variations of the model, implemented in the
spreadsheet environment of MS Excel and automated through Visual Basic for Applications.
The model allows analysis from many different perspectives and can be easily modified
and enhanced in order to reflect new scenarios. The developed model represents a baseline
model that enables the creation of alternative scenarios and comparison of those scenarios
to the baseline. Furthermore, the presented solution of the problem satisfies the request de-
fined by the company which is related to the affordable but dynamic and flexible software
solution that is relatively easy to implement and use. These contributions, detailed in the
paper, represent an important aspect of managerial implications.

The theoretical contribution and some of the main advantages of the developed control
model concerning the traditional DRP model are:

– FOQ- and LFL-based models determine lot size and safety stock.
– These models recalculate order quantities and reorder points if demand is changed in

real-time.
– The full automation of the model is based on the concept of feedback control.
– The structure of the model is precisely defined according to the object of discrete

control with an adequate mathematical apparatus.

In order to emphasize specificities of the research presented in this paper, and at the
same time the improvements of the previous study mentioned in [15], the authors of the
paper point out the following contributions:

– Modern control theory (MCT), i.e., self–regulation and feedback control concepts, with
relevant elements (sensor, comparator, controller, system) of the feedback loop are
applied during the development of the conceptual model.

– The mathematical model presented in the paper is comprised of two flows. The
planned inventory state represents information flow, while the actual inventory state
refers to material flow. Each flow has one phase of accumulation and two phases of
action. Two sales variables and two inventory state variables, planned and realized,
are precisely mathematically defined, with their mutual influence, i.e., the impact of
the actual state of inventory on the future, and the planned inventory state.

– The performance criterion of the inventory system is defined and described through
two objective functions, the maximization of the difference between the planned
average inventory level and the realized average inventory level and the minimization
of the number of stock-out situations.

– The originally developed comparison algorithm for the planned order quantity reflects
the decision tree for comparison of all relevant stock variables.

– Sensitivity analysis is conducted, and numerical results are explained clearly with all
supporting data.

– Stochastic demand is generated as a random variation of sales forecast in the range of
±20%. Numerical results are compared for deterministic and stochastic actual sales.

The applicability of the model has been proven by its usage for procurement planning
in the described company within the period of two years. The created plan comprised more
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than 50 products per country for several countries from Eastern-Central Europe. Research
directions imply further research of the model efficiency for real-life problems but with
larger dimensions. For example, the number of units and constraints could be increased,
the model could include delivery costs, and the stochastic demand could be randomly
varied in a range more than ±20.
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